搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚焦离子束加工的硅酸钇波导中铕离子的光学与超精细跃迁研究

肖懿鑫 朱天翔 梁澎军 王奕洋 周宗权 李传锋

引用本文:
Citation:

聚焦离子束加工的硅酸钇波导中铕离子的光学与超精细跃迁研究

肖懿鑫, 朱天翔, 梁澎军, 王奕洋, 周宗权, 李传锋

Optical and Hyperfine Spectroscopic Investigations on Europium Ions Doped in Yttrium Orthosilicate Waveguides Fabricated by Focused Ion Beam Milling

Xiao Yi-Xin, Zhu Tian-Xiang, Liang Peng-Jun, Wang Yi-Yang, Zhou Zong-Quan, Li Chuan-Feng
PDF
导出引用
  • 量子存储是大尺度量子网络的重要组成部分,基于波导等微纳结构的可集成量子存储可以提供更好的可扩展性并实现更低的光电能耗。在众多量子存储候选介质中,151Eu3+:Y2SiO5晶体具有长达6小时的自旋相干寿命和1小时的相干光存储时间,成为长寿命存储的优异候选材料。我们通过聚焦离子束在151Eu3+:Y2SiO5晶体表面加工出三角形悬梁臂波导,波导截面的边长为2 μm,长度为20 μm。本文对三角形悬梁臂波导中的151Eu3+离子的7F0-5D0光学跃迁以及7F0基态的超精细跃迁开展了研究。结果显示,在2 μm尺度的悬梁臂波导中151Eu3+离子基本保持了和块状晶体中151Eu3+离子一致的跃迁展宽及相干寿命,可以支持量子存储任务的实现。该工作为实现纳米尺度的151Eu3+离子可集成量子存储器以及单个151Eu3+离子的探测打下基础。
    Quantum memory is a crucial element in large-scale quantum networks. Integrated quantum memories based on micro-/-nano structures, such as waveguides, could significantly enhance the scalability and reduce the consumption of optical and electrical power. 151Eu3+:Y2SiO5 stands out as an exceptional candidate material for quantum memory, because it possesses a spin coherence lifetime of 6 hours and an optical storage lifetime of 1 hour. Here we employ focused ion beam technology to fabricate a triangular nanobeam on the surface of a Y2SiO5 crystal. The width and length of the nanobeam are 2 μm and 20 μm, respectively. The optical lifetime and inhomogeneous broadening of 151Eu3+ in the triangular nanobeam are measured by fluorescence spectroscopy. The optical lifetime is 1.9 ±0.1 ms and the optical inhomogeneous broadening is 1.58 ±0.05 GHz at a doping level of 0.07% for 151Eu3+. The hyperfine transition spectra are measured using optically detected magnetic resonance and a spin inhomogeneous broadening of 19 ±3 kHz is obtained. Furthermore, we analyze the coherence property of optical and hyperfine transitions separately via transient spectral hole burning and spin echo measurement. We obtain a optical homogeneous linewidth down to 22 ±3 kHz which is still limited by the instantaneous spectral diffusion and a spin coherence lifetime of 5.1 ±0.6 ms at the geomagnetic field. The results demonstrate that 151Eu3+ embedded within the 2 μm triangular nanobeam essentially retain the same optical and hyperfine transition properties as those observed in bulk crystals. Consequently, this research establishes a foundation for integrated quantum memories based on 151Eu3+ ensembles and the detection of the single 151Eu3+ ion based on the focused ion beam technique.
  • [1]

    Lukin M D 2003 Rev. Mod. Phys. 75 457

    [2]

    Zhou Z, Liu C, Li C, Guo G, Oblak D, Lei M, Faraon A, Mazzera M, De Riedmatten H 2023 Laser & Photonics Reviews 17 2300257

    [3]

    Lei Y, Kimiaee Asadi F, Zhong T, Kuzmich A, Simon C, Hosseini M 2023 Optica 10 1511

    [4]

    Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [5]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33

    [6]

    Cirac J I, Zoller P, Kimble H J, Mabuchi H 1997 Phys. Rev. Lett. 78 3221

    [7]

    Kimble H J 2008 Nature 453 1023

    [8]

    Lvovsky A I, Sanders B C, Tittel W 2009 Nature Photonics 3 706

    [9]

    Hong C K, Mandel L 1986 Phys. Rev. Lett. 56 58

    [10]

    Nunn J, Reim K, Lee K C, Lorenz V O, Sussman B J, Walmsley I A, Jaksch D 2008 Phys. Rev. Lett. 101 260502

    [11]

    Davidson O, Yogev O, Poem E, Firstenberg O 2023 Phys. Rev. Lett. 131 033601

    [12]

    Imamoḡlu A 2002 Phys. Rev. Lett. 89 163602

    [13]

    Clausen C, Sangouard N, Drewsen M 2013 New Journal of Physics 15 025021

    [14]

    Liu X, Hu X M, Zhu T X, Zhang C, Xiao Y X, Miao J L, Ou Z W, Liu B H, Zhou Z Q, Li C F, Guo G C 2023. ArXiv: 2307.15634 [quant-ph]

    [15]

    Thiel C, Böttger T, Cone R 2011 Journal of Luminescence 131 353

    [16]

    De Riedmatten H, Afzelius M, Staudt M U, Simon C, Gisin N 2008 Nature 456 773

    [17]

    Longdell J J, Alexander A L, Sellars M J 2006 Phys. Rev. B 74 195101

    [18]

    Fraval E, Sellars M J, Longdell J J 2004 Phys. Rev. Lett. 92 077601

    [19]

    Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Longdell J J, Sellars M J 2015 Nature 517 177

    [20]

    Rančić M, Hedges M P, Ahlefeldt R L, Sellars M J 2018 Nature Physics 14 50

    [21]

    Ortu A, Holzäpfel A, Etesse J, Afzelius M 2022 npj Quantum Information 8 29

    [22]

    Ma Y, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2021 Nature Communications 12 2381

    [23]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussières F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512

    [24]

    Usmani I, Afzelius M, De Riedmatten H, Gisin N 2010 Nature Communications 1 12

    [25]

    Businger M, Nicolas L, Mejia T S, Ferrier A, Goldner P, Afzelius M 2022 Nature Communications 13 6438

    [26]

    Yang T S, Zhou Z Q, Hua Y L, Liu X, Li Z F, Li P Y, Ma Y, Liu C, Liang P J, Li X, Xiao Y X, Hu J, Li C F, Guo G C 2018 Nature Communications 9 3407

    [27]

    Seri A, Lago-Rivera D, Lenhard A, Corrielli G, Osellame R, Mazzera M, de Riedmatten H 2019 Phys. Rev. Lett. 123 080502

    [28]

    Chen F, De Aldana J R V 2014 Laser & Photonics Reviews 8 251

    [29]

    Liu C, Zhu T X, Su M X, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2020 Phys. Rev. Lett. 125 260504

    [30]

    Zhu T X, Liu C, Zheng L, Zhou Z Q, Li C F, Guo G C 2020 Phys. Rev. Appl. 14 054071

    [31]

    Zhu T X, Liu C, Jin M, Su M X, Liu Y P, Li W J, Ye Y, Zhou Z Q, Li C F, Guo G C 2022 Phys. Rev. Lett. 128 180501

    [32]

    Liu D C, Li P Y, Zhu T X, Zheng L, Huang J Y, Zhou Z Q, Li C F, Guo G C 2022 Phys. Rev. Lett. 129 210501

    [33]

    Zhong T, Kindem J M, Miyazono E, Faraon A 2015 Nature Communications 6 8206

    [34]

    Miyazono E, Zhong T, Craiciu I, Kindem J M, Faraon A 2016 Applied Physics Letters 108 011111

    [35]

    Zhong T, Rochman J, Kindem J M, Miyazono E, Faraon A 2016 Optics Express 24 536

    [36]

    Kindem J M, Ruskuc A, Bartholomew J G, Rochman J, Huan Y Q, Faraon A 2020 Nature 580 201

    [37]

    Dibos A M, Raha M, Phenicie C M, Thompson J D 2018 Phys. Rev. Lett. 120 243601

    [38]

    Weiss L, Gritsch A, Merkel B, Reiserer A 2021 Optica 8 40

    [39]

    Zhu T X, Su M X, Liu C, Liu Y P, Wang C F, Liu P X, Han Y J, Zhou Z Q, Li C F, Guo G C 2024 National Science Review nwae161

    [40]

    Bayn I, Meyler B, Salzman J, Kalish R 2011 New Journal of Physics 13 025018

    [41]

    Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I, Verma V, Nam S W, Marsili F, Shaw M D, Beyer A D, Faraon A 2018 Phys. Rev. Lett. 121 183603

    [42]

    Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I, Miyazono E, Bettinelli M, Cavalli E, Verma V, Nam S W, Marsili F, Shaw M D, Beyer A D, Faraon A 2017 Science 357 1392

    [43]

    Craiciu I, Lei M, Rochman J, Kindem J M, Bartholomew J G, Miyazono E, Zhong T, Sinclair N, Faraon A 2019 Phys. Rev. Appl. 12 024062

    [44]

    Liang P J, Zhu T X, Xiao Y X, Wang Y Y, Han Y J, Zhou Z Q, Li C F 2024 Acta Physica Sinica 73 100301

    [45]

    Könz F, Sun Y, Thiel C W, Cone R L, Equall R W, Hutcheson R L, Macfarlane R M 2003 Phys. Rev. B 68 085109

    [46]

    Stoneham A M 1969 Rev. Mod. Phys. 41 82

    [47]

    Lafitte-Houssat E, Ferrier A, Welinski S, Morvan L, Afzelius M, Berger P, Goldner P 2022 Optical Materials: X 14 100153

    [48]

    Louchet-Chauvet A, Ahlefeldt R, Chanelière T 2019 Review of Scientific Instruments 90 034901

    [49]

    Gritsch A, Weiss L, Früh J, Rinner S, Reiserer A 2022 Phys. Rev. X 12 041009

    [50]

    Bartholomew J G, de Oliveira Lima K, Ferrier A, Goldner P 2017 Nano Letters 17 778

    [51]

    Szabo A 1975 Phys. Rev. B 11 4512

    [52]

    Völker S 1989 Annual Review of Physical Chemistry 40 499

    [53]

    Reiserer A 2022 Rev. Mod. Phys. 94 041003

    [54]

    Meiboom S, Gill D 1958 Review of Scientific Instruments 29 688

    [55]

    Arcangeli A, Lovrić M, Tumino B, Ferrier A, Goldner P 2014 Phys. Rev. B 89 184305

    [56]

    Robledo L, Bernien H, van Weperen I, Hanson R 2010 Phys. Rev. Lett. 105 177403

    [57]

    Ma Y Z, Lv Y C, Yang T S, Ma Y, Zhou Z Q, Li C F, Guo G C 2023 Phys. Rev. B 107 014310

    [58]

    Alexander A L, Longdell J J, Sellars M J 2007 Journal of the Optical Society of America B 24 2479

    [59]

    Hahn E L 1950 Phys. Rev. 80 580

  • [1] 梁澎军, 朱天翔, 肖懿鑫, 王奕洋, 韩永建, 周宗权, 李传锋. 浓度依赖的掺铕硅酸钇晶体的光学和自旋非均匀展宽. 物理学报, doi: 10.7498/aps.73.20240116
    [2] 王云飞, 周颖, 王英, 颜辉, 朱诗亮. 量子存储性能及应用分析. 物理学报, doi: 10.7498/aps.72.20231203
    [3] 郭牧城, 汪福东, 胡肇高, 任苗苗, 孙伟业, 肖婉婷, 刘书萍, 钟满金. 微纳尺度稀土掺杂晶体的量子相干性能及其应用研究进展. 物理学报, doi: 10.7498/aps.72.20222166
    [4] 周宗权. 量子存储式量子计算机与无噪声光子回波. 物理学报, doi: 10.7498/aps.71.20212245
    [5] 邢雪燕, 李霞霞, 陈宇辉, 张向东. 基于光子晶体微腔的回波光量子存储. 物理学报, doi: 10.7498/aps.71.20220083
    [6] 周湃, 李霞霞, 邢雪燕, 陈宇辉, 张向东. 基于掺铒晶体的光量子存储和调控. 物理学报, doi: 10.7498/aps.71.20211803
    [7] 李宗峰, 刘端程, 周宗权, 李传锋. 基于EuCl3·6H2O晶体的光存储. 物理学报, doi: 10.7498/aps.70.20210648
    [8] 杨天书, 周宗权, 李传锋, 郭光灿. 多模式固态量子存储. 物理学报, doi: 10.7498/aps.68.20182207
    [9] 汪野, 张静宁, 金奇奂. 相干时间超过10 min的单离子量子比特. 物理学报, doi: 10.7498/aps.68.20181729
    [10] 史保森, 丁冬生, 张伟, 李恩泽. 基于拉曼协议的量子存储. 物理学报, doi: 10.7498/aps.68.20182215
    [11] 窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏. 量子存储研究进展. 物理学报, doi: 10.7498/aps.68.20190039
    [12] 李明, 陈阳, 郭光灿, 任希锋. 表面等离激元量子信息应用研究进展. 物理学报, doi: 10.7498/aps.66.144202
    [13] 邓瑞婕, 闫智辉, 贾晓军. 基于电磁诱导透明机制的压缩光场量子存储. 物理学报, doi: 10.7498/aps.66.074201
    [14] 孙颖, 赵尚弘, 东晨. 基于量子存储的长距离测量设备无关量子密钥分配研究. 物理学报, doi: 10.7498/aps.64.140304
    [15] 邢莉娟, 李卓, 张武军. 加强的量子汉明限. 物理学报, doi: 10.7498/aps.60.050304
    [16] 刘春旭, 张继森, 刘俊业, 金光. Er3+:YAlO3晶体中Λ型四能级系统的量子相干左手性. 物理学报, doi: 10.7498/aps.58.5778
    [17] 李 卓, 邢莉娟. 量子Generalized Reed-Solomon码. 物理学报, doi: 10.7498/aps.57.28
    [18] 许兴胜, 熊志刚, 金爱子, 陈弘达, 张道中. 聚焦离子束研制半导体材料光子晶体. 物理学报, doi: 10.7498/aps.56.916
    [19] 许兴胜, 熊志刚, 孙增辉, 杜 伟, 鲁 琳, 陈弘达, 金爱子, 张道中. 半导体量子阱材料微加工光子晶体的光学特性. 物理学报, doi: 10.7498/aps.55.1248
    [20] 张权, 唐朝京, 高峰. 量子Turbo码. 物理学报, doi: 10.7498/aps.51.15
计量
  • 文章访问数:  100
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-10-10

/

返回文章
返回