搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多模式固态量子存储

杨天书 周宗权 李传锋 郭光灿

引用本文:
Citation:

多模式固态量子存储

杨天书, 周宗权, 李传锋, 郭光灿

Multimode solid-state quantum memory

Yang Tian-Shu, Zhou Zong-Quan, Li Chuan-Feng, Guo Guang-Can
PDF
HTML
导出引用
  • 量子存储器是光子与物质系统之间的接口, 允许存入和读出加载了量子信息的光子, 是构建实用化量子网络的核心器件. 基于稀土掺杂晶体可以实现固态的量子存储器, 较长的相干时间和较宽的存储带宽使其成为目前最有潜力的量子物理系统之一. 本文综述近年来基于稀土掺杂晶体的多模式固态量子存储方面的实验进展. 主要内容包括频率自由度的多模式量子存储、时间自由度的多模式量子存储、空间自由度的多模式量子存储和多个自由度并行复用的多模式量子存储. 在多自由度复用的多模式存储的基础上进一步介绍基于量子存储器的量子模式变换和实时的任意操作. 该系列工作为构建高速率的实用化量子网络奠定基础, 其中超越存储器本身的脉冲操作功能还有望在未来量子信息处理过程中获得广泛的应用.
    The faithful storage and coherent manipulation of single photon state in a matter-system are crucial for linear-optical quantum computation, long-distance quantum communication, and quantum networking.To reach useful data rate in a large-scale quantum network, highly multimode quantum memories are required to build a multiplexed quantum repeater.Rare-earth-ion doped crystal (REIC) is very promising material as a candidate for multimode quantum storage due to the wide inhomogeneous broadening and long optical coherence time.In this article, we review the recent advances in multimode quantum memories based on REICs.First, we briefly introduce the properties of REIC and the atomic frequency comb protocol based on REIC.Next, we review the achievements of multimode quantum memories based on REIC in recent years, including frequency, temporal and spatial multimode storage.Afterwards, we review our experimental work on multiplexed storage based on a multiple degree-of-freedom quantum memory.Finally, we introduce the quantum mode converter and real-time arbitrary manipulations based on the multiple degree-of-freedom quantum memory. The combination of storage and real-time manipulation in a device should enable the construction of a versatility quantum repeater.This review highlights that multimode quantum memories based on REIC can be found to possess some practical applications in developing the optical quantum information processing in the near future.
      通信作者: 周宗权, zq_zhou@ustc.edu.cn ; 李传锋, cfli@ustc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0304100)和国家自然科学基金(批准号: 61327901, 11774331, 11774335, 11504362, 11821404, 11654002)资助的课题.
      Corresponding author: Zhou Zong-Quan, zq_zhou@ustc.edu.cn ; Li Chuan-Feng, cfli@ustc.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304100) and the National Natural Science Foundation of China (Grant Nos. 61327901, 11774331, 11774335, 11504362, 11821404, 11654002).
    [1]

    Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, Milburn G J 2007 Rev. Mod. Phys. 79 135Google Scholar

    [2]

    Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photon. 3 706Google Scholar

    [3]

    Heshami K, England D G, Humphreys P C, Bustard P J, Acosta V M, Nunn J, Sussman B J 2016 J. Mod. Opt. 63 2005Google Scholar

    [4]

    Zhou Z Q, Huelga S F, Li C F, Guo G C 2015 Phys. Rev. Lett. 115 113002Google Scholar

    [5]

    Sangouard M, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [6]

    Briegel H J, Dur W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932Google Scholar

    [7]

    Wehner S, Elkouss D, Hanson R 2018 Science 362 9288Google Scholar

    [8]

    Collins O A, Jenkins S D, Kuzmich A, Kennedy T A B 2007 Phys. Rev. Lett. 98 060502Google Scholar

    [9]

    Simon C, de Riedmatten H, Afzelius M, Sangouard N, Zbinden H, Gisin N 2007 Phys. Rev. Lett. 98 190503Google Scholar

    [10]

    Usmani I, Afzelius M, de Riedmatten H, Gisin N 2010 Nat. Commun. 1 12Google Scholar

    [11]

    Tang J S, Zhou Z Q, Wang Y T, Li Y L, Liu X, Hua Y L, Zou Y, Wang S, He D Y, Chen G, Sun Y N, Yu Y, Li M F, Zha G W, Ni H Q, Niu Z C, Li C F, Guo G C 2015 Nat. Commun. 6 8652Google Scholar

    [12]

    Sinclair N, Saglamyurek E, Mallahzadeh H, Slater J A, George M, Ricken R, Hedges M P, Oblak D, Simon C, Sohler W, Tittel W 2014 Phys. Rev. Lett. 113 053603Google Scholar

    [13]

    Zhou Z Q, Hua Y L, Liu X, Chen G, Xu J S, Han Y J, Guo G C 2015 Phys. Rev. Lett. 115 070502Google Scholar

    [14]

    Yang T S, Zhou Z Q, Hua Y L, Liu X, Li Z F, Li P Y, Ma Y, Liu C, Liang P J, Li X, Xiao Y X, Hu J, Li C F, Guo G C 2018 Nat. Commun. 9 3407Google Scholar

    [15]

    周宗权, 李传锋 2013 科学通报 58 287

    Zhou Z Q, Li C F 2013 Chin. Sci. Bull. 58 287

    [16]

    Liu G, Jacquier B 2005 Spectroscopic Properties of Rare Earths in Optical Materials (Beijing: Tsinghua University Press, Springer Press) pp11−126

    [17]

    Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Longdell J J, Sellars M J 2015 Nature 517 177Google Scholar

    [18]

    周宗权 2015 博士学位论文 (合肥: 中国科学技术大学)

    Zhou Z Q 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [19]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussières F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512Google Scholar

    [20]

    Seri A, Corrielli G, Lago-Rivera D, Lenhard A, de Riedmatten H, Osellame R, Mazzera M 2018 Optica 5 934Google Scholar

    [21]

    Afzelius M, Simon C, de Riedmatten H, Gisin N 2009 Phys. Rev. A 79 052329Google Scholar

    [22]

    de Riedmatten H, Afzelius M, Staudt M U, Simon C, Gisin N 2008 Nature 456 773Google Scholar

    [23]

    Bonarota M, Gouët J L L, Chanelière T 2011 New J. Phys. 13 013013Google Scholar

    [24]

    Tiranov A, Strassmann P C, Lavoie J, Brunner N, Huber M, Verma V B, Nam S W, Mirin R P, Lita A E, Marsili F, Afzelius M, Bussières F, Gisin N 2016 Phys. Rev. Lett. 117 240506Google Scholar

    [25]

    Müller M, Bounouar S, Jöns K D, Glässl M, Michler F 2014 Nat. Photon. 8 224Google Scholar

    [26]

    Zhou Z Q, Lin W B, Yang M, Li C F, Guo G C 2012 Phys. Rev. Lett. 108 190505Google Scholar

    [27]

    Huber D, Reindl M, da Silva S F C, Schimpf C, Martín-Sánchez J, Huang H Y, Piredda G, Edlinger J, Rastelli A, Trotta R 2018 Phys. Rev. Lett. 121 033902Google Scholar

    [28]

    Morse K J, Abraham R J S, DeAbreu A, Bowness C, Richards T S, Riemann H, Abrosimov N V, Becker P, Pohl H J, Thewalt M L W, Simmons S 2017 Sci. Adv. 3 e1700930Google Scholar

    [29]

    Gündoğan M, Mazzera M, Ledingham P M, Cristiani M, de Riedmatten H 2013 New J. Phys. 15 045012Google Scholar

    [30]

    Jobez P, Laplane C, Timoney N, Gisin N, Ferrier A, Goldner P, Afzelius M 2015 Phys. Rev. Lett. 114 230502Google Scholar

    [31]

    Jobez P, Timoney N, Laplane C, Etesse J, Ferrier A, Goldner P, Gisin N, Afzelius M 2016 Phys. Rev. A 93 032327Google Scholar

    [32]

    Erhard M, Fickler R, Krenn M, Zeilinger A 2018 Light Sci. Appl. 7 17146Google Scholar

    [33]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [34]

    Collins D, Gisin N, Linden N, Massar S, Popescu S 2002 Phys. Rev. Lett. 88 040404Google Scholar

    [35]

    O’Brien J L, Pryde G J, Gilchrist A, James D F V, Langford N K, Ralph T C, White A G 2004 Phys. Rev. Lett. 93 080502Google Scholar

    [36]

    Hua Y L, Zhou Z Q, Li C F, Guo G C 2018 Chin. Phys. B 27 020303Google Scholar

    [37]

    Barreiro J T, Wei T C, Kwiat P G 2008 Nat. Phys. 4 282Google Scholar

    [38]

    Hosseini M, Sparkes B M, Gabriel H, Longdell J J, Lam P K, Buchler B C 2009 Nature 461 241Google Scholar

    [39]

    Saglamyurek E, Sinclair N, Slater J A, Heshami K, Oblak D, Tittel W 2014 New J. Phys. 16 065019Google Scholar

    [40]

    Reim K F, Nunn J, Jin X M, Michelberger P S, Champion T F M, England D G, Lee K C, Kolthammer W S, Langford N K, Walmsley I A 2012 Phys. Rev. Lett. 108 263602Google Scholar

    [41]

    Motes K R, Gilchrist A, Dowling J P, Rohde P P 2014 Phys. Rev. Lett. 113 120501Google Scholar

    [42]

    Motes K R, Dowling J P, Gilchrist A, Rohde P P 2015 Phys. Rev. A 92 052319Google Scholar

    [43]

    Ahlefeldt R L, Zhong M, Bartholomew J, Sellars M 2013 J. Lumin. 143 193Google Scholar

    [44]

    Ahlefeldt R L, Hush M R, Sellars M J 2016 Phys. Rev. Lett. 117 250504Google Scholar

    [45]

    Ahlefeldt R L, Hutchison W, Manson N, Sellars M J 2013 Phys. Rev. B 88 184424Google Scholar

    [46]

    Ma Y, Zhou Z Q, Han Y J, Liu C, Yang T S, Tu T, Xiao Y X, Liang P J, Li P Y, Hua Y L, Liu X, Li Z F, Hu J, Li X, Li C F, Guo G C 2018 J. Lumin. 202 32Google Scholar

    [47]

    Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I, Miyazono E, Bettinelli M, Cavalli E, Verma V, Nam S W, Marsili F, Shaw M D, Beyer A D, Faraon A 2017 Science 357 1392Google Scholar

    [48]

    Zhong T, Kindem J M, Miyazono E, Faraon A 2015 Nat. Commun. 6 8206Google Scholar

    [49]

    Hedges M P, Longdell J J, Li Y, Sellars M J 2010 Nature 465 1052Google Scholar

    [50]

    Liu X, Zhou Z Q, Hua Y L, Li C F, Guo G C 2017 Phys. Rev. A 95 012319Google Scholar

    [51]

    Morton J J, Mølmer K 2015 Nature 517 153Google Scholar

    [52]

    Timoney N, Usmani I, Jobez P, Afzelius M, Gisin N 2013 Phys. Rev. A 88 022324Google Scholar

    [53]

    Gündoğan M, Ledingham P M, Kutluer K, Mazzera M, de Riedmatten H 2015 Phys. Rev. Lett. 114 230501Google Scholar

    [54]

    Humphrey P C, Metcalf B J, Spring J B, Moore M, Jin X M, Barbieri M, Kolthammer W S, Walmsley I A 2013 Phys. Rev. Lett. 111 150501Google Scholar

    [55]

    Kutluer K, Mazzera M, de Riedmatten H 2017 Phys. Rev. Lett. 118 210502Google Scholar

    [56]

    Laplane C, Jobez P, Etesse J, Gisin N, Afzelius M 2017 Phys. Rev. Lett. 118 210501Google Scholar

    [57]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46Google Scholar

  • 图 1  确定性真光子的多模式存储 (a) 1个时间模式存储40 ns的时间谱; (b) 20个时间模式存储100 ns的时间谱; (c) 100个时间模式存储500 ns的时间谱; (d) 图(c)中方框部分的放大图 [11]

    Fig. 1.  Multimode quantum storage of single photons: (a) The histogram of single photon storage in one temporal mode for 40 ns; (b) the histogram of single photon storage in 20 temporal modes for 100 ns; (c) the histogram of single photon storage in 100 temporal modes for 500 ns; (d) the enlarge of the rectangle regions in panel (c) [11].

    图 2  存储器的模式容量分析 (a) 研究多模式存储容量的实验装置; (b) 三维空间的OAM态通过量子过程层析重构密度矩阵$\chi_{2}$的实部; (c) 高维叠加态$\mid\!\!\varPsi_{+}(l)\rangle$的存储结果 [13]

    Fig. 2.  The exploration of the multimode capacity in the spatial domain of the quantum memory: (a) The setup is used for exploration of the multimode capacity of the memory; (b) graphical representation of the real part of the reconstructed process matrix $\chi_{2}$ in three dimensions; (c) the memory performance for quantum superposition states $\mid\!\!\varPsi_{+}(l)\rangle$[13].

    图 3  单光子水平的多自由度复用的自旋波存储 (a) 在存储晶体的非均匀展宽上制作的两个间距为80 MHz的AFC (红色)和滤波晶体的吸收线(黑色); (b) 3个独立的空间模式的输入; (c) 时间、频率和空间自由度同时复用的自旋波存储 [14]

    Fig. 3.  Multiplexed storage in multiple-degree-of-freedom at single photon level: (a) The double AFC structure (red) in the memory crystal and the double filter structure (black) in the filter crystal; (b) three independent spatial modes carrying different OAM states are employed for spatial multiplexing; (c) a demonstration of temporal, spectral and spatial multiplexed storage for single-photon level input [14].

    图 4  将时间和频率自由度作为“信道”, 将空间自由度使用qutrit态编码的多路复用存储(a), (b)和量子模式转换(c), (d)[14]

    Fig. 4.  (a), (b) Multiplexed storage and (c), (d) quantum mode conversion for spatial encoded qutrit state using four temporal and spectral channels[14].

    图 5  时间和频率模式的实时任意操作 (a) 轨道角动量的qutrit态$\mid\!\!\psi_1\rangle$加载在$ f_{1}t_{1}$$ f_{2}t_{2}$模式上; 红色代表频率为$f_{1}$的光子, 蓝色代表频率为$f_{2}$的光子; (b) 轨道角动量的qutrit态$\mid\!\!\psi_2\rangle$加载在$f_{1}t_{2}$$f_{2}t_{2}$模式上[14]

    Fig. 5.  Arbitrary temporal and spectral manipulations in real time: (a) The OAM qutrit state $\mid\!\!\psi_1\rangle$ is encoded on the $f_{1}t_{1}$ and $f_{2}t_{2}$ modes; (b) the OAM qutrit state $\mid\!\!\psi_2\rangle$ is encoded on the $f_{1}t_{2}$ and $f_{2}t_{2}$ modes[14].

  • [1]

    Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, Milburn G J 2007 Rev. Mod. Phys. 79 135Google Scholar

    [2]

    Lvovsky A I, Sanders B C, Tittel W 2009 Nat. Photon. 3 706Google Scholar

    [3]

    Heshami K, England D G, Humphreys P C, Bustard P J, Acosta V M, Nunn J, Sussman B J 2016 J. Mod. Opt. 63 2005Google Scholar

    [4]

    Zhou Z Q, Huelga S F, Li C F, Guo G C 2015 Phys. Rev. Lett. 115 113002Google Scholar

    [5]

    Sangouard M, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [6]

    Briegel H J, Dur W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932Google Scholar

    [7]

    Wehner S, Elkouss D, Hanson R 2018 Science 362 9288Google Scholar

    [8]

    Collins O A, Jenkins S D, Kuzmich A, Kennedy T A B 2007 Phys. Rev. Lett. 98 060502Google Scholar

    [9]

    Simon C, de Riedmatten H, Afzelius M, Sangouard N, Zbinden H, Gisin N 2007 Phys. Rev. Lett. 98 190503Google Scholar

    [10]

    Usmani I, Afzelius M, de Riedmatten H, Gisin N 2010 Nat. Commun. 1 12Google Scholar

    [11]

    Tang J S, Zhou Z Q, Wang Y T, Li Y L, Liu X, Hua Y L, Zou Y, Wang S, He D Y, Chen G, Sun Y N, Yu Y, Li M F, Zha G W, Ni H Q, Niu Z C, Li C F, Guo G C 2015 Nat. Commun. 6 8652Google Scholar

    [12]

    Sinclair N, Saglamyurek E, Mallahzadeh H, Slater J A, George M, Ricken R, Hedges M P, Oblak D, Simon C, Sohler W, Tittel W 2014 Phys. Rev. Lett. 113 053603Google Scholar

    [13]

    Zhou Z Q, Hua Y L, Liu X, Chen G, Xu J S, Han Y J, Guo G C 2015 Phys. Rev. Lett. 115 070502Google Scholar

    [14]

    Yang T S, Zhou Z Q, Hua Y L, Liu X, Li Z F, Li P Y, Ma Y, Liu C, Liang P J, Li X, Xiao Y X, Hu J, Li C F, Guo G C 2018 Nat. Commun. 9 3407Google Scholar

    [15]

    周宗权, 李传锋 2013 科学通报 58 287

    Zhou Z Q, Li C F 2013 Chin. Sci. Bull. 58 287

    [16]

    Liu G, Jacquier B 2005 Spectroscopic Properties of Rare Earths in Optical Materials (Beijing: Tsinghua University Press, Springer Press) pp11−126

    [17]

    Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Longdell J J, Sellars M J 2015 Nature 517 177Google Scholar

    [18]

    周宗权 2015 博士学位论文 (合肥: 中国科学技术大学)

    Zhou Z Q 2015 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [19]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussières F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512Google Scholar

    [20]

    Seri A, Corrielli G, Lago-Rivera D, Lenhard A, de Riedmatten H, Osellame R, Mazzera M 2018 Optica 5 934Google Scholar

    [21]

    Afzelius M, Simon C, de Riedmatten H, Gisin N 2009 Phys. Rev. A 79 052329Google Scholar

    [22]

    de Riedmatten H, Afzelius M, Staudt M U, Simon C, Gisin N 2008 Nature 456 773Google Scholar

    [23]

    Bonarota M, Gouët J L L, Chanelière T 2011 New J. Phys. 13 013013Google Scholar

    [24]

    Tiranov A, Strassmann P C, Lavoie J, Brunner N, Huber M, Verma V B, Nam S W, Mirin R P, Lita A E, Marsili F, Afzelius M, Bussières F, Gisin N 2016 Phys. Rev. Lett. 117 240506Google Scholar

    [25]

    Müller M, Bounouar S, Jöns K D, Glässl M, Michler F 2014 Nat. Photon. 8 224Google Scholar

    [26]

    Zhou Z Q, Lin W B, Yang M, Li C F, Guo G C 2012 Phys. Rev. Lett. 108 190505Google Scholar

    [27]

    Huber D, Reindl M, da Silva S F C, Schimpf C, Martín-Sánchez J, Huang H Y, Piredda G, Edlinger J, Rastelli A, Trotta R 2018 Phys. Rev. Lett. 121 033902Google Scholar

    [28]

    Morse K J, Abraham R J S, DeAbreu A, Bowness C, Richards T S, Riemann H, Abrosimov N V, Becker P, Pohl H J, Thewalt M L W, Simmons S 2017 Sci. Adv. 3 e1700930Google Scholar

    [29]

    Gündoğan M, Mazzera M, Ledingham P M, Cristiani M, de Riedmatten H 2013 New J. Phys. 15 045012Google Scholar

    [30]

    Jobez P, Laplane C, Timoney N, Gisin N, Ferrier A, Goldner P, Afzelius M 2015 Phys. Rev. Lett. 114 230502Google Scholar

    [31]

    Jobez P, Timoney N, Laplane C, Etesse J, Ferrier A, Goldner P, Gisin N, Afzelius M 2016 Phys. Rev. A 93 032327Google Scholar

    [32]

    Erhard M, Fickler R, Krenn M, Zeilinger A 2018 Light Sci. Appl. 7 17146Google Scholar

    [33]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [34]

    Collins D, Gisin N, Linden N, Massar S, Popescu S 2002 Phys. Rev. Lett. 88 040404Google Scholar

    [35]

    O’Brien J L, Pryde G J, Gilchrist A, James D F V, Langford N K, Ralph T C, White A G 2004 Phys. Rev. Lett. 93 080502Google Scholar

    [36]

    Hua Y L, Zhou Z Q, Li C F, Guo G C 2018 Chin. Phys. B 27 020303Google Scholar

    [37]

    Barreiro J T, Wei T C, Kwiat P G 2008 Nat. Phys. 4 282Google Scholar

    [38]

    Hosseini M, Sparkes B M, Gabriel H, Longdell J J, Lam P K, Buchler B C 2009 Nature 461 241Google Scholar

    [39]

    Saglamyurek E, Sinclair N, Slater J A, Heshami K, Oblak D, Tittel W 2014 New J. Phys. 16 065019Google Scholar

    [40]

    Reim K F, Nunn J, Jin X M, Michelberger P S, Champion T F M, England D G, Lee K C, Kolthammer W S, Langford N K, Walmsley I A 2012 Phys. Rev. Lett. 108 263602Google Scholar

    [41]

    Motes K R, Gilchrist A, Dowling J P, Rohde P P 2014 Phys. Rev. Lett. 113 120501Google Scholar

    [42]

    Motes K R, Dowling J P, Gilchrist A, Rohde P P 2015 Phys. Rev. A 92 052319Google Scholar

    [43]

    Ahlefeldt R L, Zhong M, Bartholomew J, Sellars M 2013 J. Lumin. 143 193Google Scholar

    [44]

    Ahlefeldt R L, Hush M R, Sellars M J 2016 Phys. Rev. Lett. 117 250504Google Scholar

    [45]

    Ahlefeldt R L, Hutchison W, Manson N, Sellars M J 2013 Phys. Rev. B 88 184424Google Scholar

    [46]

    Ma Y, Zhou Z Q, Han Y J, Liu C, Yang T S, Tu T, Xiao Y X, Liang P J, Li P Y, Hua Y L, Liu X, Li Z F, Hu J, Li X, Li C F, Guo G C 2018 J. Lumin. 202 32Google Scholar

    [47]

    Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I, Miyazono E, Bettinelli M, Cavalli E, Verma V, Nam S W, Marsili F, Shaw M D, Beyer A D, Faraon A 2017 Science 357 1392Google Scholar

    [48]

    Zhong T, Kindem J M, Miyazono E, Faraon A 2015 Nat. Commun. 6 8206Google Scholar

    [49]

    Hedges M P, Longdell J J, Li Y, Sellars M J 2010 Nature 465 1052Google Scholar

    [50]

    Liu X, Zhou Z Q, Hua Y L, Li C F, Guo G C 2017 Phys. Rev. A 95 012319Google Scholar

    [51]

    Morton J J, Mølmer K 2015 Nature 517 153Google Scholar

    [52]

    Timoney N, Usmani I, Jobez P, Afzelius M, Gisin N 2013 Phys. Rev. A 88 022324Google Scholar

    [53]

    Gündoğan M, Ledingham P M, Kutluer K, Mazzera M, de Riedmatten H 2015 Phys. Rev. Lett. 114 230501Google Scholar

    [54]

    Humphrey P C, Metcalf B J, Spring J B, Moore M, Jin X M, Barbieri M, Kolthammer W S, Walmsley I A 2013 Phys. Rev. Lett. 111 150501Google Scholar

    [55]

    Kutluer K, Mazzera M, de Riedmatten H 2017 Phys. Rev. Lett. 118 210502Google Scholar

    [56]

    Laplane C, Jobez P, Etesse J, Gisin N, Afzelius M 2017 Phys. Rev. Lett. 118 210501Google Scholar

    [57]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46Google Scholar

  • [1] 范文信, 王敏杰, 焦浩乐, 路迦进, 刘海龙, 杨智芳, 席梦琦, 李淑静, 王海. 读光与读出光子模式腰斑比对腔增强量子存储器恢复效率的影响. 物理学报, 2023, 72(21): 210301. doi: 10.7498/aps.72.20230966
    [2] 王云飞, 周颖, 王英, 颜辉, 朱诗亮. 量子存储性能及应用分析. 物理学报, 2023, 72(20): 206701. doi: 10.7498/aps.72.20231203
    [3] 李丽娟, 明飞, 宋学科, 叶柳, 王栋. 熵不确定度关系综述. 物理学报, 2022, 71(7): 070302. doi: 10.7498/aps.71.20212197
    [4] 杨光, 刘琦, 聂敏, 刘原华, 张美玲. 基于极化-空间模超纠缠的量子网络多跳纠缠交换方法研究. 物理学报, 2022, 71(10): 100301. doi: 10.7498/aps.71.20212173
    [5] 周宗权. 量子存储式量子计算机与无噪声光子回波. 物理学报, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [6] 邢雪燕, 李霞霞, 陈宇辉, 张向东. 基于光子晶体微腔的回波光量子存储. 物理学报, 2022, 71(11): 114201. doi: 10.7498/aps.71.20220083
    [7] 周湃, 李霞霞, 邢雪燕, 陈宇辉, 张向东. 基于掺铒晶体的光量子存储和调控. 物理学报, 2022, 71(6): 064203. doi: 10.7498/aps.71.20211803
    [8] 周湃, 李霞霞, 邢雪燕, 陈宇辉, 张向东. 基于掺铒晶体的光量子存储和调控. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211803
    [9] 李宗峰, 刘端程, 周宗权, 李传锋. 基于EuCl3·6H2O晶体的光存储. 物理学报, 2021, 70(16): 160302. doi: 10.7498/aps.70.20210648
    [10] 贺振兴, 范兴奎, 初鹏程, 马鸿洋. 基于Cayley图上量子漫步的匿名通信方案. 物理学报, 2020, 69(16): 160301. doi: 10.7498/aps.69.20200333
    [11] 汪野, 张静宁, 金奇奂. 相干时间超过10 min的单离子量子比特. 物理学报, 2019, 68(3): 030306. doi: 10.7498/aps.68.20181729
    [12] 史保森, 丁冬生, 张伟, 李恩泽. 基于拉曼协议的量子存储. 物理学报, 2019, 68(3): 034203. doi: 10.7498/aps.68.20182215
    [13] 窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏. 量子存储研究进展. 物理学报, 2019, 68(3): 030307. doi: 10.7498/aps.68.20190039
    [14] 安子烨, 王旭杰, 苑震生, 包小辉, 潘建伟. 冷原子系综内单集体激发态的相干操纵. 物理学报, 2018, 67(22): 224203. doi: 10.7498/aps.67.20181183
    [15] 邓瑞婕, 闫智辉, 贾晓军. 基于电磁诱导透明机制的压缩光场量子存储. 物理学报, 2017, 66(7): 074201. doi: 10.7498/aps.66.074201
    [16] 孙颖, 赵尚弘, 东晨. 基于量子存储的长距离测量设备无关量子密钥分配研究. 物理学报, 2015, 64(14): 140304. doi: 10.7498/aps.64.140304
    [17] 杨光, 廉保旺, 聂敏. 多跳噪声量子纠缠信道特性及最佳中继协议. 物理学报, 2015, 64(24): 240304. doi: 10.7498/aps.64.240304
    [18] 马鸿洋, 秦国卿, 范兴奎, 初鹏程. 噪声情况下的量子网络直接通信. 物理学报, 2015, 64(16): 160306. doi: 10.7498/aps.64.160306
    [19] 付邦, 邓文基. 任意正多边形量子环自旋输运的普遍解. 物理学报, 2010, 59(4): 2739-2745. doi: 10.7498/aps.59.2739
    [20] 李鹏, 邓文基. 正多边形量子环自旋输运的严格解. 物理学报, 2009, 58(4): 2713-2719. doi: 10.7498/aps.58.2713
计量
  • 文章访问数:  7911
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-16
  • 修回日期:  2019-01-08
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回