-
连续变量量子密钥分发协议(Continuous-Variable Quantum Key Distribution, CV-QKD)在光纤信道中已经展现出获得更高安全码率的能力,但是CV-QKD协议可容忍的信道衰减相对较低,空间衍射、大气折射、信号衰减和湍流等实际因素都会影响空间信道中CV-QKD协议的可行性。本文研究了实际空间信道环境下离散调制CV-QKD协议的可行性,分析了空间衍射和大气衰减、湍流信道退化模型对于空间信道离散调制CV-QKD协议的影响,讨论了卫星轨道高度、天顶角、接收器孔径、束腰尺寸和过量噪声等实际参数对空间离散调制CV-QKD的密钥生成率影响,搭建了星地动态运动场景仿真分析了实际环境下空间信道离散调制CV-QKD协议的可行性,仿真结果可为空间信道离散调制CV-QKD实验的设计和优化提供参考。
-
关键词:
- 空间信道 /
- 连续变量量子密钥分发 /
- 星地下行链路 /
- 离散调制
Continuous Variable Quantum Key Distribution (CV-QKD) has emerged as a promising candidate for quantum-secure communication due to its experimentally demonstrated high key rates in fiber-optic channels. However, the feasibility of discrete modulation CV-QKD in satellite-to-ground downlinks remains an open question due to practical challenges such as high transmission loss, limited communication windows, and atmospheric turbulence. In this paper, a comprehensive framework is proposed to evaluate the feasibility of discrete modulation CV-QKD by integrating orbital dynamics and atmospheric channel models, with a full analysis of the impact of the parameter space on free-space discrete modulation CV-QKD. To achieve this, a free-space CV-QKD simulation platform is employed, which calculates the elevation angle and transmission distance based on precise orbital models, thereby providing a more practical assessment of the key rate for discrete modulation CV-QKD. Simulation results verify the feasibility and practicality of discrete modulation CV-QKD in satellite-based quantum communication systems. Furthermore, critical factors affecting the key rate performance are identified, and parameter optimization strategies are proposed, offering theoretical support for the future implementation of satellite-to-ground discrete modulation CV-QKD.-
Keywords:
- space channel /
- continuous-variable quantum key distribution /
- satellite underground links /
- discrete modulation
-
[1] Bennett C, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing Bangalore, December 9-12, 1984 p175
[2] Ralph T C 1999Phys. Rev. A 61 010303
[3] Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902
[4] Vernam G S 1926 J. AIEE 45 109
[5] Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, Ren J G, Yin J, Shen Q, Cao Y, Li Z P, Li F Z, Chen X W, Sun L H, Jia J J, Wu J C, Jiang X J, Wang J F, Huang Y M, Wang Q, Zhou Y L, Deng L, Xi T, Ma L, Hu T, Zhang Q, Chen Y A, Liu N L, Wang X B, Zhu Z C, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 43
[6] Aguado A, Lopez V, Lopez D, Peev M, Poppe A, Pastor A, Folgueira J, Martin V 2019 IEEE Commun. Mag. 57 20
[7] Zhang Y, Chen Z, Chu B, Zhou C, Wang X Y, Zhao Y J, Xu Y F, Xu C, Wang H J, Zheng Z Y, Huang Y D, Xu C C, Zhang X X, Shen T, Huang G, Zheng Y L, Fei Z X, Huang W N, Zhu M, Huang L Y, Luo B, Yu S, Guo H 2020 Bull. Am. Phys. Soc. 65 857
[8] García-Patrón R, Cerf N J 2009 Phys. Rev. Lett. 102 130501
[9] Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504
[10] Zhou J, Guo Y, Huang D, Zeng G 2017 arXiv:1711.09039 [quant-ph]
[11] Li Z, Zhang Y C, Guo H 2018 arXiv:1805.04249 [quant-ph]
[12] Ghorai S, Grangier P, Diamanti E, Leverrier A 2019 Phys. Rev. X 9 021059
[13] Wang P, Zhang Y, Lu Z, Wang X, Li Y 2023 New J. Phys. 25 023019
[14] Bäuml S, Pascual-García C, Wright V, Fawzi O, Acín A 2024 Quantum 8 1418
[15] Wu M, Li J, Xu B, Yu S, Zhang Y 2024 Phys. Rev. Appl. 22 034024
[16] Lin J, Lütkenhaus N 2020 Phys. Rev. Appl. 14 064030
[17] Liu W B, Li C L, Xie Y M, Weng C X, Gu J, Cao X Y, Lu Y S, Li B H, Yin H L, Chen Z B 2021 PRX Quantum 2 040334
[18] Zhou S, Xie Q M, Zhou N R 2024 Laser Phys. Lett. 21 065207
[19] Gong L H, Li M L, Cao H, Wang B 2024 Laser Phys. Lett. 21 055209
[20] Li S G, Li C L, Liu W B, Yin H L, Chen Z B 2024 Adv. Quantum Technol. 7 2400140
[21] Vasylyev D, Vogel W, Moll F 2019 Phys. Rev. A99 053830
[22] Pirandola S 2021 Phys. Rev. Res. 3 023130
[23] Svelto O, Hanna D C 2010 Principles of Lasers (New York: Springer) p153
[24] Dequal D, Trigo Vidarte L, Roman Rodriguez V, Vallone G, Villoresi P, Leverrier A, Diamanti E 2021 npj Quantum Inf. 7 3
[25] Spectral Sciences Inc http://modtran.spectral.com/modtran_home [2025-01-12]
[26] Liorni C, Kampermann H, Bruß D 2019 New J. Phys. 21 093055
[27] Fante R L 1975 Proc. IEEE 63 1669
[28] Vasylyev D Y, Semenov A, Vogel W 2012 Phys. Rev. Lett. 108 220501
[29] Liu X, Lu H, He Y, Wu F, Zhang C, Wang X 2023 Symmetry15 2053
[30] Lin J, Upadhyaya T, Lütkenhaus N 2019 Phys. Rev. X 9 041064
[31] Hu H, Im J, Lin J, Lütkenhaus N, Wolkowicz H 2022 Quantum 6 792
[32] Prosser C F, Kennicutt Jr R C, Bresolin F, Saha A, Sakai S, Freedman W L, Mould J R, Ferrarese L, Ford H C, Gibson B K, Graham J A, Hoessel J G, Huchra J P, Hughes S M, Illingworth G D, Kelson D D, Macri L, Madore B F, Silbermann N A, Stetson P B 1999 Astrophys. J. 525 80
计量
- 文章访问数: 125
- PDF下载量: 3
- 被引次数: 0