搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三量子比特Dicke模型中的两体和三体纠缠动力学

毛丽君 张云波

引用本文:
Citation:

三量子比特Dicke模型中的两体和三体纠缠动力学

毛丽君, 张云波

The dynamics of the bipartite and tripartite entanglement in the three-qubit Dicke model

Mao Li-Jun, Zhang Yun-Bo
PDF
HTML
导出引用
  • 本文利用绝热近似方法和精确对角化方法研究三量子比特Dicke模型中的纠缠动力学. 处于两种典型的纠缠态GHZ态和W态上的量子比特在时间演化过程中与辐射光场发生强耦合作用, 在各种子系统间产生纠缠, 通过分析这些纠缠的演化特性发现初始GHZ态的三体纠缠鲁棒性比W态强, 这与旋波近似结论一致. 与旋波近似下结果不同的是, 两种态中任意一对量子比特间的纠缠都随时间演化到几乎为零, 而三体纠缠随时间周期演化, 且纠缠程度相对较强, 说明系统中的强耦合作用通过抑制量子比特中的对纠缠来支持三体纠缠.
    We study the entanglement dynamics of the three-qubit Dicke model by means of the adiabatic approximation and the exact diagonalization in the parameter regime where the qubit transition frequencies are far off-resonance with the radiation field and the interaction strengths reach the ultrastrong-coupling regime. The single-mode field is prepared in the coherent state and two typical states GHZ and W are chosen as the initial three-qubit states. In the process of evolution, the interaction between the quantized field and three-qubit system leads to the generation of entanglement between the field and qubits, as well as between different parties in the three-qubit system, i.e. the pairwise entanglement of two qubits and the tripartite entanglement, which are of ongoing interest in quantum information process. The generalized concurrence and negativity are adopted to quantify different kinds of entanglement. The qubit-field entanglement never reaches the maximum and no sudden death occurs in the the tripartite entanglement for GHZ state, but it is exactly the opposite for W state. This reflects that the tripartite entanglement of the GHZ state is more robust than W sate, which is the same as in the rotating wave approximation. The results beyond the rotating wave approximation show that the pairwise entanglement gradually decreases and vanishes in the evolution of both initial states, with the tripartite entanglement periodically reaching relatively high level. This means that the interaction in system supports the tripartite entanglement at the cost of pairwise entanglement. The conclusions provide theoretical reference for the robustness of entanglement state and quantum information processing using Dicke model.
      通信作者: 张云波, ybzhang@zstu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11847111, 11674201, 12074340)和山西省高等学校科技创新项目(批准号: 2019L0822)资助的课题
      Corresponding author: Zhang Yun-Bo, ybzhang@zstu.edu.cn
    • Funds: Project Supported by the National Natural Science Foundation of China (Grant Nos. 11847111, 11674201, 12074340) and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (Grant No. 2019L0822)
    [1]

    Forn-Díaz P, Lamata L, Rico E, Kono J, Solano E 2019 Rev. Mod. Phys. 91 025005Google Scholar

    [2]

    Ciuti C, Bastard G, Carusotto I 2005 Phys. Rev. B 72 115303Google Scholar

    [3]

    Wallraffff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature (London) 431 162Google Scholar

    [4]

    Blais A, Huang R S, Wallraffff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320Google Scholar

    [5]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718 1

    [6]

    Lv D, An S, Liu Z, Zhang J N, Pedernales J S, Lamata L, Solano E, Kim K 2018 Phys. Rev. X 8 021027

    [7]

    Rabi I I 1936 Phys. Rev. 49 324Google Scholar

    [8]

    Braak D 2011 Phys. Rev. Lett. 107 100401Google Scholar

    [9]

    Liu T, Wang K L, Feng M 2009 Europhys. Lett. 86 54003Google Scholar

    [10]

    Chen Q H, Liu T, Zhang Y Y, Wang K L 2011 Europhys. Lett. 96 14003Google Scholar

    [11]

    He S, Wang C, Chen Q H, Ren X Z, Liu T, Wang K L 2012 Phys. Rev. A 86 033837Google Scholar

    [12]

    Chen Q H, Wang C, He S, Liu T, Wang K L 2012 Phys. Rev. A 86 023822Google Scholar

    [13]

    Hu B L, Zhou H L, Chen S J, Gao X L, Wang K L 2017 J. Phys. A: Math. Theor. 50 074004Google Scholar

    [14]

    Xie W J, Mao B B, Li G Z, Wang W H, Sun C, Wang Y M, You W L, Liu M X 2020 J. Phys. A: Math. Theor. 53 095302Google Scholar

    [15]

    李志强, 王月明 2019 物理学报 68 173201Google Scholar

    Li Z Q, Wang Y M 2019 Acta Phys. Sin. 68 173201Google Scholar

    [16]

    Dicke R H 1954 Phys. Rev. 93 99Google Scholar

    [17]

    Wang Y K, Hioe F T 1973 Phys. Rev. A 7 831Google Scholar

    [18]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203Google Scholar

    [19]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [20]

    Kirton P, Roses M M, Keeling J, Dalla Torre E G 2019 Adv. Quantum Technol. 2 1800043Google Scholar

    [21]

    Alavirad Y, Lavasani A 2019 Phys. Rev. A 99 043602Google Scholar

    [22]

    Lewis-Swan R J, Safavi-Naini A, Bollinger J J, Rey A M 2019 Nat. Commun. 10 1581Google Scholar

    [23]

    Liu M X, Chesi S, Ying Z J, Chen X S, Luo H G, Lin H Q 2017 Phys. Rev. Lett. 119 220601Google Scholar

    [24]

    程景, 单传家, 刘继兵, 黄燕霞, 刘堂昆 2018 物理学报 67 110301Google Scholar

    Cheng J, Shan C J, Liu J B, Huang Y X, Liu T K 2018 Acta Phys. Sin. 67 110301Google Scholar

    [25]

    左战春, 夏云杰 2003 物理学报 52 2687Google Scholar

    Zuo Z C, Xia Y J 2003 Acta Phys. Sin. 52 2687Google Scholar

    [26]

    郭亮, 梁先庭 2009 物理学报 58 50Google Scholar

    Guo L, Liang X T 2009 Acta Phys. Sin. 58 50Google Scholar

    [27]

    张国锋, 卜晶晶 2010 物理学报 59 1462Google Scholar

    Zhang G F, Bu J J 2010 Acta Phys. Sin. 59 1462Google Scholar

    [28]

    Youssef M, Metwally N, Obada A S F 2010 J. Phys. B 43 095501Google Scholar

    [29]

    Zhang Y Y, Chen X Y, He S, Chen Q H 2016 Phys. Rev. A 94 012317Google Scholar

    [30]

    Badshah F, Ge G Q, Paternostro M, Qamar S 2020 J. Opt. Soc. Am. B 37 949Google Scholar

    [31]

    Mao L J, Liu Y X, Zhang Y B 2016 Phys. Rev. A 93 052305Google Scholar

    [32]

    Roderick M, Horodecki P, Horodecki R 1998 Phys. Rev. Lett. 80 5239Google Scholar

    [33]

    Coffman V, Kundu J, Wootters W K 2000 Phys. Rev. A 61 052306Google Scholar

    [34]

    Dür W, Vidal G, Cirac J 2000 Phys. Rev. A 62 062314Google Scholar

    [35]

    Ou Y C, Fan H 2007 Phys. Rev. A 75 062308Google Scholar

    [36]

    Dukalski M, Blanter Y M 2013 arXiv 1301.4857

    [37]

    Agarwal S, Hashemi Rafsanjani S M, Eberly J H 2012 Phys. Rev. A 85 043815Google Scholar

    [38]

    Rungta P, Bužek V, Caves C M, Hillery M, Milburn G J 2001 Phys. Rev. A 64 042315Google Scholar

    [39]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245Google Scholar

    [40]

    Zyczkowski K, Horodecki P, Sanpera A, Lewenstein M 1998 Phys. Rev. A 58 883Google Scholar

  • 图 1  初始时刻为GHZ态(左)和W态(右)时, $\left(\rm i \right)$类两体纯态纠缠I tangle, 其中红色(实线)表示数值结果, 蓝色(虚线)表示解析结果, 系统参数为$ \omega = 0.15{\omega _{\rm{c}}}$, $ z = 3$, $g = 0.02{\omega _{\rm{c}}}~\left( {\rm{a}} \right)$, $0.04{\omega _{\rm{c}}}~\left(\rm b \right)$, $0.06{\omega _{\rm{c}}}~\left(\rm c \right)$, $0.08{\omega _{\rm{c}}}~\left(\rm d \right)$

    Fig. 1.  Time evolution of the I tangle for the type$\left( \rm i \right)$ with the initial GHZ (left) and W (right) states for$\omega = 0.15{\omega _{\rm{c}}}$, $z = 3$, and different coupling strengths: $g = 0.02{\omega _{\rm{c}}}~\left(\rm a \right)$, $0.04{\omega _{\rm{c}}}~\left(\rm b \right)$, $0.06{\omega _{\rm{c}}}~\left(\rm c \right)$, $0.08{\omega _{\rm{c}}}~\left(\rm d \right)$, given by the numerical method (solid red line), and the analytical approach (dashed blue line).

    图 2  初始时刻为GHZ态(左)和W态(右)时, $\left( {\rm ii} \right)$类两体纯态I tangle随时间的演化, 其中红色(实线)表示数值结果, 蓝色(虚线)表示解析结果, 系统参数与图1相同

    Fig. 2.  Time evolution of the I tangle for the type$\left( {\rm ii} \right)$ with the initial GHZ (left) and W (right) given by the numerical method (solid red line), and the analytical approach (dashed blue line). The corresponding parameters are the same as in Fig. 1.

    图 3  初始时刻为GHZ态(左)和W态(右)时, (iii) 类两体纯态I tangle随时间的演化, 其中红色(实线)表示数值结果, 蓝色(虚线)表示解析结果, 系统参数与图1相同

    Fig. 3.  Time evolution of the I tangle for the type (iii) with the initial GHZ (left) and W (right) states given by the numerical method (solid red line), and the analytical approach (dashed blue line). The corresponding parameters are the same as in Fig. 1.

    图 4  初始时刻为GHZ(左)态和W(右)态时, (iv)类纠缠负值度的平方随时间的演化, 其中红色(实线)表示数值结果, 蓝色(虚线)表示解析结果, 系统参数与图1相同

    Fig. 4.  Time evolution of the square of the negativity for the type (iv) with the initial GHZ (left) and W (right) given by the numerical method (solid red line), and the analytical approach (dashed blue line). The corresponding parameters are the same as in Fig. 1.

    图 5  初始时刻为GHZ(左)态和W(右)态时, (v) 类对纠缠负值度的平方随时间的演化, 其中红色(实线)表示数值结果, 蓝色(虚线)表示解析结果, 系统参数与图1相同

    Fig. 5.  Time evolution of the square of the negativity for the type (v) with the initial GHZ (left) and W (right) given by the numerical method (solid red line), and the analytical approach (dashed blue line). The corresponding parameters are the same as in Fig. 1.

    图 6  初始时刻为GHZ(左)态和W(右)态时, 真正的三体纠缠π-tangle随时间的演化, 其中红色(实线)表示数值结果, 绿色(实线)表示绝热近似结果, 蓝色(虚线)表示解析结果, 系统参数与图1相同

    Fig. 6.  Time evolution of π-tanglewith the initial GHZ (left) and W (right) given by the numerical method (solid red line), the adiabatic approximation method (solid green line) and the analytical approach (dashed blue line). The corresponding parameters are the same as in Fig. 1.

  • [1]

    Forn-Díaz P, Lamata L, Rico E, Kono J, Solano E 2019 Rev. Mod. Phys. 91 025005Google Scholar

    [2]

    Ciuti C, Bastard G, Carusotto I 2005 Phys. Rev. B 72 115303Google Scholar

    [3]

    Wallraffff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature (London) 431 162Google Scholar

    [4]

    Blais A, Huang R S, Wallraffff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320Google Scholar

    [5]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718 1

    [6]

    Lv D, An S, Liu Z, Zhang J N, Pedernales J S, Lamata L, Solano E, Kim K 2018 Phys. Rev. X 8 021027

    [7]

    Rabi I I 1936 Phys. Rev. 49 324Google Scholar

    [8]

    Braak D 2011 Phys. Rev. Lett. 107 100401Google Scholar

    [9]

    Liu T, Wang K L, Feng M 2009 Europhys. Lett. 86 54003Google Scholar

    [10]

    Chen Q H, Liu T, Zhang Y Y, Wang K L 2011 Europhys. Lett. 96 14003Google Scholar

    [11]

    He S, Wang C, Chen Q H, Ren X Z, Liu T, Wang K L 2012 Phys. Rev. A 86 033837Google Scholar

    [12]

    Chen Q H, Wang C, He S, Liu T, Wang K L 2012 Phys. Rev. A 86 023822Google Scholar

    [13]

    Hu B L, Zhou H L, Chen S J, Gao X L, Wang K L 2017 J. Phys. A: Math. Theor. 50 074004Google Scholar

    [14]

    Xie W J, Mao B B, Li G Z, Wang W H, Sun C, Wang Y M, You W L, Liu M X 2020 J. Phys. A: Math. Theor. 53 095302Google Scholar

    [15]

    李志强, 王月明 2019 物理学报 68 173201Google Scholar

    Li Z Q, Wang Y M 2019 Acta Phys. Sin. 68 173201Google Scholar

    [16]

    Dicke R H 1954 Phys. Rev. 93 99Google Scholar

    [17]

    Wang Y K, Hioe F T 1973 Phys. Rev. A 7 831Google Scholar

    [18]

    Emary C, Brandes T 2003 Phys. Rev. E 67 066203Google Scholar

    [19]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [20]

    Kirton P, Roses M M, Keeling J, Dalla Torre E G 2019 Adv. Quantum Technol. 2 1800043Google Scholar

    [21]

    Alavirad Y, Lavasani A 2019 Phys. Rev. A 99 043602Google Scholar

    [22]

    Lewis-Swan R J, Safavi-Naini A, Bollinger J J, Rey A M 2019 Nat. Commun. 10 1581Google Scholar

    [23]

    Liu M X, Chesi S, Ying Z J, Chen X S, Luo H G, Lin H Q 2017 Phys. Rev. Lett. 119 220601Google Scholar

    [24]

    程景, 单传家, 刘继兵, 黄燕霞, 刘堂昆 2018 物理学报 67 110301Google Scholar

    Cheng J, Shan C J, Liu J B, Huang Y X, Liu T K 2018 Acta Phys. Sin. 67 110301Google Scholar

    [25]

    左战春, 夏云杰 2003 物理学报 52 2687Google Scholar

    Zuo Z C, Xia Y J 2003 Acta Phys. Sin. 52 2687Google Scholar

    [26]

    郭亮, 梁先庭 2009 物理学报 58 50Google Scholar

    Guo L, Liang X T 2009 Acta Phys. Sin. 58 50Google Scholar

    [27]

    张国锋, 卜晶晶 2010 物理学报 59 1462Google Scholar

    Zhang G F, Bu J J 2010 Acta Phys. Sin. 59 1462Google Scholar

    [28]

    Youssef M, Metwally N, Obada A S F 2010 J. Phys. B 43 095501Google Scholar

    [29]

    Zhang Y Y, Chen X Y, He S, Chen Q H 2016 Phys. Rev. A 94 012317Google Scholar

    [30]

    Badshah F, Ge G Q, Paternostro M, Qamar S 2020 J. Opt. Soc. Am. B 37 949Google Scholar

    [31]

    Mao L J, Liu Y X, Zhang Y B 2016 Phys. Rev. A 93 052305Google Scholar

    [32]

    Roderick M, Horodecki P, Horodecki R 1998 Phys. Rev. Lett. 80 5239Google Scholar

    [33]

    Coffman V, Kundu J, Wootters W K 2000 Phys. Rev. A 61 052306Google Scholar

    [34]

    Dür W, Vidal G, Cirac J 2000 Phys. Rev. A 62 062314Google Scholar

    [35]

    Ou Y C, Fan H 2007 Phys. Rev. A 75 062308Google Scholar

    [36]

    Dukalski M, Blanter Y M 2013 arXiv 1301.4857

    [37]

    Agarwal S, Hashemi Rafsanjani S M, Eberly J H 2012 Phys. Rev. A 85 043815Google Scholar

    [38]

    Rungta P, Bužek V, Caves C M, Hillery M, Milburn G J 2001 Phys. Rev. A 64 042315Google Scholar

    [39]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245Google Scholar

    [40]

    Zyczkowski K, Horodecki P, Sanpera A, Lewenstein M 1998 Phys. Rev. A 58 883Google Scholar

  • [1] 徐耀坤, 孙仕海, 曾瑶源, 杨俊刚, 盛卫东, 刘伟涛. 基于双光子干涉的量子全息理论框架. 物理学报, 2023, 72(21): 214207. doi: 10.7498/aps.72.20231242
    [2] 王玉坤, 李泽阳, 许康, 王子正. 制备-测量量子比特系统的自测试标准. 物理学报, 2023, 72(10): 100303. doi: 10.7498/aps.72.20222431
    [3] 杨武华, 王彩琳, 张如亮, 张超, 苏乐. 高压IGBT雪崩鲁棒性的研究. 物理学报, 2023, 72(7): 078501. doi: 10.7498/aps.72.20222248
    [4] 严玉为, 蒋沅, 杨松青, 余荣斌, 洪成. 基于时间序列的网络失效模型. 物理学报, 2022, 71(8): 088901. doi: 10.7498/aps.71.20212106
    [5] 赵豪, 冯晋霞, 孙婧可, 李渊骥, 张宽收. 连续变量Einstein-Podolsky-Rosen纠缠态光场在光纤信道中分发时纠缠的鲁棒性. 物理学报, 2022, 71(9): 094202. doi: 10.7498/aps.71.20212380
    [6] 薛晓丹, 王美丽, 邵雨竹, 王俊松. 基于抑制性突触可塑性的神经元放电率自稳态机制. 物理学报, 2019, 68(7): 078701. doi: 10.7498/aps.68.20182234
    [7] 侯绿林, 老松杨, 肖延东, 白亮. 复杂网络可控性研究现状综述. 物理学报, 2015, 64(18): 188901. doi: 10.7498/aps.64.188901
    [8] 陈世明, 吕辉, 徐青刚, 许云飞, 赖强. 基于度的正/负相关相依网络模型及其鲁棒性研究. 物理学报, 2015, 64(4): 048902. doi: 10.7498/aps.64.048902
    [9] 陈世明, 邹小群, 吕辉, 徐青刚. 面向级联失效的相依网络鲁棒性研究. 物理学报, 2014, 63(2): 028902. doi: 10.7498/aps.63.028902
    [10] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性. 物理学报, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [11] 任卓明, 邵凤, 刘建国, 郭强, 汪秉宏. 基于度与集聚系数的网络节点重要性度量方法研究. 物理学报, 2013, 62(12): 128901. doi: 10.7498/aps.62.128901
    [12] 缪志强, 王耀南. 基于径向小波神经网络的混沌系统鲁棒自适应反演控制. 物理学报, 2012, 61(3): 030503. doi: 10.7498/aps.61.030503
    [13] 赵龙. 鲁棒惯性地形辅助导航算法研究. 物理学报, 2012, 61(10): 104301. doi: 10.7498/aps.61.104301
    [14] 卢道明. 耦合腔系统中的三体纠缠演化. 物理学报, 2012, 61(18): 180301. doi: 10.7498/aps.61.180301
    [15] 王姣姣, 闫华, 魏平. 耦合动力系统的预测投影响应. 物理学报, 2010, 59(11): 7635-7643. doi: 10.7498/aps.59.7635
    [16] 温淑焕, 袁俊英. 基于无源性的不确定机器人的力控制. 物理学报, 2010, 59(3): 1615-1619. doi: 10.7498/aps.59.1615
    [17] 曾高荣, 裘正定. 数字水印的鲁棒性评测模型. 物理学报, 2010, 59(8): 5870-5879. doi: 10.7498/aps.59.5870
    [18] 严冬, 宋立军. 周期脉冲撞击的两分量Bose-Einstein凝聚系统的单粒子相干和对纠缠. 物理学报, 2010, 59(10): 6832-6836. doi: 10.7498/aps.59.6832
    [19] 邹露娟, 汪 波, 冯久超. 一种基于混沌和分数阶傅里叶变换的数字水印算法. 物理学报, 2008, 57(5): 2750-2754. doi: 10.7498/aps.57.2750
    [20] 龚礼华. 基于自适应脉冲微扰实现混沌控制的研究. 物理学报, 2005, 54(8): 3502-3507. doi: 10.7498/aps.54.3502
计量
  • 文章访问数:  5210
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-27
  • 修回日期:  2020-10-13
  • 上网日期:  2020-11-11
  • 刊出日期:  2021-02-20

/

返回文章
返回