搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于掺铒晶体的光量子存储和调控

周湃 李霞霞 邢雪燕 陈宇辉 张向东

引用本文:
Citation:

基于掺铒晶体的光量子存储和调控

周湃, 李霞霞, 邢雪燕, 陈宇辉, 张向东

Quantum memory and manipulation based on erbium doped crystals

Zhou Pai, Li Xia-Xia, Xing Xue-Yan, Chen Yu-Hui, Zhang Xiang-Dong
PDF
HTML
导出引用
  • 量子信息技术是20世纪极具代表性的两种科技进步—量子力学和信息科学技术相结合的新兴领域, 其发展需要解决量子信号的产生、处理、传输、同步和存储等一系列问题, 对材料的特性提出了严苛的要求, 然而目前还没有一种材料可以在所有功能上都能满足量子信息应用的需要. 掺铒晶体材料在1.5 μm 具有光学辐射峰, 并且具有良好的相干特性, 在量子信息技术的若干关键节点都有着巨大的应用前景. 本文结合掺铒晶体的性质, 回顾其在量子存储、量子频率转换、量子光源以及基于离子间相互作用的量子调控等方面的应用进展, 并对可能的发展方向进行讨论.
    Quantum information is a rapidly emerging field aiming at combining two of the greatest advances in science and technology of the twentieth century, that is, quantum mechanics and information science. To reliably generate, store, process, and transmit quantum information, diverse systems have been studied. While for specific tasks some of these systems are more suitable than others, no single system can meet all envisioned demands. Erbium doped crystal has optical transition at 1.5 μm and possesses long optical coherence time and spin coherence time, and thus is one of the best candidates in building several essential blocks for quantum information applications. In this review, we summarize the applications of erbium doped crystals in quantum memories, quantum transducers, quantum sources, and quantum manipulations based on erbium-erbium interactions. Finally, the outlooks for near term prospects of the mentioned topics are also given.
      通信作者: 陈宇辉, stephen.chen@bit.edu.cn ; 张向东, zhangxd@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 91850205)、北京理工大学学术启动计划和北京理工大学科技创新计划资助的课题.
      Corresponding author: Chen Yu-Hui, stephen.chen@bit.edu.cn ; Zhang Xiang-Dong, zhangxd@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 91850205), the Start-up Fund of Beijing Institute of Technology, China, and the Science and Technology Innovation Project of Beijing Institute of Technology, China.
    [1]

    DiVincenzo D P 1995 Science 270 255Google Scholar

    [2]

    Wang Y 2012 Stat. Sci. 27 373Google Scholar

    [3]

    Aspuru-Guzik A, Walther P 2012 Nat. Phys. 8 285Google Scholar

    [4]

    Sangouard N, Simon C, De Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [5]

    Grezes C, Julsgaard B, Kubo Y, Ma W L, Stern M, Bienfait A, Nakamura K, Isoya J, Onoda S, Ohshima T, Jacques V, Vion D, Esteve D, Liu R B, Molmer K, Bertet P 2015 Phys. Rev. A 92 020301Google Scholar

    [6]

    Thiel C, Böttger T, Cone R 2011 J. Lumin. 131 353Google Scholar

    [7]

    Awschalom D D, Hanson R, Wrachtrup J, Zhou B B 2018 Nat. Photonics 12 516Google Scholar

    [8]

    Clarke J, Wilhelm F K 2008 Nature 453 1031Google Scholar

    [9]

    Reithmaier J P, Sek G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A 2004 Nature 432 197Google Scholar

    [10]

    Heshami K, England D G, Humphreys P C, Bustard P J, Acosta V M, Nunn J, Sussman B J 2016 J. Mod. Opt. 63 2005Google Scholar

    [11]

    Schoelkopf R J, Girvin S M 2008 Nature 451 664Google Scholar

    [12]

    Xiang Z L, Ashhab S, You J, Nori F 2013 Rev. Mod. Phys. 85 623Google Scholar

    [13]

    Kurizki G, Bertet P, Kubo Y, Mølmer K, Petrosyan D, Rabl P, Schmiedmayer J 2015 Proc. Natl. Acad. Sci. U. S. A. 112 3866Google Scholar

    [14]

    Liu G, Jacquier B 2005 Spectroscopic Properties of Rare Earths in Optical Materials (Berlin, Heidelberg: Springer)

    [15]

    Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Simon C, Tittel W 2013 J. Mod. Opt. 60 1519Google Scholar

    [16]

    Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Longdell J J, Sellars M J 2015 Nature 517 177Google Scholar

    [17]

    Sun Y, Thiel C, Cone R, Equall R, Hutcheson R 2002 J. Lumin. 98 281Google Scholar

    [18]

    张雪莹, 袁晨智, 魏世海, 席琪, 敬波, 王浟, 宋海智, 邓光伟, 周强 2019 低温物理学报 41 315Google Scholar

    Zhang X Y, Yuan C Z, Wei S H, Xi Q, Jing B, Wang Y, Song H Z, Deng G W, Zhou Q 2019 Low Temp. Phys. Lett. 41 315Google Scholar

    [19]

    Böttger T, Thiel C W, Cone R L, Sun Y 2009 Phys. Rev. B 79 115104Google Scholar

    [20]

    Rančić M, Hedges M P, Ahlefeldt R L, M J Sellars 2018 Nat. Phys. 14 50Google Scholar

    [21]

    Fraval E, Sellars M J, Longdell J J 2004 Phys. Rev. Lett. 92 077601Google Scholar

    [22]

    Ma Y, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2021 Nat. Commun. 12 2381Google Scholar

    [23]

    Ortu A, Tiranov A, Welinski S, Fröwis F, Gisin N, Ferrier A, Goldner P, Afzelius M 2018 Nat. Mater. 17 671Google Scholar

    [24]

    Hashimoto D, Shimizu K 2016 J. Lumin. 171 183Google Scholar

    [25]

    Chen Y H, Fernandez-Gonzalvo X, Longdell J J 2016 Phys. Rev. B 94 075117Google Scholar

    [26]

    Chen Y H, Fernandez-Gonzalvo X, Horvath S P, Rakonjac J V, Longdell J J 2018 Phys. Rev. B 97 024419Google Scholar

    [27]

    Guillot-Noël O, Goldner P, Du Y L, Baldit E, Monnier P, Bencheikh K 2006 Phys. Rev. B 74 214409Google Scholar

    [28]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [29]

    Gong M, Wang S, Zha C, Chen M C, Huang H L, Wu Y, Zhu Q, Zhao Y, Li S, Guo S, Keitel C H 2021 Science 372 948Google Scholar

    [30]

    Probst S, Rotzinger H, Ustinov A V, Bushev P A 2015 Phy. Rev. B 92 014421Google Scholar

    [31]

    Rakonjac J V, Chen Y H, Horvath S P, Longdell J J 2020 Phys. Rev. B 101 184430Google Scholar

    [32]

    Cacciapuoti A S, Caleffi M, Tafuri M, Tafuri F, Cataliotti F S, Gherardini S, Bianchi G, Keitel C H 2018 IEEE Network 34 137Google Scholar

    [33]

    Simon C 2017 Nat. Photonics 11 678Google Scholar

    [34]

    Zhong T, Goldner P 2019 Nanophotonics 8 2003Google Scholar

    [35]

    Baumann I, Brinkmann R, Dinand M, Sohler W, Beckers L, Buchal C, Fleuster M, Holzbrecher H, Paulus H, Müller K H, Gog T, Materlik G, Witte O, Stolz H, Von Der Osten W 1996 Appl. Phys. A 64 33Google Scholar

    [36]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussìres F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512Google Scholar

    [37]

    Askarani M F, Puigibert M G, Lutz T, Verma V B, Shaw M D, Nam S W, Sinclair N, Oblak D, Tittel W 2019 Phys. Rev. Appl. 11 054056Google Scholar

    [38]

    Liu C, Zhou Z Q, Zhu T X, Zheng L, Jin M, Liu X, Li P Y, Huang J Y, Ma Y, Tu T, Yang T S, Li C F, Guo G C 2020 Optica 7 192Google Scholar

    [39]

    Liu C, Zhu T X, Su M X, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2020 Phys. Rev. Lett. 125 260504Google Scholar

    [40]

    Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I, Miyazono E, Bettinelli M, Cavalli E, Verma V, Nam S W 2017 Science 357 1392Google Scholar

    [41]

    Craiciu I, Lei M, Rochman J, Kindem J M, Bartholomew J G, Miyazono E, Zhong E, Sinclair N, Faraon A 2019 Phys. Rev. Appl. 12 024062Google Scholar

    [42]

    Craiciu I, Lei M, Rochman J, Bartholomew J G, Faraon A 2021 Optica 8 114Google Scholar

    [43]

    Dajczgewand J, Le Gouët J L, Louchet-Chauvet A, Chanelière T 2014 Opt. Lett. 39 2711Google Scholar

    [44]

    Dutta S, Goldschmidt E A, Barik S, Saha U, Waks E 2020 Nano Lett. 20 741Google Scholar

    [45]

    Lin J, Bo F, Cheng Y, Xu J 2020 Photonics Res. 8 1910Google Scholar

    [46]

    Zhu D, Shao L, Yu M, Cheng R, Desiatov B, Xin C J, Hu Y, Holzgrafe J, Ghosh S, Shams-Ansari A, Puma E, Sinclair N, Reimer C, Zhang M, Lončar M, 2021 Adv. Opt. Photonics 13 242Google Scholar

    [47]

    Liu Y A, Yan X S, Wu J W, Zhu B, Chen Y P, Chen X F 2021 Sci. China Phys. Mech. Astron. 64 234262Google Scholar

    [48]

    Luo Q, Hao Z Z, Yang C, Zhang R, Zheng D H, Liu H D, Bo F, Kong Y F, Zhang G Q, Xu J J 2021 Sci. China Phys. Mech. Astron. 64 234263Google Scholar

    [49]

    Xiao Z, Wu K, Cai M, Li T, Chen J 2021 Opt. Lett. 46 4128Google Scholar

    [50]

    Sher M S M 2021 Opt. Eng. 60 047101Google Scholar

    [51]

    Wang S, Yang L, Cheng R, Xu Y, Shen M, Cone R L, Thiel C W, Tang H X 2020 Appl. Phys. Lett. 116 151103Google Scholar

    [52]

    Yang L, Wang S, Shen M, Xu Y, Xie J, Tang H X 2021 Opt. Express 29 15497Google Scholar

    [53]

    Omi H, Tawara T, Tateishi M 2012 AIP Adv. 2 012141Google Scholar

    [54]

    Adachi S, Kawakami Y, Kaji R, Tawara T, Omi H 2018 Appl. Sci. 8 874Google Scholar

    [55]

    Saglamyurek E, Jin J, Verma V B, Shaw M D, Marsili F, Nam S W, Oblak D, Tittel W 2015 Nat. Photonics 9 83Google Scholar

    [56]

    Jin J, Saglamyurek E, Grimau Puigibert M L, Verma V, Marsili F, Nam S W, Oblak D, Tittel W 2015 Phys. Rev. Lett. 115 140501Google Scholar

    [57]

    Grimau Puigibert M L, Askarani M F, Davidson J H, Verma V B, Shaw M D, Nam S W, Lutz T, Amaral G C, Oblak D, Tittel W 2020 Phys. Rev. Research 2 013039Google Scholar

    [58]

    Saglamyurek E, Puigibert M G, Zhou Q, Giner L, Marsili F, Verma V B, Nam S W, Oesterling L, Nippa D, Oblak D, Tittel W 2016 Nat. Commun. 7 11202Google Scholar

    [59]

    Xi Q, Wei S, Yuan C, Zhang X, Wang Y, Song H, Deng G, Jing B, Oblak D, Zhou Q 2020 Sci. China Inf. Sci. 63 180505Google Scholar

    [60]

    Wei S H, Jing B, Zhang X Y, Wang H Q, Li H, You L X, Wang Z, Wang Y, Deng G W, Song H Z, Oblak D, Guo G C, Zhou Q 2021 CLEO: QELS_Fundamental Science San Jose, USA, May 9–14, 2021 paper FM4M.2

    [61]

    Lambert N J, Rueda A, Sedlmeir F, Schwefel H G 2020 Adv. Quantum Technol. 3 1900077Google Scholar

    [62]

    Morsch O https://ethz.ch/en/news-and-events/eth-news/news /2020/03/longest-microwave-quantum-link.html [2020-05-03]

    [63]

    Williamson L A, Chen Y H, Longdell J J 2014 Phys. Rev. Lett. 113 203601Google Scholar

    [64]

    Han X, Fu W, Zou C L, Jiang L, Tang H X, 2021 Optica 8 1050Google Scholar

    [65]

    Andrews R W, Peterson R W, Purdy T P, Cicak K, Simmonds R W, Regal C A, Lehnert K W 2014 Nat. Phys. 10 321Google Scholar

    [66]

    Higginbotham A P, Burns P S, Urmey M D, Peterson R W, Kampel N S, Brubaker B M, Smith G, Lehnert K W, Regal C A 2018 Nat. Phys. 14 1038Google Scholar

    [67]

    Fernandez-Gonzalvo X, Horvath S P, Chen Y H, Longdell J J 2019 Phys. Rev. A 102 063718Google Scholar

    [68]

    Fernandez-Gonzalvo X, Chen Y H, Yin C, Rogge S, Longdell J J 2015 Phys. Rev. A 92 062313Google Scholar

    [69]

    Barnett P S, Longdell J J 2020 Phys. Rev. A 102 063718Google Scholar

    [70]

    King G G, Barnett P S, Bartholomew J G, Faraon A, Longdell J J 2021 Phys. Rev. B 103 214305Google Scholar

    [71]

    Ohta R, Herpin Bastidas V M, Tawara T, Yamaguchi H, Okamoto H 2021 Phys. Rev. Lett. 126 47404Google Scholar

    [72]

    Aharonovich I, Englund D, Toth M 2016 Nat. Photonics 10 631Google Scholar

    [73]

    段兆晨, 李金朋, 何玉明 2018 低温物理学报 40 1

    Duan Z, Li J, He Y 2018 Low Temp. Rev. Lett. 40 1

    [74]

    Meyer-Scott E, Silberhorn C, Migdall A 2020 Rev. Sci. Instrum. 91 041101Google Scholar

    [75]

    Cao X, Zopf M, Ding F 2019 J. Semicond. 40 071901Google Scholar

    [76]

    Buckley S, Rivoire K, Vučković J 2012 Rep. Prog. Phys. 75 126503Google Scholar

    [77]

    Cade N I, Gotoh H, Kamada H, Nakano H, Anantathanasarn S, Nötzel R 2006 Appl. Phys. Lett. 89 181113Google Scholar

    [78]

    Dibos A M, Raha M, Phenicie C M, Thompson J D 2018 Phys. Rev. Lett. 120 243601Google Scholar

    [79]

    Lukin M D, Fleischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901Google Scholar

    [80]

    Ohlsson N, Mohan R K, Kroll S 2002 Opt. Commun. 201 71Google Scholar

    [81]

    Longdell J J, Sellars M J, Manson N B 2004 Phys. Rev. Lett. 93 130503Google Scholar

    [82]

    Bertaina S, Gambarelli S, Tkachuk A, Kurkin I N, Malkin B, Stepanov A, Barbara B 2007 Nat. Nanotechnol. 2 39Google Scholar

    [83]

    Chen S, Raha M, Phenicie C M, Ourari S, Thompson J D 2020 Science 370 592Google Scholar

    [84]

    Carmichael H J, Walls D F 1977 Phys. Rev. B 10 1977Google Scholar

    [85]

    Bowden C M, Sung C C 1979 Phys. Rev. A 19 2392Google Scholar

    [86]

    Zental G 1977 Solid State Commun. 23 401Google Scholar

    [87]

    Hehlen M P, Güdel H U, Shu Q, Rai J, Rai S, Rand S C 1994 Phys. Rev. Lett. 73 1103Google Scholar

    [88]

    Carr C, Ritter R, Wade C G, Adams C S, Weatherill K J 2013 Phys. Rev. Lett. 111 113901Google Scholar

    [89]

    Chen Y H, Horvath S P, Longdell J J, Zhang K J 2021 Phys. Rev. Lett. 126 110601Google Scholar

    [90]

    Lee T E, Häffner H, Cross M C 2012 Phys. Rev. Lett. 108 023602Google Scholar

    [91]

    Williamson L A, Borgh M O, Ruostekoski J 2020 Phys. Rev. Lett. 125 073602Google Scholar

    [92]

    Ripka F, Kübler H, Löw R, Pfau T 2018 Science 362 446Google Scholar

  • 图 1  若干代表性量子体系的特征参数[13]. 不同材料在图中的位置是根据该体系本身的相干时间(x轴)和工作频率(y轴)排列的. 例如, 核自旋和电子自旋在低温下具有较长的相干时间; 超导量子比特、量子机械系统和微波光子腔与传统电磁波有很强的耦合作用; 同时通信波段的光子在信息的长距离传输方面具有无可比拟的优势

    Fig. 1.  Blocks of hybrid quantum systems[13]. Some typical systems with different functionalities are placed in the diagram according to their coherence time (x axis) and their excitation frequencies (y axis). For example, nuclear spins and electron spins feature with their long coherence time; superconducting qubits, quantum mechanical systems and microwave cavities can be strongly coupled to electromagnetic fields in radio or microwave frequencies; and photons at telecom wavelengths are unparalleled in sending information over long distance.

    图 2  晶体材料中磁噪声导致的退相干效应 (a)晶体中的离子本身都具有电子自旋磁矩或者核自旋磁矩. 温度不为零时, 这些磁矩会发生无规则的抖动, 从而改变我们观测的某个离子的局域磁场, 使得它的跃迁频率发生变化$ \Delta \omega $. (b)电子自旋的塞曼效应. 对于自旋$ S = 1/2 $的电子系统, 在外加磁场的情况下, 能级会发生劈裂, 自旋能级之间的跃迁频率ω也是随外加磁场而变化的. 由塞曼效应导致的能级劈裂是线性的. (c)铒离子的超精细能级相互作用. 对于167Er离子来说, 其电子自旋哈密顿量除了包含塞曼效应项, 还存在电子自旋和核自旋的超精细相互作用项${\boldsymbol{I}}\cdot {\boldsymbol{A}} \cdot {\boldsymbol{S}}$. 167Er完整的自旋哈密顿量应为$H = \mu_{\rm e} {\boldsymbol{B}}\cdot {\boldsymbol{g}} \cdot {\boldsymbol{S}} +{\boldsymbol{I}}\cdot $$ {\boldsymbol{A}} \cdot {\boldsymbol{S}}+{\boldsymbol{I}}\cdot {\boldsymbol{Q}} \cdot {\boldsymbol{I}}+\mu_{\rm n} {\boldsymbol{B}} \cdot {\boldsymbol{I}}$, 其中${\boldsymbol{g}}$是电子的塞曼矩阵, ${\boldsymbol{Q}}$是电四极矩阵, $g_{\rm n} = -0.1618$是核g因子. 在存在超精细相互作用时, 离子能级结构对外界磁场变化的响应会变成非线性的, 使得在某些特殊的外加磁场下跃迁频率对磁场变化的一阶导数为零, $ \partial{ \omega} / \partial{B} = 0 $

    Fig. 2.  Magnetic decoherence in crystals. (a) Ions that form a crystal possess electron spins or nuclear spins, which are cartooned as small magnets here. With environment temperature above zero, these magnets vibrate around their lattice positions. As a result, a vibrating magnetic field is added to the local field of a targeted ion and its transition frequency is changed by an amount of $ \Delta \omega $. (b) Zeeman effect of electron spins. For electrons with spin $ S = 1/2 $, applying a magnetic field splits the energy levels. The transition frequency ω is linear to the applied magnetic field. (c) Illustration of the hyperfine structure of erbium ions. For 167Er ions that possess both electron spins and nuclear spins, the spin Hamiltonian is $H = \mu_{\rm e} {\boldsymbol{B}}\cdot {\boldsymbol{g}} \cdot {\boldsymbol{S}} +{\boldsymbol{I}}\cdot $$ {\boldsymbol{A}} \cdot {\boldsymbol{S}}+{\boldsymbol{I}}\cdot {\boldsymbol{Q}} \cdot {\boldsymbol{I}}+\mu_{\rm n} {\boldsymbol{B}} \cdot {\boldsymbol{I}}$, where $\mu_{\rm e}$ is the Bohr magneton, B is the applied magnetic field, g is the Zeeman g-matrix, A is the hyperfine matrix, Q is the electric quadrupole matrix, $\mu_{\rm n}$ is the nuclear magneton, and $g_{\rm n} = -0.1618$ is the nuclear g factor. Due to the hyperfine interactions, the transition frequency ω is no longer a linear function of the applied magnetic field, which leads to $ \partial{ \omega } / \partial{B} = 0 $ at some specific magnetic field.

    图 3  167Er:YSO 晶体的基态能级在外加磁场下的变化情况 (a) 167Er:YSO的16个超精细能级随外加磁场的变化情况, 其中b和c标记了图(b)和(c)对应的区域; (b)箭头b对应区域的能级变化情况; (c)箭头c对应区域的能级变化情况

    Fig. 3.  Hyperfine structure of 167Er:YSO as a function of applied magnetic field. (a) The ground state of 167Er:YSO consists of 16 hyperfine energy levels, all of which show nonlinear behaviour around $ B = 0 $. Letter b and c indicate the regime of panel (b) and (c). (b) Zoomed picture of energy level as indicated by b in panel (a). (c) Zoomed picture of energy level as indicated by c in panel (c).

    图 4  基于掺铒晶体可集成量子存储器的主要技术方案 (a) 在铌酸锂晶体材料上通过离子扩散制备波导结构的量子存储器[37]; (b) 利用聚焦离子束刻蚀技术在 YVO 晶体上制备一维光子晶体结构的存储器[41]; (c)采用激光直写技术在 YSO 晶体上制备波导结构的存储器[38]; (d) 在 YSO 晶体上制备硅基光子学结构的存储器[42]

    Fig. 4.  On-chip erbium quantum memories: (a) Quantum memory based on erbium- and titanium-indiffused lithium-niobate waveguide[37]; (b) nanophotonic quantum memory by using focued-ion-beam to fabricate a one-dimensional photonic cavity in a YVO crystal[41]; (c) waveguide memory fabricated by femtosecond-laser micromachining on the surface of a YSO crystal[38]; (d) quantum memory comprised of an amorphous silicon (αSi) waveguide on a YSO crystal[42].

    图 5  基于掺铒晶体量子频率转换 (a) 一种实现微波光子到1.5 μm光子的量子转换器. 掺铒晶体提供实现频率转换所必需的电光非线性, 然后分别用光学腔和微波腔来增强在各自波段的光和物质相互作用. 这样一种技术方案原则上可以在低噪声的条件下实现量子效率为100%的频率转换[63]. (b) 基于掺铒晶体的量子频率转换实验, 实现量子效率为$ 10^{-5} $的频率转换[68]

    Fig. 5.  Quantum transducer based on erbium doped crystal. (a) Apparatus for quantum conversion between microwave photons and 1.5 μm optical photons. Both a microwave cavity and an optical cavity are used to enhance the light-matter interactions in their corresponding frequency regimes. Together with the large non-linearity provided by erbium ions, a low-noise and 100%-efficiency conversion can be expected [63]. (b) Quantum conversion from microwave photons to optical photons[68]. The quantum efficiency is $ 10^{-5} $

    图 6  基于掺铒晶体的单光子辐射 (a) 空间分辨和光谱分辨相结合的技术方法. 上图, 一般的聚焦光束会和多个铒离子发生相互作用, 不同颜色的铒离子在1.5 μm附近具有不同的辐射波长. 左下图, 利用微纳光学结构可以将光场有效地束缚在微纳尺度, 大大减小和光场发生相互作用的铒离子. 右下图, 在一个微纳光学腔中和光场发生相互作用的铒离子数目仍然很多, 不同发光波长的铒离子构成了该材料的非均匀线宽, 通过利用窄线宽的激光(小于单个铒离子的均匀线宽), 便可以选择性的单独激发红色的铒离子(其他颜色的铒离子由于频率失谐而没有被激发), 从而实现单个铒离子的探测. (b) 上图, 在Er:YSO掺杂晶体上制备硅的光子晶体腔; 下图, 铒离子的单光子辐射, 不同铒离子的辐射频率略有不同[78]

    Fig. 6.  Single photon sources based on erbium doped crystal. (a) Single ion detection by combining spatial and spectral resolutions. Upper panel, illustration of a large amount of ions inside a crystal interact with a focused laser beam. Dots with different color indicate that erbium ions have slightly different transition frequency around 1.5 μm. Bottom left, using nanophotonic structure to further confine the optical mode can largely reduce the number of interacting ions; bottom right, if at the same time introducing a narrow-frequency window to pick specific ions in the inhomogeneous line, one can isolate single erbium ions, e.g., using a narrow-frequency laser that is resonant with the red ions to saturate the homogeneous line while leaving ions with other colors non-excited. (b) Top, illustration of a silicon waveguide patterned with photonic crystal cavities on the top of a Er:YSO crystal. Bottom, photo-emission spectra of single erbium ions that have slightly different frequency around 1.5 μm[78]

    图 7  基于铒离子间相互作用的量子调控 (a) 利用空间分辨和光谱分辨技术, 在Er:YSO晶体上实现了对6个铒离子的相干操控[83]; (b) 由于铒离子间的相互作用而导致的本征光学不稳相[89].

    Fig. 7.  Quantum manipulation based on erbium-erbium interactions: (a) Combining spatial resolution of nanophotonics and spectral resolution of narrow-frequency laser, six erbium ions can be addressed and controlled independently[83]; (b) intrinsic optical instability due to ion-ion interactions[89].

  • [1]

    DiVincenzo D P 1995 Science 270 255Google Scholar

    [2]

    Wang Y 2012 Stat. Sci. 27 373Google Scholar

    [3]

    Aspuru-Guzik A, Walther P 2012 Nat. Phys. 8 285Google Scholar

    [4]

    Sangouard N, Simon C, De Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [5]

    Grezes C, Julsgaard B, Kubo Y, Ma W L, Stern M, Bienfait A, Nakamura K, Isoya J, Onoda S, Ohshima T, Jacques V, Vion D, Esteve D, Liu R B, Molmer K, Bertet P 2015 Phys. Rev. A 92 020301Google Scholar

    [6]

    Thiel C, Böttger T, Cone R 2011 J. Lumin. 131 353Google Scholar

    [7]

    Awschalom D D, Hanson R, Wrachtrup J, Zhou B B 2018 Nat. Photonics 12 516Google Scholar

    [8]

    Clarke J, Wilhelm F K 2008 Nature 453 1031Google Scholar

    [9]

    Reithmaier J P, Sek G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L V, Kulakovskii V D, Reinecke T L, Forchel A 2004 Nature 432 197Google Scholar

    [10]

    Heshami K, England D G, Humphreys P C, Bustard P J, Acosta V M, Nunn J, Sussman B J 2016 J. Mod. Opt. 63 2005Google Scholar

    [11]

    Schoelkopf R J, Girvin S M 2008 Nature 451 664Google Scholar

    [12]

    Xiang Z L, Ashhab S, You J, Nori F 2013 Rev. Mod. Phys. 85 623Google Scholar

    [13]

    Kurizki G, Bertet P, Kubo Y, Mølmer K, Petrosyan D, Rabl P, Schmiedmayer J 2015 Proc. Natl. Acad. Sci. U. S. A. 112 3866Google Scholar

    [14]

    Liu G, Jacquier B 2005 Spectroscopic Properties of Rare Earths in Optical Materials (Berlin, Heidelberg: Springer)

    [15]

    Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Simon C, Tittel W 2013 J. Mod. Opt. 60 1519Google Scholar

    [16]

    Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Longdell J J, Sellars M J 2015 Nature 517 177Google Scholar

    [17]

    Sun Y, Thiel C, Cone R, Equall R, Hutcheson R 2002 J. Lumin. 98 281Google Scholar

    [18]

    张雪莹, 袁晨智, 魏世海, 席琪, 敬波, 王浟, 宋海智, 邓光伟, 周强 2019 低温物理学报 41 315Google Scholar

    Zhang X Y, Yuan C Z, Wei S H, Xi Q, Jing B, Wang Y, Song H Z, Deng G W, Zhou Q 2019 Low Temp. Phys. Lett. 41 315Google Scholar

    [19]

    Böttger T, Thiel C W, Cone R L, Sun Y 2009 Phys. Rev. B 79 115104Google Scholar

    [20]

    Rančić M, Hedges M P, Ahlefeldt R L, M J Sellars 2018 Nat. Phys. 14 50Google Scholar

    [21]

    Fraval E, Sellars M J, Longdell J J 2004 Phys. Rev. Lett. 92 077601Google Scholar

    [22]

    Ma Y, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2021 Nat. Commun. 12 2381Google Scholar

    [23]

    Ortu A, Tiranov A, Welinski S, Fröwis F, Gisin N, Ferrier A, Goldner P, Afzelius M 2018 Nat. Mater. 17 671Google Scholar

    [24]

    Hashimoto D, Shimizu K 2016 J. Lumin. 171 183Google Scholar

    [25]

    Chen Y H, Fernandez-Gonzalvo X, Longdell J J 2016 Phys. Rev. B 94 075117Google Scholar

    [26]

    Chen Y H, Fernandez-Gonzalvo X, Horvath S P, Rakonjac J V, Longdell J J 2018 Phys. Rev. B 97 024419Google Scholar

    [27]

    Guillot-Noël O, Goldner P, Du Y L, Baldit E, Monnier P, Bencheikh K 2006 Phys. Rev. B 74 214409Google Scholar

    [28]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [29]

    Gong M, Wang S, Zha C, Chen M C, Huang H L, Wu Y, Zhu Q, Zhao Y, Li S, Guo S, Keitel C H 2021 Science 372 948Google Scholar

    [30]

    Probst S, Rotzinger H, Ustinov A V, Bushev P A 2015 Phy. Rev. B 92 014421Google Scholar

    [31]

    Rakonjac J V, Chen Y H, Horvath S P, Longdell J J 2020 Phys. Rev. B 101 184430Google Scholar

    [32]

    Cacciapuoti A S, Caleffi M, Tafuri M, Tafuri F, Cataliotti F S, Gherardini S, Bianchi G, Keitel C H 2018 IEEE Network 34 137Google Scholar

    [33]

    Simon C 2017 Nat. Photonics 11 678Google Scholar

    [34]

    Zhong T, Goldner P 2019 Nanophotonics 8 2003Google Scholar

    [35]

    Baumann I, Brinkmann R, Dinand M, Sohler W, Beckers L, Buchal C, Fleuster M, Holzbrecher H, Paulus H, Müller K H, Gog T, Materlik G, Witte O, Stolz H, Von Der Osten W 1996 Appl. Phys. A 64 33Google Scholar

    [36]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussìres F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512Google Scholar

    [37]

    Askarani M F, Puigibert M G, Lutz T, Verma V B, Shaw M D, Nam S W, Sinclair N, Oblak D, Tittel W 2019 Phys. Rev. Appl. 11 054056Google Scholar

    [38]

    Liu C, Zhou Z Q, Zhu T X, Zheng L, Jin M, Liu X, Li P Y, Huang J Y, Ma Y, Tu T, Yang T S, Li C F, Guo G C 2020 Optica 7 192Google Scholar

    [39]

    Liu C, Zhu T X, Su M X, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2020 Phys. Rev. Lett. 125 260504Google Scholar

    [40]

    Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I, Miyazono E, Bettinelli M, Cavalli E, Verma V, Nam S W 2017 Science 357 1392Google Scholar

    [41]

    Craiciu I, Lei M, Rochman J, Kindem J M, Bartholomew J G, Miyazono E, Zhong E, Sinclair N, Faraon A 2019 Phys. Rev. Appl. 12 024062Google Scholar

    [42]

    Craiciu I, Lei M, Rochman J, Bartholomew J G, Faraon A 2021 Optica 8 114Google Scholar

    [43]

    Dajczgewand J, Le Gouët J L, Louchet-Chauvet A, Chanelière T 2014 Opt. Lett. 39 2711Google Scholar

    [44]

    Dutta S, Goldschmidt E A, Barik S, Saha U, Waks E 2020 Nano Lett. 20 741Google Scholar

    [45]

    Lin J, Bo F, Cheng Y, Xu J 2020 Photonics Res. 8 1910Google Scholar

    [46]

    Zhu D, Shao L, Yu M, Cheng R, Desiatov B, Xin C J, Hu Y, Holzgrafe J, Ghosh S, Shams-Ansari A, Puma E, Sinclair N, Reimer C, Zhang M, Lončar M, 2021 Adv. Opt. Photonics 13 242Google Scholar

    [47]

    Liu Y A, Yan X S, Wu J W, Zhu B, Chen Y P, Chen X F 2021 Sci. China Phys. Mech. Astron. 64 234262Google Scholar

    [48]

    Luo Q, Hao Z Z, Yang C, Zhang R, Zheng D H, Liu H D, Bo F, Kong Y F, Zhang G Q, Xu J J 2021 Sci. China Phys. Mech. Astron. 64 234263Google Scholar

    [49]

    Xiao Z, Wu K, Cai M, Li T, Chen J 2021 Opt. Lett. 46 4128Google Scholar

    [50]

    Sher M S M 2021 Opt. Eng. 60 047101Google Scholar

    [51]

    Wang S, Yang L, Cheng R, Xu Y, Shen M, Cone R L, Thiel C W, Tang H X 2020 Appl. Phys. Lett. 116 151103Google Scholar

    [52]

    Yang L, Wang S, Shen M, Xu Y, Xie J, Tang H X 2021 Opt. Express 29 15497Google Scholar

    [53]

    Omi H, Tawara T, Tateishi M 2012 AIP Adv. 2 012141Google Scholar

    [54]

    Adachi S, Kawakami Y, Kaji R, Tawara T, Omi H 2018 Appl. Sci. 8 874Google Scholar

    [55]

    Saglamyurek E, Jin J, Verma V B, Shaw M D, Marsili F, Nam S W, Oblak D, Tittel W 2015 Nat. Photonics 9 83Google Scholar

    [56]

    Jin J, Saglamyurek E, Grimau Puigibert M L, Verma V, Marsili F, Nam S W, Oblak D, Tittel W 2015 Phys. Rev. Lett. 115 140501Google Scholar

    [57]

    Grimau Puigibert M L, Askarani M F, Davidson J H, Verma V B, Shaw M D, Nam S W, Lutz T, Amaral G C, Oblak D, Tittel W 2020 Phys. Rev. Research 2 013039Google Scholar

    [58]

    Saglamyurek E, Puigibert M G, Zhou Q, Giner L, Marsili F, Verma V B, Nam S W, Oesterling L, Nippa D, Oblak D, Tittel W 2016 Nat. Commun. 7 11202Google Scholar

    [59]

    Xi Q, Wei S, Yuan C, Zhang X, Wang Y, Song H, Deng G, Jing B, Oblak D, Zhou Q 2020 Sci. China Inf. Sci. 63 180505Google Scholar

    [60]

    Wei S H, Jing B, Zhang X Y, Wang H Q, Li H, You L X, Wang Z, Wang Y, Deng G W, Song H Z, Oblak D, Guo G C, Zhou Q 2021 CLEO: QELS_Fundamental Science San Jose, USA, May 9–14, 2021 paper FM4M.2

    [61]

    Lambert N J, Rueda A, Sedlmeir F, Schwefel H G 2020 Adv. Quantum Technol. 3 1900077Google Scholar

    [62]

    Morsch O https://ethz.ch/en/news-and-events/eth-news/news /2020/03/longest-microwave-quantum-link.html [2020-05-03]

    [63]

    Williamson L A, Chen Y H, Longdell J J 2014 Phys. Rev. Lett. 113 203601Google Scholar

    [64]

    Han X, Fu W, Zou C L, Jiang L, Tang H X, 2021 Optica 8 1050Google Scholar

    [65]

    Andrews R W, Peterson R W, Purdy T P, Cicak K, Simmonds R W, Regal C A, Lehnert K W 2014 Nat. Phys. 10 321Google Scholar

    [66]

    Higginbotham A P, Burns P S, Urmey M D, Peterson R W, Kampel N S, Brubaker B M, Smith G, Lehnert K W, Regal C A 2018 Nat. Phys. 14 1038Google Scholar

    [67]

    Fernandez-Gonzalvo X, Horvath S P, Chen Y H, Longdell J J 2019 Phys. Rev. A 102 063718Google Scholar

    [68]

    Fernandez-Gonzalvo X, Chen Y H, Yin C, Rogge S, Longdell J J 2015 Phys. Rev. A 92 062313Google Scholar

    [69]

    Barnett P S, Longdell J J 2020 Phys. Rev. A 102 063718Google Scholar

    [70]

    King G G, Barnett P S, Bartholomew J G, Faraon A, Longdell J J 2021 Phys. Rev. B 103 214305Google Scholar

    [71]

    Ohta R, Herpin Bastidas V M, Tawara T, Yamaguchi H, Okamoto H 2021 Phys. Rev. Lett. 126 47404Google Scholar

    [72]

    Aharonovich I, Englund D, Toth M 2016 Nat. Photonics 10 631Google Scholar

    [73]

    段兆晨, 李金朋, 何玉明 2018 低温物理学报 40 1

    Duan Z, Li J, He Y 2018 Low Temp. Rev. Lett. 40 1

    [74]

    Meyer-Scott E, Silberhorn C, Migdall A 2020 Rev. Sci. Instrum. 91 041101Google Scholar

    [75]

    Cao X, Zopf M, Ding F 2019 J. Semicond. 40 071901Google Scholar

    [76]

    Buckley S, Rivoire K, Vučković J 2012 Rep. Prog. Phys. 75 126503Google Scholar

    [77]

    Cade N I, Gotoh H, Kamada H, Nakano H, Anantathanasarn S, Nötzel R 2006 Appl. Phys. Lett. 89 181113Google Scholar

    [78]

    Dibos A M, Raha M, Phenicie C M, Thompson J D 2018 Phys. Rev. Lett. 120 243601Google Scholar

    [79]

    Lukin M D, Fleischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901Google Scholar

    [80]

    Ohlsson N, Mohan R K, Kroll S 2002 Opt. Commun. 201 71Google Scholar

    [81]

    Longdell J J, Sellars M J, Manson N B 2004 Phys. Rev. Lett. 93 130503Google Scholar

    [82]

    Bertaina S, Gambarelli S, Tkachuk A, Kurkin I N, Malkin B, Stepanov A, Barbara B 2007 Nat. Nanotechnol. 2 39Google Scholar

    [83]

    Chen S, Raha M, Phenicie C M, Ourari S, Thompson J D 2020 Science 370 592Google Scholar

    [84]

    Carmichael H J, Walls D F 1977 Phys. Rev. B 10 1977Google Scholar

    [85]

    Bowden C M, Sung C C 1979 Phys. Rev. A 19 2392Google Scholar

    [86]

    Zental G 1977 Solid State Commun. 23 401Google Scholar

    [87]

    Hehlen M P, Güdel H U, Shu Q, Rai J, Rai S, Rand S C 1994 Phys. Rev. Lett. 73 1103Google Scholar

    [88]

    Carr C, Ritter R, Wade C G, Adams C S, Weatherill K J 2013 Phys. Rev. Lett. 111 113901Google Scholar

    [89]

    Chen Y H, Horvath S P, Longdell J J, Zhang K J 2021 Phys. Rev. Lett. 126 110601Google Scholar

    [90]

    Lee T E, Häffner H, Cross M C 2012 Phys. Rev. Lett. 108 023602Google Scholar

    [91]

    Williamson L A, Borgh M O, Ruostekoski J 2020 Phys. Rev. Lett. 125 073602Google Scholar

    [92]

    Ripka F, Kübler H, Löw R, Pfau T 2018 Science 362 446Google Scholar

  • [1] 肖懿鑫, 朱天翔, 梁澎军, 王奕洋, 周宗权, 李传锋. 聚焦离子束加工的硅酸钇波导中铕离子的光学与超精细跃迁研究. 物理学报, 2024, 73(22): 1-9. doi: 10.7498/aps.73.20241070
    [2] 梁澎军, 朱天翔, 肖懿鑫, 王奕洋, 韩永建, 周宗权, 李传锋. 浓度依赖的掺铕硅酸钇晶体的光学和自旋非均匀展宽. 物理学报, 2024, 73(10): 100301. doi: 10.7498/aps.73.20240116
    [3] 王云飞, 周颖, 王英, 颜辉, 朱诗亮. 量子存储性能及应用分析. 物理学报, 2023, 72(20): 206701. doi: 10.7498/aps.72.20231203
    [4] 李丽娟, 明飞, 宋学科, 叶柳, 王栋. 熵不确定度关系综述. 物理学报, 2022, 71(7): 070302. doi: 10.7498/aps.71.20212197
    [5] 周宗权. 量子存储式量子计算机与无噪声光子回波. 物理学报, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [6] 邢雪燕, 李霞霞, 陈宇辉, 张向东. 基于光子晶体微腔的回波光量子存储. 物理学报, 2022, 71(11): 114201. doi: 10.7498/aps.71.20220083
    [7] 周湃, 李霞霞, 邢雪燕, 陈宇辉, 张向东. 基于掺铒晶体的光量子存储和调控. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211803
    [8] 李宗峰, 刘端程, 周宗权, 李传锋. 基于EuCl3·6H2O晶体的光存储. 物理学报, 2021, 70(16): 160302. doi: 10.7498/aps.70.20210648
    [9] 史保森, 丁冬生, 张伟, 李恩泽. 基于拉曼协议的量子存储. 物理学报, 2019, 68(3): 034203. doi: 10.7498/aps.68.20182215
    [10] 窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏. 量子存储研究进展. 物理学报, 2019, 68(3): 030307. doi: 10.7498/aps.68.20190039
    [11] 杨天书, 周宗权, 李传锋, 郭光灿. 多模式固态量子存储. 物理学报, 2019, 68(3): 030303. doi: 10.7498/aps.68.20182207
    [12] 汪野, 张静宁, 金奇奂. 相干时间超过10 min的单离子量子比特. 物理学报, 2019, 68(3): 030306. doi: 10.7498/aps.68.20181729
    [13] 安子烨, 王旭杰, 苑震生, 包小辉, 潘建伟. 冷原子系综内单集体激发态的相干操纵. 物理学报, 2018, 67(22): 224203. doi: 10.7498/aps.67.20181183
    [14] 邓瑞婕, 闫智辉, 贾晓军. 基于电磁诱导透明机制的压缩光场量子存储. 物理学报, 2017, 66(7): 074201. doi: 10.7498/aps.66.074201
    [15] 孙颖, 赵尚弘, 东晨. 基于量子存储的长距离测量设备无关量子密钥分配研究. 物理学报, 2015, 64(14): 140304. doi: 10.7498/aps.64.140304
    [16] 厉江帆, 单树民, 杨建坤, 姜宗福. 失谐量子频率转换系统薛定谔方程的显式解析解. 物理学报, 2007, 56(10): 5597-5601. doi: 10.7498/aps.56.5597
    [17] 冯少新, 李宝会, 金庆华, 郭振亚, 丁大同. LiNbO3晶体中离子间相互作用势的经验参量的确定. 物理学报, 2000, 49(12): 2433-2436. doi: 10.7498/aps.49.2433
    [18] 刘堂昆, 王继锁, 柳晓军, 詹明生. 纠缠态原子偶极间相互作用对量子态保真度的影响. 物理学报, 2000, 49(4): 708-712. doi: 10.7498/aps.49.708
    [19] 王金国, 张治国, 徐积仁, 傅盘铭, 闫秀丽, 吴 星, 姜彦岛. 掺铒矾酸钇晶体上转换荧光研究. 物理学报, 1998, 47(5): 747-755. doi: 10.7498/aps.47.747
    [20] 徐至中. 能谷间相互作用对量子阱Ge0.3Si0.7/Si/Ge0.3Si0.7的电子能带结构的影响. 物理学报, 1997, 46(4): 775-782. doi: 10.7498/aps.46.775
计量
  • 文章访问数:  5959
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-27
  • 修回日期:  2021-11-01
  • 上网日期:  2022-03-09
  • 刊出日期:  2022-03-20

/

返回文章
返回