搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相互依赖网络上级联故障鲁棒性悖论研究

王建伟 赵乃萱 望楚佩 向玲慧 温廷新

引用本文:
Citation:

相互依赖网络上级联故障鲁棒性悖论研究

王建伟, 赵乃萱, 望楚佩, 向玲慧, 温廷新

Robustness paradox of cascading dynamics in interdependent networks

Wang Jian-wei, Zhao Nai-xuan, Wang Chu-pei, Xiang Ling-hui, Wen Ting-xin
PDF
导出引用
  • 相互依赖网络中的级联故障过程一直是网络级联分析的一个重要领域.与以往研究不同的是,本文考虑了人们在出行时最小化成本的需求,提出了基于成本约束的网络动力学模型.同时,研究了相互依赖网络中不同层次的特性,定义了不同的负载传播模式.在此基础上,本文通过改变网络结构和模型中的参数,仿真现实中的网络防护策略并验证这些措施的防护效果,并发现了一些有趣的结论.一般认为,增加网络中连边的数量或提高连边的质量可以有效地增强网络的鲁棒性.然而,本文的实验结果表明,这些方法在某些情况下实际上可能会降低网络的鲁棒性.一方面,网络中一些特殊边的复活是导致边能力提升网络鲁棒性却下降的主要原因,因为这些边会破坏原有网络的稳定结构;另一方面,无论是提高单层网络的内部连通性来增加网络连边数量,还是提高相互依赖的网络之间的耦合强度来增加连边数量,都不能完全有效地提高网络的鲁棒性.这是因为随着边数量的增加,网络中可能会出现一些关键边,这些边会吸引大量的网络负载,导致网络的鲁棒性下降.
    Cascading failure process in interdependent networks has always been an important field of network cascading analysis. Different from the previous studies, we take people's demand for minimizing travel costs into consideration in this article and propose a network dynamics model based on the cost constraint. On this basis, we pay attention to the characteristics of different layers in the interdependent network, taking the real-world traffic network as an example, we define different load propagation modes for different layers. Then, we carry out the simulation experiment of cascade failure in the artificial network. By changing the structure of the network and the parameters in the model, such as the capability value of the network side and the connectivity of the network, we were able to focus on the effects of traditional protection strategies during the simulation and get some interesting conclusions. It is generally believed that increasing the quantity of connections in the network or improving the quality of edges will enhance the network robustness effectively. However, our experimental results show that these methods may actually reduce network robustness in some cases. On one hand, we find that the resurrection of some special edges in the network is the main reason for the capacity paradox, as these edges will destroy the stable structure of the original network. On the other hand, neither improving the internal connectivity of a single-layer network nor enhancing the coupling strength between interdependent networks will effectively improve network robustness. This is because some critical edges may appear in the network while the number of edges increasing and a large amount of the network load will be attracted by them leading to the decrease of network robustness. These conclusions warn us that blindly investing resources in network construction cannot achieve the best protection effect. Only by scientifically designing network structures and reasonably allocating network resources can network robustness be effectively improved.
  • [1]

    Kinney R, Crucitti P, Albert R, Latora V 2005 The European Physical Journal B-Condensed Matter and Complex Systems 46 101

    [2]

    Glanz J, Perez-Pena R 2003 New York Times 26

    [3]

    Turkey P G 2015

    [4]

    Li Y F, Sansavini G, Zio E 2013 Reliability Engineering & System Safety 111 195

    [5]

    Hamzelou N, Ashtiani M 2019 Future Generation Computer Systems 94 564

    [6]

    Azzolin A, Dueñas-Osorio L, Cadini F, Zio E 2018 Reliability Engineering & System Safety 175 196

    [7]

    Li Z, Guo Y, Xu G, Hu Z 2014 Acta Phys. Sin. 63 417 (in Chinses)[李钊, 郭燕慧, 徐国爱, 胡正名 2014 物理学报 63 417]

    [8]

    Artime O, Grassia M, De Domenico M, Gleeson J P, Makse H A, Mangioni G, Perc M, Radicchi F 2024 Nature Reviews Physics 6 114

    [9]

    Peng X, Yao H, Du J, Wang Z, Ding C 2015 Acta Phys. Sin. 64 355 (in Chinses)[彭兴钊, 姚宏, 杜军, 王哲, 丁超 2015 物理学报 64 355]

    [10]

    Alessandro V 2010 Nature 464 984

    [11]

    Sun H, Wang H, Yang M, Reniers G 2024 Safety Science 171 106375

    [12]

    Wu J, You W, Wu T, Xia Y 2018 Physica A: Statistical Mechanics and its Applications 506 451

    [13]

    Zhang L, Du Y 2023 Reliability Engineering & System Safety 237 109379

    [14]

    Wang J, Zhao N, Xiang L, Wang C 2023 Physica A: Statistical Mechanics and its Applications 627 129128

    [15]

    Zhang Y, Ren W, Feng J, Zhao J, Chen Y, Mi Y 2024 Applied Energy 371 123655

    [16]

    Wang J, Zhang C, Huang Y, Xin C 2014 Nonlinear Dynamics 78 37

    [17]

    Crucitti P, Latora V, Marchiori M 2004 Physical Review E 69 045104

    [18]

    Albert R, Jeong H, Barabási A L 2000 Nature 406 378

    [19]

    Li M, Li M, Wu Q, Xu X, Shen J 2024 Electric Power Systems Research 235 110844

    [20]

    Zhang C, Xu X, Dui H 2020 Reliability Engineering & System Safety 202 106963

    [21]

    Wang J, Rong L 2009 Safety Science 47 1332

    [22]

    Huang S, Li C 2024 International Journal of Electrical Power & Energy Systems 160 110136

    [23]

    Wang J 2013 Physica A: Statistical Mechanics and its Applications 392 2257

    [24]

    Dang H, Bai J, Lu Y, Li J 2024 Sustainable Cities and Society 105749

    [25]

    Zhou M, Liu J 2014 Physica A: Statistical Mechanics and its Applications 410 131

    [26]

    Fu X, Xu X, Li W 2024 Physica A: Statistical Mechanics and its Applications 634 129478

    [27]

    Zhang L, Xu M, Wang S 2023 Reliability Engineering & System Safety 235 109250

    [28]

    Zheng K, Liu Y, Wang Y, Wang W 2021 Europhysics Letters 133 48003

    [29]

    Dong G, Gao J, Tian L, Du R, He Y 2012 Physical Review E 85 016112

    [30]

    Wang J, Wang S, Wang Z 2022 Physica A: Statistical Mechanics and its Applications 585 126399

    [31]

    Goh K I, Lee D S, Kahng B, Kim D 2003 Physical Review Letters 91 148701

    [32]

    Lee D S, Goh K I, Kahng B, Kim D 2004 Physica A: Statistical Mechanics and its Applications 338 84

    [33]

    Watts D J 2002 Proceedings of the National Academy of Sciences 99 5766

    [34]

    Wang X F, Xu J 2004 Physical Review E 70 056113

    [35]

    Motter A E, Lai Y C 2002 Physical Review E 66 065102

    [36]

    Moreno Y, Gómez J B, Pacheco A F 2002 Europhysics Letters 58 630

    [37]

    Hamedmoghadam H, Jalili M, Vu H L, Stone L 2021 Nature communications 12 1254

    [38]

    Albert R, Albert I, Nakarado G L 2004 Physical Review E 69 025103

    [39]

    Dey P, Mehra R, Kazi F, Wagh S, Singh N M 2016 IEEE Transactions on Smart Grid 7 1970

    [40]

    Xue F, Bompard E, Huang T, Jiang L, Lu S, Zhu H 2017 Physica A: Statistical Mechanics and its Applications 482 728

    [41]

    Cai Y, Li Y, Cao Y, Li W, Zeng X 2017 International Journal of Electrical Power & Energy Systems 89 106.

    [42]

    Hu Y, Ksherim B, Cohen R, Havlin S 2011 Physical Review E 84 066116

    [43]

    Tan F, Xia Y, Wei Z 2015 Physical Review E 91 052809.

    [44]

    Huang X, Gao J, Buldyrev S V, Havlin S, Stanley H E 2011 Physical Review E 83 065101

    [45]

    Wang S, Hong L, Ouyang M, Zhang J, Chen X 2013 Safety Science 51 328

    [46]

    Manual T A 1964 Commer., Washington, DC, USA

    [47]

    Wang J, Xu B, Wu Y 2015 Scientific Reports 5 13939

    [48]

    Tan S Y, Wu J, Lu L, Li M J, Lu X 2016 Scientific Reports 6 22916

    [49]

    Wu J, Barahona M, Tan Y J, Deng H Z 2011 IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 41 1244

    [50]

    Dai B, Qin S, Tan S, Liu C, Mou J, Deng H, Liljeros F, Lu X 2023 Journal of Computational Science 69 102030

    [51]

    Holme P, Kim B J, Yoon C N, Han S K 2002 Physical review E 65 056109

  • [1] 高彦丽, 徐维南, 周杰, 陈世明. 二元双层耦合网络渗流行为分析. 物理学报, doi: 10.7498/aps.73.20240454
    [2] 杨武华, 王彩琳, 张如亮, 张超, 苏乐. 高压IGBT雪崩鲁棒性的研究. 物理学报, doi: 10.7498/aps.72.20222248
    [3] 赵豪, 冯晋霞, 孙婧可, 李渊骥, 张宽收. 连续变量Einstein-Podolsky-Rosen纠缠态光场在光纤信道中分发时纠缠的鲁棒性. 物理学报, doi: 10.7498/aps.71.20212380
    [4] 潘倩倩, 刘润然, 贾春晓. 具有弱依赖组的复杂网络上的级联失效. 物理学报, doi: 10.7498/aps.71.20210850
    [5] 潘倩倩, 刘润然, 贾春晓. 具有弱依赖组的复杂网络上的级联失效. 物理学报, doi: 10.7498/aps.70.20210850
    [6] 马金龙, 杜长峰, 隋伟, 许向阳. 基于耦合强度的双层网络数据传输能力. 物理学报, doi: 10.7498/aps.69.20200181
    [7] 阮逸润, 老松杨, 王竣德, 白亮, 陈立栋. 基于领域相似度的复杂网络节点重要度评估算法. 物理学报, doi: 10.7498/aps.66.038902
    [8] 高彦丽, 陈世明. 一种全局同质化相依网络耦合模式. 物理学报, doi: 10.7498/aps.65.148901
    [9] 金学广, 寿国础, 胡怡红, 郭志刚. 面向成本-收益好的无标度耦合网络构建方法. 物理学报, doi: 10.7498/aps.65.098901
    [10] 侯绿林, 老松杨, 肖延东, 白亮. 复杂网络可控性研究现状综述. 物理学报, doi: 10.7498/aps.64.188901
    [11] 陈世明, 吕辉, 徐青刚, 许云飞, 赖强. 基于度的正/负相关相依网络模型及其鲁棒性研究. 物理学报, doi: 10.7498/aps.64.048902
    [12] 彭兴钊, 姚宏, 杜军, 王哲, 丁超. 负荷作用下相依网络中的级联故障. 物理学报, doi: 10.7498/aps.64.048901
    [13] 段东立, 武小悦. 基于可调负载重分配的无标度网络连锁效应分析. 物理学报, doi: 10.7498/aps.63.030501
    [14] 李钊, 郭燕慧, 徐国爱, 胡正名. 复杂网络中带有应急恢复机理的级联动力学分析. 物理学报, doi: 10.7498/aps.63.158901
    [15] 陈世明, 邹小群, 吕辉, 徐青刚. 面向级联失效的相依网络鲁棒性研究. 物理学报, doi: 10.7498/aps.63.028902
    [16] 彭兴钊, 姚宏, 杜军, 丁超, 张志浩. 基于时滞耦合映像格子的多耦合边耦合网络级联抗毁性研究. 物理学报, doi: 10.7498/aps.63.078901
    [17] 任卓明, 邵凤, 刘建国, 郭强, 汪秉宏. 基于度与集聚系数的网络节点重要性度量方法研究. 物理学报, doi: 10.7498/aps.62.128901
    [18] 缪志强, 王耀南. 基于径向小波神经网络的混沌系统鲁棒自适应反演控制. 物理学报, doi: 10.7498/aps.61.030503
    [19] 王姣姣, 闫华, 魏平. 耦合动力系统的预测投影响应. 物理学报, doi: 10.7498/aps.59.7635
    [20] 曾高荣, 裘正定. 数字水印的鲁棒性评测模型. 物理学报, doi: 10.7498/aps.59.5870
计量
  • 文章访问数:  64
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-20

/

返回文章
返回