搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续变量Einstein-Podolsky-Rosen纠缠态光场在光纤信道中分发时纠缠的鲁棒性

赵豪 冯晋霞 孙婧可 李渊骥 张宽收

引用本文:
Citation:

连续变量Einstein-Podolsky-Rosen纠缠态光场在光纤信道中分发时纠缠的鲁棒性

赵豪, 冯晋霞, 孙婧可, 李渊骥, 张宽收

Entanglement robustness of continuous variable Einstein-Podolsky-Rosen-entangled state distributed over optical fiber channel

Zhao Hao, Feng Jin-Xia, Sun Jing-Ke, Li Yuan-Ji, Zhang Kuan-Shou
PDF
HTML
导出引用
  • Einstein-Podolsky-Rosen纠缠态光场是实现基于光纤的连续变量量子信息处理的重要量子光源, 其在光纤信道分发时会与信道相互作用发生解纠缠, 影响量子信息处理的性能. 本文利用部分转置正定判据分析了Einstein-Podolsky-Rosen纠缠态光场在单通道和双通道光纤信道分发方案中, 其初始态的关联正交分量对称性、模式对称性、纯度和光纤信道额外噪声对传输距离、纠缠态光场的纠缠特性及鲁棒性的影响. 在单通道和双通道方案中, 光纤信道的额外噪声都会引起纠缠态光场的解纠缠, 随着噪声的增大, 传输距离迅速减小. 要保持Einstein-Podolsky-Rosen纠缠态光场在光纤损耗信道中的纠缠鲁棒性, 双通道方案比单通道方案对初始态的关联正交分量对称性和纯度方面的要求更为苛刻. 而且单光纤噪声通道分发方案对模式对称性参数不敏感, 模式对称性参数变化不会引起解纠缠, 也不影响最大传输距离和纠缠鲁棒性特征; 在双光纤噪声通道分发时, 模式不对称参数降低会减小最大传输距离, 并出现纠缠突然死亡.
    Einstein-Podolsky-Rosen (EPR)-entangled state light field at a telecommunication wavelength of 1.5 μm is an important quantum source for realizing the continuous variable quantum information processing and some quantum protocols over optical fiber channel. When the EPR-entangled state light field is distributed over the optical fiber channel, the disentanglement is always present because the the EPR entangled state interacts with the fiber channel. It affects the performance of quantum information processing. In this paper, we theoretically calculate the positive partial transposition (PPT) of the entangled state distributed over the optical fiber channel in the single-channel and dual-channel distribution scheme, respectively. Three types of initial entangled light field are considered and analyzed, they being an initial EPR entangled state, an EPR entangled state with asymmetric quadratures, and an EPR entangled state with asymmetric modes. Furthermore, the influence of the extra noise in the optical fiber on the transmission distance of EPR entangled state over the optical fiber channel is investigated. In the single-channel scheme or dual-channel scheme, the extra noise in the optical fiber channel leads the entangled state light field to be disentangled, and the transmission distance of EPR entangled state over the optical fiber channel to decrease rapidly with the increase of the extra noise. For maintaining the robustness of EPR entangled states in lossy optical fiber channels, the dual-channel scheme has more stringent requirements for the correlation quadrature symmetry and purity of the initial entangled state than the single-channel scheme. In the single fiber noise channel scheme, the maximum transmission distance and the robustness of the EPR entangled states with asymmetric modes are not sensitive to the asymmetry between modes. The change of asymmetry between modes does not lead to being disentangled. The maximum transmission distance does not change either. However, the decrease of asymmetry between modes results in the disentanglement in the double fiber noise channels’ scheme. The maximum transmission distance is reduced and the sudden death occurs to the entanglement. The present results will lay a foundation for continuous variables quantum information processing based on optical fiber, such as realizing continuous variables quantum communication over optical fiber and constructing metropolitan quantum network over optical fiber.
      通信作者: 冯晋霞, fengjx@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62175135)资助的课题.
      Corresponding author: Feng Jin-Xia, fengjx@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62175135).
    [1]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [2]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [3]

    Ast M, Steinlechner S, Schnabel R 2016 Phys. Rev. Lett. 117 180801Google Scholar

    [4]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [5]

    Li X Y, Pan Q, Jing J T, Zhang J, Xie C D, Peng K C 2002 Phys. Rev. Lett. 88 047904Google Scholar

    [6]

    Jing J T, Zhang J, Yan Y, Zhao F G, Xie C D, Peng K C 2003 Phys. Rev. Lett. 90 167903Google Scholar

    [7]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404Google Scholar

    [8]

    Yu T, Eberly J H 2009 Science 323 598Google Scholar

    [9]

    Almeida M P, Melo F D, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579Google Scholar

    [10]

    Vidal G, Tarrach R 1999 Phys. Rev. A 59 141Google Scholar

    [11]

    Coelho A S, Barbosa F A S, Cassemiro K N, Villar A S, Martinelli M, Nussenzveig P 2009 Science 326 823Google Scholar

    [12]

    Barbosa F A S, Coelho A S, Faria A J, Cassemiro K N, Villar A S, Nussenzveig P, Martinelli M 2010 Nat. Photon. 4 858Google Scholar

    [13]

    Barbosa F A S, Faria A J, Coelho A S, Cassemiro K N, Villar A S, Nussenzveig P, Martinelli M 2011 Phys. Rev. A 84 052330Google Scholar

    [14]

    Deng X W, Tian C X, Su X L, Xie C D 2017 Sci. Rep. 7 44475Google Scholar

    [15]

    Deng X W, Liu Y, Wang M H, Su X L, Peng K C 2021 npj Quantum Inf. 7 65Google Scholar

    [16]

    印娟, 雍海林, 吴裕平, 彭承志 2011 物理学报 60 060307Google Scholar

    Yin J, Yong H L, Wu Y P, Peng C Z 2011 Acta Phys. Sin. 60 060307Google Scholar

    [17]

    Valivarthi R, Puigibert M G, Zhou Q, Aguilar G H, Verma V B, Marsili F, Shaw M D, Nam S W, Oblak D, Tittel W 2016 Nat. Photon. 10 676Google Scholar

    [18]

    Wengerowsky S, Joshi S K, Steinlechner F, Zichi J R, Dobrovolskiy S M, Molen R V D, Losh J W N, Zwiller V, Versteeghg M A M, Mura A, Calonico D, Inguscio M, Hübel H, Liu B, Scheidl T, Zeilinger A, Xuereb A, Ursina R 2019 PNAS 116 66684Google Scholar

    [19]

    Feng J X, Wan Z J, Li Y J, Zhang K S 2017 Opt. Lett. 42 3399Google Scholar

    [20]

    万振菊, 冯晋霞, 成健, 张宽收 2018 物理学报 67 024203Google Scholar

    Wan Z J, Feng J, Cheng J, Zhang K S 2018 Acta Phys. Sin. 67 024203Google Scholar

    [21]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [22]

    Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nat. Photon. 7 378Google Scholar

    [23]

    Wang N, Du S N, Liu W Y, Wang X Y, Li Y M, Peng K C 2018 Phys. Rev. Appl. 10 064028Google Scholar

  • 图 1  EPR纠缠态光场在光纤信道的分发方案 (a)双通道方案; (b)单通道方案

    Fig. 1.  Distribution scheme of EPR entangled state over optical fiber: (a) Dual-channel scheme; (b) single-channel scheme.

    图 2  理想EPR纠缠态光场在光纤信道中的传输特性 (a) LO光功率为0 mW; (b) LO光功率为0.05 mW; (c) LO光功率为0.1 mW; (d) LO光功率为0.2 mW

    Fig. 2.  Transmission characteristics of ideal EPR entangled state over optical fiber channel: (a) The power of the LO is 0 mW; (b) the power of the LO is 0.05 mW; (c) the power of the LO is 0.1 mW; (d) the power of the LO is 0.2 mW.

    图 3  关联正交分量不对称的EPR纠缠态光场在光纤信道中的传输特性 (a)单光纤通道; (b)双光纤通道

    Fig. 3.  Transmission characteristics of EPR entangled state with asymmetric quadratures over optical fiber channel: (a) Single-fiber-channel situation; (b) dual-fiber-channel situation.

    图 4  模式不对称的EPR纠缠态光场在光纤信道中的传输特性 (a)单光纤通道; (b)双光纤通道

    Fig. 4.  Transmission characteristics of EPR entangled state with asymmetric modes over optical fiber channel: (a) Single-fiber-channel situation; (b) dual- fiber-channel situation.

    图 5  EPR纠缠态光场在光纤信道中的鲁棒性 (a) $ 0 \leqslant \mu \leqslant 1 $, $ 0 \leqslant \kappa \leqslant 1 $; (b) $ \mu = 0.6 $, $ \kappa = 0.4 $; (c) $ \mu = 0.6 $, $ \kappa = 0.3 $

    Fig. 5.  Robustness of EPR entangled state over optical fiber channel: (a) $ 0 \leqslant \mu \leqslant 1 $, $ 0 \leqslant \kappa \leqslant 1 $; (b) $ \mu = 0.6 $, $ \kappa = 0.4 $; (c) $ \mu = 0.6 $, $ \kappa = 0.3 $.

  • [1]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [2]

    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621Google Scholar

    [3]

    Ast M, Steinlechner S, Schnabel R 2016 Phys. Rev. Lett. 117 180801Google Scholar

    [4]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [5]

    Li X Y, Pan Q, Jing J T, Zhang J, Xie C D, Peng K C 2002 Phys. Rev. Lett. 88 047904Google Scholar

    [6]

    Jing J T, Zhang J, Yan Y, Zhao F G, Xie C D, Peng K C 2003 Phys. Rev. Lett. 90 167903Google Scholar

    [7]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404Google Scholar

    [8]

    Yu T, Eberly J H 2009 Science 323 598Google Scholar

    [9]

    Almeida M P, Melo F D, Hor-Meyll M, Salles A, Walborn S P, Ribeiro P H S, Davidovich L 2007 Science 316 579Google Scholar

    [10]

    Vidal G, Tarrach R 1999 Phys. Rev. A 59 141Google Scholar

    [11]

    Coelho A S, Barbosa F A S, Cassemiro K N, Villar A S, Martinelli M, Nussenzveig P 2009 Science 326 823Google Scholar

    [12]

    Barbosa F A S, Coelho A S, Faria A J, Cassemiro K N, Villar A S, Nussenzveig P, Martinelli M 2010 Nat. Photon. 4 858Google Scholar

    [13]

    Barbosa F A S, Faria A J, Coelho A S, Cassemiro K N, Villar A S, Nussenzveig P, Martinelli M 2011 Phys. Rev. A 84 052330Google Scholar

    [14]

    Deng X W, Tian C X, Su X L, Xie C D 2017 Sci. Rep. 7 44475Google Scholar

    [15]

    Deng X W, Liu Y, Wang M H, Su X L, Peng K C 2021 npj Quantum Inf. 7 65Google Scholar

    [16]

    印娟, 雍海林, 吴裕平, 彭承志 2011 物理学报 60 060307Google Scholar

    Yin J, Yong H L, Wu Y P, Peng C Z 2011 Acta Phys. Sin. 60 060307Google Scholar

    [17]

    Valivarthi R, Puigibert M G, Zhou Q, Aguilar G H, Verma V B, Marsili F, Shaw M D, Nam S W, Oblak D, Tittel W 2016 Nat. Photon. 10 676Google Scholar

    [18]

    Wengerowsky S, Joshi S K, Steinlechner F, Zichi J R, Dobrovolskiy S M, Molen R V D, Losh J W N, Zwiller V, Versteeghg M A M, Mura A, Calonico D, Inguscio M, Hübel H, Liu B, Scheidl T, Zeilinger A, Xuereb A, Ursina R 2019 PNAS 116 66684Google Scholar

    [19]

    Feng J X, Wan Z J, Li Y J, Zhang K S 2017 Opt. Lett. 42 3399Google Scholar

    [20]

    万振菊, 冯晋霞, 成健, 张宽收 2018 物理学报 67 024203Google Scholar

    Wan Z J, Feng J, Cheng J, Zhang K S 2018 Acta Phys. Sin. 67 024203Google Scholar

    [21]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [22]

    Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nat. Photon. 7 378Google Scholar

    [23]

    Wang N, Du S N, Liu W Y, Wang X Y, Li Y M, Peng K C 2018 Phys. Rev. Appl. 10 064028Google Scholar

  • [1] 李昀衡, 喻可, 朱天宇, 于桐, 单思超, 谷亚舟, 李志曈. 拓扑层结构中的光学双稳态及其在光神经网络中的应用. 物理学报, 2024, 73(16): 164208. doi: 10.7498/aps.73.20240569
    [2] 王建伟, 赵乃萱, 望楚佩, 向玲慧, 温廷新. 相互依赖网络上级联故障鲁棒性悖论研究. 物理学报, 2024, 73(21): 218901. doi: 10.7498/aps.73.20241002
    [3] 王玉坤, 李泽阳, 许康, 王子正. 制备-测量量子比特系统的自测试标准. 物理学报, 2023, 72(10): 100303. doi: 10.7498/aps.72.20222431
    [4] 杨武华, 王彩琳, 张如亮, 张超, 苏乐. 高压IGBT雪崩鲁棒性的研究. 物理学报, 2023, 72(7): 078501. doi: 10.7498/aps.72.20222248
    [5] 毛丽君, 张云波. 三量子比特Dicke模型中的两体和三体纠缠动力学. 物理学报, 2021, 70(4): 040301. doi: 10.7498/aps.70.20201602
    [6] 薛晓丹, 王美丽, 邵雨竹, 王俊松. 基于抑制性突触可塑性的神经元放电率自稳态机制. 物理学报, 2019, 68(7): 078701. doi: 10.7498/aps.68.20182234
    [7] 万振菊, 冯晋霞, 成健, 张宽收. 连续变量纠缠态光场在光纤中传输特性的实验研究. 物理学报, 2018, 67(2): 024203. doi: 10.7498/aps.67.20171542
    [8] 侯绿林, 老松杨, 肖延东, 白亮. 复杂网络可控性研究现状综述. 物理学报, 2015, 64(18): 188901. doi: 10.7498/aps.64.188901
    [9] 陈世明, 吕辉, 徐青刚, 许云飞, 赖强. 基于度的正/负相关相依网络模型及其鲁棒性研究. 物理学报, 2015, 64(4): 048902. doi: 10.7498/aps.64.048902
    [10] 陈世明, 邹小群, 吕辉, 徐青刚. 面向级联失效的相依网络鲁棒性研究. 物理学报, 2014, 63(2): 028902. doi: 10.7498/aps.63.028902
    [11] 任卓明, 邵凤, 刘建国, 郭强, 汪秉宏. 基于度与集聚系数的网络节点重要性度量方法研究. 物理学报, 2013, 62(12): 128901. doi: 10.7498/aps.62.128901
    [12] 缪志强, 王耀南. 基于径向小波神经网络的混沌系统鲁棒自适应反演控制. 物理学报, 2012, 61(3): 030503. doi: 10.7498/aps.61.030503
    [13] 赵龙. 鲁棒惯性地形辅助导航算法研究. 物理学报, 2012, 61(10): 104301. doi: 10.7498/aps.61.104301
    [14] 王姣姣, 闫华, 魏平. 耦合动力系统的预测投影响应. 物理学报, 2010, 59(11): 7635-7643. doi: 10.7498/aps.59.7635
    [15] 温淑焕, 袁俊英. 基于无源性的不确定机器人的力控制. 物理学报, 2010, 59(3): 1615-1619. doi: 10.7498/aps.59.1615
    [16] 曾高荣, 裘正定. 数字水印的鲁棒性评测模型. 物理学报, 2010, 59(8): 5870-5879. doi: 10.7498/aps.59.5870
    [17] 邹露娟, 汪 波, 冯久超. 一种基于混沌和分数阶傅里叶变换的数字水印算法. 物理学报, 2008, 57(5): 2750-2754. doi: 10.7498/aps.57.2750
    [18] 龚礼华. 基于自适应脉冲微扰实现混沌控制的研究. 物理学报, 2005, 54(8): 3502-3507. doi: 10.7498/aps.54.3502
    [19] 刘福才, 王娟, 石淼, 高秀伟. 混沌系统的非线性连续预测变结构控制与同步. 物理学报, 2002, 51(12): 2707-2712. doi: 10.7498/aps.51.2707
    [20] 冯健, 王继锁, 高云峰, 詹明生. 三粒子系统的解纠缠. 物理学报, 2001, 50(11): 2083-2088. doi: 10.7498/aps.50.2083
计量
  • 文章访问数:  4924
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-23
  • 修回日期:  2022-01-20
  • 上网日期:  2022-01-28
  • 刊出日期:  2022-05-05

/

返回文章
返回