搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续时间晶体周期性振荡的鲁棒性分析

李鸿霞 李亭美 王曾璞 陈宇辉 张向东

引用本文:
Citation:

连续时间晶体周期性振荡的鲁棒性分析

李鸿霞, 李亭美, 王曾璞, 陈宇辉, 张向东

Revealing Time Crystal Robustness Through Theoretical Parameter Analysis

LI Hongxia, LI Tingmei, WANG Zengpu, CHEN Yu-Hui, ZHANG Xiangdong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 时间晶体是一种特殊的物质状态,它指多体系统在内部自组织的作用下,自发产生时间周期性振荡的现象。近期,无需外部周期性驱动的连续时间晶体已在耗散固体材料中实现,并呈现出长时间稳定振荡的特性。然而,在多体系统中,连续时间晶体的系统参数,包括原子间相互作用强度、均匀性、频率失谐以及驱动场强度等,均呈现高度的复杂性和关联性;这些参数对连续时间晶体振荡周期形成的物理机制和耦合效应的影响尚不明确。本文基于掺铒晶体中构建的连续时间晶体,通过理论分析揭示了时间晶体振荡周期与驱动光场强度、偶极-偶极相互作用、原子间跃迁强度差异以及耗散系数之间的内在关联。研究表明,即便在这些参数动态变化引起的扰动下,时间晶体的振荡周期仍展现出显著的鲁棒性。
    Continuous time crystals represent a novel state of many-body systems, self-organizing into timeperiodic oscillations without the need for external periodic driving. Recent experiments have demonstrated the realization of such systems in dissipative solid-state materials, where persistent temporal order is autonomously sustained. A defining characteristic of time crystals is their robustness, signifying the ability to maintain rhythmic behavior despite various disturbances, including fluctuations in internal parameters and external noise., which is of both scientific value and potential for technological applications Although prior studies have established the existence of robustness in specific experimental parameters, a systematic framework for quantifying and predicting their resilience to perturbations is lacking, and the underlying physics of this robustness remains inadequately understood. Key unresolved questions include how nonlinear interactions and feedback mechanisms contribute to stability, and what the critical thresholds are for parameter variations beyond which temporal order collapses.
    This paper addresses these gaps by systematically analyzing how internal parameters and external influences affect the oscillation period and overall stability. Internally, the dynamics are dictated by dipoledipole interactions and atomic transition strengths, which define the system’ s emergent temporal symmetry breaking. Externally, the system’ s response is controlled by the intensity of the optical driving field and the rates of energy dissipation. A key finding is the identification of an intrinsic feedback mechanism that dynamically stabilizes the time crystal. This mechanism acts as a restorative force, correcting for deviations caused by minor disturbances and maintaining the coherence of the oscillatory phase.
    Moreover, the system displays nonlinear dynamical behavior, characterized by two distinct regimes: one where stable oscillations continue under moderate disturbances, and another where stronger disturbances induce a dynamical phase transition, leading to disordered states or a switch between dynamically unstable and stable states. These results provide a thorough understanding of the diverse behaviors observed in continuous time crystals and create a vital theoretical foundation for exploiting their unique properties in advanced applications like quantum information processing and precision metrology.
  • [1]

    Li T, Gong Z X, Yin Z Q, Quan H, Yin X, Zhang P, Duan L M, Zhang X 2012 Phys. Rev. Lett. 109163001

    [2]

    Sacha K 2015 Phys. Rev. A 91033617

    [3]

    Zhang J, Hess P W, Kyprianidis A, Becker P, Lee A, Smith J, Pagano G, Potirniche I D, Potter A C, Vishwanath A, Yao N Y, Monroe C 2017 Nature 543217

    [4]

    Wilczek F 2012 Phys. Rev. Lett. 109160401

    [5]

    Shapere A, Wilczek F 2012 Phys. Rev. Lett. 109160402

    [6]

    Else D V, Bauer B, Nayak C 2016 Phys. Rev. Lett. 117090402

    [7]

    Sacha K, Zakrzewski J 2017 Rep. Prog. Phys. 81016401

    [8]

    Yao N Y, Nayak C 2018 Phys. Today 7140

    [9]

    Cai Z, Huang Y, Liu W V 2020 Chin. Phys. Lett. 37050503

    [10]

    Hannaford P, Sacha K 2022 Europhys. Lett. 13910001

    [11]

    Tucker K, Zhu B, Lewis-Swan R J, Marino J, Jimenez F, Restrepo J G, Rey A M 2018 New J. Phys. 20123003

    [12]

    Keßler H, Cosme J G, Hemmerling M, Mathey L, Hemmerich A 2019 Phys. Rev. A 99053605

    [13]

    Liu T, Ou J Y, MacDonald K F, Zheludev N I 2023 Nat. Phys. 19986

    [14]

    Choi S, Choi J, Landig R, Kucsko G, Zhou H, Isoya J, Jelezko F, Onoda S, Sumiya H, Khemani V, von Keyserlingk C, Yao N Y, Demler E, Lukin M D 2017 Nature 543221

    [15]

    Russomanno A, Iemini F, Dalmonte M, Fazio R 2017 Phys. Rev. B 95214307

    [16]

    Smits J, Liao L, Stoof H, van der Straten P 2018 Phys. Rev. Lett. 121185301

    [17]

    Autti S, Eltsov V, Volovik G 2018 Phys. Rev. Lett. 120215301

    [18]

    Kyprianidis A, Machado F, Morong W, Becker P, Collins K S, Else D V, Feng L, Hess P W, Nayak C, Pagano G, Yao N Y, Monroe C 2021 Science 3721192

    [19]

    Randall J, Bradley C, Van Der Gronden F, Galicia A, Abobeih M, Markham M, Twitchen D, Machado F, Yao N, Taminiau T 2021 Science 3741474

    [20]

    Mi X, Ippoliti M, Quintana C, Greene A, Chen Z, Gross J, Arute F, Arya K, Atalaya J, Babbush R, Bardin J C, Basso J, Bengtsson A, Bilmes A, Bourassa A, Brill L, Broughton M, Buckley B B, Buell D A, Burkett B, Bushnell N, Chiaro B, Collins R, Courtney W, Debroy D, Demura S, Derk A R, Dunsworth A, Eppens D, Erickson C, Farhi E, Fowler A G, Foxen B, Gidney C, Giustina M, Harrigan M P, Harrington S D, Hilton J, Ho A, Hong S, Huang T, Huff A, Huggins W J, Ioffe L B, Isakov V Sergei, Iveland J, Jeffrey E, Jiang Z, Jones C, Kafri D, Khattar T, Kim S, Kitaev A, Klimov V Paul, Korotkov A N, Kostritsa F, Landhuis D, Laptev P, Lee J, Lee K, Locharla A, Lucero E, Martin O, McClean J R, McCourt T, McEwen M, Miao K C, Mohseni M, Montazeri S, Mruczkiewicz W, Naaman O, Neeley M, Neill C, Newman M, Niu M Y, O’Brien T E, Opremcak A, Ostby E, Pato B, Petukhov A, Rubin N C, Sank D, Satzinger K J, Shvarts V, Su Y, Strain D, Szalay M, Trevithick M D, Villalonga B, White T, Yao Z J, Yeh P, Yoo J, Zalcman A, Neven H, Boixo S, Smelyanskiy V, Megrant A, Kelly J, Chen Y, Sondhi S L, Moessner R, Kechedzhi K, Khemani V, Roushan P 2022 Nature 601531

    [21]

    Zhang X, Jiang W, Deng J, Wang K, Chen J, Zhang P, Ren W, Dong H, Xu S, Gao Y, Jin F, Zhu X, Guo Q, Li C Hekangand Song, Gorshkov V Alexey, Iadecola T, Liu F, Gong Z X, Wang Z, Deng D L, Wang H 2022 Nature 607468

    [22]

    Huang B, Wu Y H, Liu W V 2018 Phys. Rev. Lett. 120110603

    [23]

    Pizzi A, Knolle J, Nunnenkamp A 2019 Phys. Rev. Lett. 123150601

    [24]

    Rovny J, Blum R L, Barrett S E 2018 Phys. Rev. Lett. 120180603

    [25]

    Pal S, Nishad N, Mahesh T, Sreejith G 2018 Phys. Rev. Lett. 120180602

    [26]

    O’ Sullivan J, Lunt O, Zollitsch C W, Thewalt M, Morton J J, Pal A 2020 New J. Phys. 22085001

    [27]

    Horowicz Y, Katz O, Raz O, Firstenberg O 2021 Proc. Natl. Acad. Sci. 118 e2106400118

    [28]

    Cabot A, Carollo F, Lesanovsky I 2022 Phys. Rev. B 106134311

    [29]

    Khemani V, Lazarides A, Moessner R, Sondhi S L 2016 Phys. Rev. Lett. 116250401

    [30]

    Vlasov R, Lemeza A, Gladush M 2013 Laser Phys. Lett. 10045401

    [31]

    Gong Z, Hamazaki R, Ueda M 2018 Phys. Rev. Lett. 120040404

    [32]

    Iemini F, Russomanno A, Keeling J, Schirò M, Dalmonte M, Fazio R 2018 Phys. Rev. Lett. 121035301

    [33]

    Buča B, Tindall J, Jaksch D 2019 Nat. Commun. 101730

    [34]

    Piazza F, Ritsch H 2015 Phys. Rev. Lett. 115163601

    [35]

    Booker C, Buča B, Jaksch D 2020 New J. Phys. 22085007

    [36]

    Keßler H, Kongkhambut P, Georges C, Mathey L, Cosme J G, Hemmerich A 2021 Phys. Rev. Lett. 127043602

    [37]

    Taheri H, Matsko A B, Maleki L, Sacha K 2022 Nat. Commun. 13848

    [38]

    Martínez-Romero J S, Halevi P 2018 Phys.Rev.A 98053852

    [39]

    Dong R Y, Liu Y M, Sui J Y, Zhang H F 2023 IEEE Trans. Antennas Propag. 72674

    [40]

    Dong R y, Wang S, Zou J H, Zhang H f 2023 Opt. Lett. 482627

    [41]

    Valdez-García J, Halevi P 2024 Phys. Rev. A 109063517

    [42]

    Kongkhambut P, Skulte J, Mathey L, Cosme J G, Hemmerich A, Keßler H 2022 Science 377670

    [43]

    Chen Y H, Zhang X 2023 Nat. Commun. 146161

    [44]

    Wadenpfuhl K, Adams C S 2023 Phys. Rev. Lett. 131143002

    [45]

    Krishna M, Solanki P, Hajdušek M, Vinjanampathy S 2023 Phys. Rev. Lett. 130150401

    [46]

    Wu X, Wang Z, Yang F, Gao R, Liang C, Tey M K, Li X, Pohl T, You L 2024 Nat. Phys. 201389

    [47]

    Ding D, Bai Z, Liu Z, Shi B, Guo G, Li W, Adams C S 2024 Sci. Adv. 10 eadl5893

    [48]

    Zhou P, Li X X, Xing X Y, Chen Y H, Zhang X D 2022 Acta Phys. Sin. 71102

    [49]

    Calderón O, Antón M, Carreño F 2003 Eur. Phys. J. D 2577

    [50]

    Chen Y H, Horvath S P, Longdell J J, Zhang X 2021 Phys. Rev. Lett. 126110601

    [51]

    Greilich A, Kopteva N, Kamenskii A, Sokolov P, Korenev V, Bayer M 2024 Nat. Phys. 20631

    [52]

    Chen S, Raha M, Phenicie C M, Ourari S, Thompson J D 2020 Science 370592

    [53]

    Lee T E, Häffner H, Cross M 2011 Phys. Rev. A:At., Mol., Opt. Phys. 84031402

    [54]

    Kos P, Ljubotina M, Prosen T 2018 Phys. Rev. X 8021062

    [55]

    Scarlatella O, Clerk A A, Fazio R, Schiró M 2021 Phys. Rev. X 11031018

    [56]

    Li T, Li H X, Chen Y H, Zhang X 2024 Europhys. Lett. 14755001

  • [1] 杨武华, 沈思豪, 贾丽萍, 张超, 张如亮, 王彩琳. IGCT开关自箝位模式下的鲁棒性研究. 物理学报, doi: 10.7498/aps.74.20250120
    [2] 王建伟, 赵乃萱, 望楚佩, 向玲慧, 温廷新. 相互依赖网络上级联故障鲁棒性悖论研究. 物理学报, doi: 10.7498/aps.73.20241002
    [3] 王玉坤, 李泽阳, 许康, 王子正. 制备-测量量子比特系统的自测试标准. 物理学报, doi: 10.7498/aps.72.20222431
    [4] 杨武华, 王彩琳, 张如亮, 张超, 苏乐. 高压IGBT雪崩鲁棒性的研究. 物理学报, doi: 10.7498/aps.72.20222248
    [5] 严玉为, 蒋沅, 杨松青, 余荣斌, 洪成. 基于时间序列的网络失效模型. 物理学报, doi: 10.7498/aps.71.20212106
    [6] 赵豪, 冯晋霞, 孙婧可, 李渊骥, 张宽收. 连续变量Einstein-Podolsky-Rosen纠缠态光场在光纤信道中分发时纠缠的鲁棒性. 物理学报, doi: 10.7498/aps.71.20212380
    [7] 周湃, 李霞霞, 邢雪燕, 陈宇辉, 张向东. 基于掺铒晶体的光量子存储和调控. 物理学报, doi: 10.7498/aps.71.20211803
    [8] 张正源, 张天乙, 刘宗凯, 丁冬生, 史保森. 里德堡原子多体相互作用的研究进展. 物理学报, doi: 10.7498/aps.69.20200649
    [9] 侯绿林, 老松杨, 肖延东, 白亮. 复杂网络可控性研究现状综述. 物理学报, doi: 10.7498/aps.64.188901
    [10] 陈世明, 吕辉, 徐青刚, 许云飞, 赖强. 基于度的正/负相关相依网络模型及其鲁棒性研究. 物理学报, doi: 10.7498/aps.64.048902
    [11] 陈世明, 邹小群, 吕辉, 徐青刚. 面向级联失效的相依网络鲁棒性研究. 物理学报, doi: 10.7498/aps.63.028902
    [12] 高超, 毕勤胜, 张正娣. 一个跃变电路切换系统的振荡行为及分岔机理分析. 物理学报, doi: 10.7498/aps.62.020504
    [13] 周武杰, 郁梅, 禹思敏, 蒋刚毅, 葛丁飞. 一种基于超混沌系统的立体图像零水印算法. 物理学报, doi: 10.7498/aps.61.080701
    [14] 赵龙. 鲁棒惯性地形辅助导航算法研究. 物理学报, doi: 10.7498/aps.61.104301
    [15] 缪志强, 王耀南. 基于径向小波神经网络的混沌系统鲁棒自适应反演控制. 物理学报, doi: 10.7498/aps.61.030503
    [16] 王姣姣, 闫华, 魏平. 耦合动力系统的预测投影响应. 物理学报, doi: 10.7498/aps.59.7635
    [17] 曾高荣, 裘正定. 数字水印的鲁棒性评测模型. 物理学报, doi: 10.7498/aps.59.5870
    [18] 王云才, 赵跃鹏, 张明江, 安 义, 王纪龙. 外光注入半导体激光器实现时钟分频. 物理学报, doi: 10.7498/aps.56.6982
    [19] 刘福才, 王娟, 石淼, 高秀伟. 混沌系统的非线性连续预测变结构控制与同步. 物理学报, doi: 10.7498/aps.51.2707
    [20] 伍维根, 古天祥. 混沌系统的非线性反馈跟踪控制. 物理学报, doi: 10.7498/aps.49.1922
计量
  • 文章访问数:  14
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-10

/

返回文章
返回