-
在光纤信道中, 连续变量量子密钥分发协议(continuous-variable quantum key distribution, CV-QKD)已经展现出获得更高安全码率的能力, 但是CV-QKD协议可容忍的信道衰减相对较低, 空间衍射、大气折射、信号衰减和湍流等实际因素都会影响空间信道中CV-QKD协议的可行性. 本文研究了实际空间信道环境下离散调制CV-QKD协议的可行性, 分析了空间衍射和大气衰减、湍流信道退化模型对于空间信道离散调制CV-QKD协议的影响, 讨论了卫星轨道高度、天顶角、接收器孔径、束腰尺寸和过量噪声等实际参数对空间离散调制CV-QKD的密钥生成率影响, 搭建了星地动态运动场景仿真分析了实际环境下空间信道离散调制CV-QKD协议的可行性, 仿真结果可为空间信道离散调制CV-QKD实验的设计和优化提供参考.
-
关键词:
- 空间信道 /
- 连续变量量子密钥分发 /
- 星地下行链路 /
- 离散调制
Continuous variable quantum key distribution (CV-QKD) has emerged as a promising candidate for quantum-secure communication due to its experimentally demonstrated high key rates in fiber-optic channels. However, the feasibility of discrete modulation CV-QKD in satellite-to-ground downlinks remains an open question due to practical challenges such as high transmission loss, limited communication windows, and atmospheric turbulence. In this work, a comprehensive framework is proposed to evaluate the feasibility of discrete modulation CV-QKD by integrating orbital dynamics and atmospheric channel models, and to comprehensively analyze the influence of the parameter space on free-space discrete modulation CV-QKD. To achieve this, a free-space CV-QKD simulation platform is employed, which calculates the elevation angle and transmission distance based on precise orbital models, thereby providing a more practical assessment of the key rate for discrete modulation CV-QKD. Simulation results verify the feasibility and practicality of discrete modulation CV-QKD in satellite-based quantum communication systems. Furthermore, the critical factors influencing the key rate performance are identified, and parameter optimization strategies are proposed, providing theoretical support for realizing the future satellite-to-ground discrete modulation CV-QKD.-
Keywords:
- space channel /
- continuous-variable quantum key distribution /
- satellite underground links /
- discrete modulation
-
图 1 QPSK协议的空间信道制备测量模型和星座示意图(PM, 相位调制器; EPC, 电极化控制器; LO, 本地振荡器; BS, 分束器; PD, 光电探测器)
Fig. 1. Measurement model and constellation schematic of spatial channel preparation for QPSK protocols. PM, phase modulator; EPC, electrical polarization controller; LO, local oscillator; BS, beam splitter; PD, photodetector
图 5 传输损耗及密钥率与光束腰尺寸和接收孔径的关系图 (a)传输损耗与光束腰尺寸和接收孔径的关系; (b)密钥率与光束腰尺寸和接收孔径的关系
Fig. 5. Graph of transmission loss and key rate versus beam waist size and acceptance aperture: (a) Transmission loss versus beam waist size and acceptance aperture; (b) key rate as a function of beam waist size and acceptance aperture.
表 1 用于模拟墨子号-丽江站的参数
Table 1. Parameters used to simulate the Mercury-Lijiang station
参数 参考值 光束尺寸ω0 20 cm 接收孔径αR 0.9 m 探测效率$ {\tau _{{\text{eff}}}} $ 0.4 天顶传输效率$ {\tau _{{\text{zen}}}} $ 0.90 指向误差$ {\theta _{\text{p}}} $ 1 μrad 表 2 DM CV-QKD系统参数设置
Table 2. DM CV-QKD System Parameter Setting
参数 参考值 波长λ 1550 nm 调制幅度α 0.6 后处理值Δ 0 过量噪声$ {\xi _{{\text{tot}}}} $ 0.01 光子截止数Nc 12 表 3 GM CV-QKD系统参数设置
Table 3. GM CV-QKD System Parameter Setting
参数 参考值 制备方差V 4 电子噪声$ {\xi _{{\text{el}}}} $ 0.1 反向调和效率β 0.95 过量噪声$ \xi $ 0.02 -
[1] Bennett C, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing Bangalore, December 9-12, 1984 p175
[2] Ralph T C 1999 Phys. Rev. A 61 010303
Google Scholar
[3] Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902
Google Scholar
[4] Vernam G S 1926 J. AIEE 45 109
[5] Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, Ren J G, Yin J, Shen Q, Cao Y, Li Z P, Li F Z, Chen X W, Sun L H, Jia J J, Wu J C, Jiang X J, Wang J F, Huang Y M, Wang Q, Zhou Y L, Deng L, Xi T, Ma L, Hu T, Zhang Q, Chen Y A, Liu N L, Wang X B, Zhu Z C, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 43
Google Scholar
[6] Aguado A, Lopez V, Lopez D, Peev M, Poppe A, Pastor A, Folgueira J, Martin V 2019 IEEE Commun. Mag. 57 20
[7] Zhang Y, Chen Z, Chu B, Zhou C, Wang X Y, Zhao Y J, Xu Y F, Xu C, Wang H J, Zheng Z Y, Huang Y D, Xu C C, Zhang X X, Shen T, Huang G, Zheng Y L, Fei Z X, Huang W N, Zhu M, Huang L Y, Luo B, Yu S, Guo H 2020 Bull. Am. Phys. Soc. 65 857
[8] García-Patrón R, Cerf N J 2009 Phys. Rev. Lett. 102 130501
Google Scholar
[9] Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504
Google Scholar
[10] Zhou J, Guo Y, Huang D, Zeng G 2017 arXiv: 1711.09039 [quant-ph]
[11] Li Z, Zhang Y C, Guo H 2018 arXiv: 1805.04249 [quant-ph]
[12] Ghorai S, Grangier P, Diamanti E, Leverrier A 2019 Phys. Rev. X 9 021059
[13] Wang P, Zhang Y, Lu Z G, Wang X Y, Li Y M 2023 New J. Phys. 25 023019
Google Scholar
[14] Bäuml S, Pascual-García C, Wright V, Fawzi O, Acín A 2024 Quantum 8 1418
Google Scholar
[15] Wu M Z, Li J H, Xu B J, Yu S, Zhang Y C 2024 Phys. Rev. Appl. 22 034024
Google Scholar
[16] Lin J, Lütkenhaus N 2020 Phys. Rev. Appl. 14 064030
Google Scholar
[17] Liu W B, Li C L, Xie Y M, Weng C X, Gu J, Cao X Y, Lu Y S, Li B H, Yin H L, Chen Z B 2021 PRX Quantum 2 040334
Google Scholar
[18] Zhou S, Xie Q M, Zhou N R 2024 Laser Phys. Lett. 21 065207
Google Scholar
[19] Gong L H, Li M L, Cao H, Wang B 2024 Laser Phys. Lett. 21 055209
Google Scholar
[20] Li S G, Li C L, Liu W B, Yin H L, Chen Z B 2024 Adv. Quantum Technol. 7 2400140
Google Scholar
[21] Vasylyev D, Vogel W, Moll F 2019 Phys. Rev. A 99 053830
Google Scholar
[22] Pirandola S 2021 Phys. Rev. Res. 3 023130
Google Scholar
[23] Svelto O, Hanna D C 2010 Principles of Lasers (New York: Springer) p153
[24] Dequal D, Trigo Vidarte L, Roman Rodriguez V, Vallone G, Villoresi P, Leverrier A, Diamanti E 2021 npj Quantum Inf. 7 3
Google Scholar
[25] Spectral Sciences Inc http://modtran.spectral.com/modtran_home [2025-01-12]
[26] Liorni C, Kampermann H, Bruß D 2019 New J. Phys. 21 093055
Google Scholar
[27] Fante R L 1975 Proc. IEEE 63 1669
Google Scholar
[28] Vasylyev D Y, Semenov A, Vogel W 2012 Phys. Rev. Lett. 108 220501
Google Scholar
[29] Liu X, Lu H M, He Y F, Wu F L, Zhang C X, Wang X L 2023 Symmetry 15 2053
Google Scholar
[30] Lin J, Upadhyaya T, Lütkenhaus N 2019 Phys. Rev. X 9 041064
[31] Hu H, Im J Y, Lin J, Lütkenhaus N, Wolkowicz H 2022 Quantum 6 792
Google Scholar
[32] Prosser C F, Kennicutt Jr R C, Bresolin F, Saha A, Sakai S, Freedman W L, Mould J R, Ferrarese L, Ford H C, Gibson B K, Graham J A, Hoessel J G, Huchra J P, Hughes S M, Illingworth G D, Kelson D D, Macri L, Madore B F, Silbermann N A, Stetson P B 1999 Astrophys. J. 525 80
Google Scholar
计量
- 文章访问数: 318
- PDF下载量: 7
- 被引次数: 0