搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超纠缠的三用户全连接量子网络

刘圆凯 侯云龙 杨宜霖 侯刘敏 李渊华 林佳 陈险峰

引用本文:
Citation:

基于超纠缠的三用户全连接量子网络

刘圆凯, 侯云龙, 杨宜霖, 侯刘敏, 李渊华, 林佳, 陈险峰

A three-user fully connected quantum network based on hyperentanglement

LIU Yuankai, HOU Yunlong, YANG Yilin, HOU Liumin, LI Yuanhua, LIN Jia, CHEN Xianfeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 超纠缠作为一种多自由度上的高维量子纠缠现象, 在量子通信、量子计算和高维量子态操控中发挥着关键作用. 与单一自由度纠缠态不同, 超纠缠态在偏振、路径、轨道角动量等多个自由度上同时建立纠缠关系, 通过纠缠操控分发技术, 可以构建出高维量子信息网络. 基于此, 本文构建了一个超纠缠的全连接量子网络, 通过周期极化薄膜铌酸锂(PPLN)波导级联二次谐波产生和自发参量下转换过程实现偏振和time-bin自由度的超纠缠, 并使用密集波分复用(DWDM)技术, 将超纠缠态复用到单模光纤中传输给终端用户. 使用Franson-type干涉和双光子符合测量技术对纠缠态的质量进行表征, 同时对偏振纠缠态进行了量子态层析, 并利用纠缠分发技术在网络中实现长距离分发及量子密钥传输. 实验结果表明, 偏振纠缠和time-bin纠缠的双光子干涉对比度均大于95%, 并且在经过100 km纠缠分发后, 两种自由度的量子态保真度依旧高于88%, 证明了该网络具有高质量的超纠缠, 并且可以实现远距离的纠缠分发. 本文的方法为构建支持量子隐形传态、超密集编码等量子任务的大规模超纠缠的量子网络提供了一种新的方案.
    Hyperentanglement, as a high-dimensional quantum entanglement phenomenon with multiple degrees of freedom, plays a critical role in quantum communication, quantum computing, and high-dimensional quantum state manipulation. Unlike entangled states in a single degree of freedom, hyperentangled states establish entanglement relationships simultaneously in multiple degrees of freedom, such as polarization, path, and orbital angular momentum. Through entanglement-based distribution techniques, high-dimensional quantum information networks can be constructed. On this basis, a fully connected quantum network with hyperentanglement is constructed in this work, and the polarization and time-bin degree-of-freedom hyperentanglement is realized through the process of second-harmonic generation and spontaneous parametric down-conversion in periodically poled lithium niobate (PPLN) waveguide cascades. The hyperentangled state is then multiplexed into a single-mode fiber by using dense wavelength division multiplexing (DWDM) technology for transmission to terminal users. The quality of the entangled states in the two degrees of freedom is characterized using Franson-type interference and photon-pair coincidence measurement techniques. Polarization entangled states are subjected to quantum state tomography, and entanglement distribution technology is employed to achieve long-distance distribution and quantum key transmission within the network. Experimental results show that the two-photon interference visibility of both polarization and time-bin entanglement is greater than 95%, demonstrating the high quality of the hyperentanglement in the network. After 100-km-entanglement distribution, the fidelity of the quantum states in both degrees of freedom remains above 88%, indicating the effectiveness of long-distance entanglement distribution in this network. Additionally, it is verified that this network supports the distribution of quantum keys over a distance of more than 50 km between users. These results confirm the feasibility of a fully connected quantum network with hyperentanglement and demonstrate the potential for constructing large-scale metropolitan networks by using hyperentanglement. As a higher-dimensional entanglement, hyperentangled states can significantly enhance the capacity and efficiency of quantum information processing. Although the quantum communication is still in its early stages of development, achieving stable storage and transmission of entangled states in large-scale metropolitan networks remains a great challenge. By utilizing the frequency conversion properties and high integration characteristics of the periodically poled lithium niobate waveguides, the three-user hyperentangled quantum network constructed in this work provides a new solution for developing the large-scale metropolitan networks with high-dimensional quantum information networks., It is expected to provide a new platform for quantum tasks such as superdense coding and quantum teleportation
  • 图 1  全连接网络架构及实验装置示意图 (a)网络的通信拓扑结构; (b)网络的物理拓扑结构; (c)实验装置示意图

    Fig. 1.  Fully connected network architecture and experimental Setup diagram: (a) Communication topology of the network; (b) physical topology of the network; (c) schematic diagram of the experimental setup.

    图 2  time-bin纠缠和偏振纠缠实验结果 (a) CH31&CH33 time-bin纠缠双光子干涉条纹; (b) CH30&CH34 time-bin纠缠双光子干涉条纹; (c) CH29&CH35 time-bin纠缠双光子干涉条纹; (d) CH31&CH33偏振纠缠双光子干涉条纹; (e) CH30&CH34偏振纠缠双光子干涉条纹; (f) CH29&CH35偏振纠缠双光子干涉条纹

    Fig. 2.  Experimental results of time-bin entanglement and polarization entanglement: (a) Time-bin entangled biphoton interference fringes for CH31 & CH33; (b) time-bin entangled biphoton interference fringes for CH30 & CH34; (c) time-bin entangled biphoton interference fringes for CH29 & CH35; (d) polarization-entangled biphoton interference fringes for CH31 & CH33; (e) polarization-entangled biphoton interference fringes for CH30 & CH34; (f) polarization-entangled biphoton interference fringes for CH29 & CH35.

    图 3  偏振纠缠态重构密度矩阵的实部和虚部 (a) CH31&CH33偏振纠缠态重构密度矩阵的实部; (b) CH31&CH33偏振纠缠态重构密度矩阵的虚部; (c) CH30&CH34偏振纠缠态重构密度矩阵的实部; (d) CH30&CH34偏振纠缠态重构密度矩阵的虚部; (e) CH29&CH35偏振纠缠态重构密度矩阵的实部; (f) CH29&CH35偏振纠缠态重构密度矩阵的虚部

    Fig. 3.  Real and imaginary parts of the reconstructed density matrix for polarization-entangled states: (a) Real part of the reconstructed density matrix for CH31 & CH33 polarization-entangled states; (b) imaginary part of the reconstructed density matrix for CH31 & CH33 polarization-entangled states; (c) real part of the reconstructed density matrix for CH30 & CH34 polarization-entangled states; (d) imaginary part of the reconstructed density matrix for CH30 & CH34 polarization-entangled states; (e) real part of the reconstructed density matrix for CH29 & CH35 polarization-entangled states; (f) imaginary part of the reconstructed density matrix for CH29 & CH35 polarization-entangled states.

    图 4  纠缠保真度与传输距离的关系 (a) time-bin纠缠保真度与传输距离的关系; (b)偏振纠缠保真度与传输距离的关系

    Fig. 4.  Relationship between entanglement fidelity and transmission distance: (a) Time-bin entanglement fidelity versus transmission distance; (b) polarization-entangled fidelity versus transmission distance.

    图 5  在超纠缠网络中Alice, Bob和Charlie之间的安全密钥速率随传输距离的变化

    Fig. 5.  Secure key rate between Alice, Bob, and Charlie in a hyper-entangled network as a function of transmission distance.

  • [1]

    Konrad T, de Melo F, Tiersch M, Kasztelan C, Aragão A, Buchleitner A 2008 Nat. Phys. 4 99Google Scholar

    [2]

    Aspelmeyer M, Böhm H R, Gyatso T, Jennewein T, Kaltenbaek R, Lindenthal M, Molina-Terriza G, Poppe A, Resch K, Taraba M, Ursin R, Walther P, Zeilinger A 2003 Science 301 621Google Scholar

    [3]

    Maring N, Fyrillas A, Pont M, Ivanov E, Stepanov P, Margaria N, Hease W, Pishchagin A, Lemaître A, Sagnes I, Au T H, Boissier S, Bertasi E, Baert A, Valdivia M, Billard M, Acar O, Brieussel A, Mezher R, Wein S C, Salavrakos A, Sinnott P, Fioretto D A, Emeriau P E, Belabas N, Mansfield S, Senellart P, Senellart J, Somaschi N 2024 Nat. Photonics 18 603Google Scholar

    [4]

    Gisin N, Thew R 2007 Nat. Photonics 1 165Google Scholar

    [5]

    Li W, Zhang L, Tan H, Lu Y, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B, Li Q, Liu Y, Zhang Q, Peng C Z, You L, Xu F, Pan J W 2023 Nat. Photonics 17 416Google Scholar

    [6]

    Zahidy M, Ribezzo D, De Lazzari C, Vagniluca I, Biagi N, Müller R, Occhipinti T, Oxenløwe L K, Galili M, Hayashi T, Cassioli D, Mecozzi A, Antonelli C, Zavatta A, Bacco D 2024 Nat. Commun. 15 1651Google Scholar

    [7]

    Ye J, Zoller P 2024 Phys. Rev. Lett. 132 190001Google Scholar

    [8]

    Guo X, Breum C R, Borregaard J, Izumi S, Larsen M V, Gehring T, Christandl M, Neergaard-Nielsen J S, Andersen U L 2020 Nat. Phys. 16 281Google Scholar

    [9]

    Qiu X, Zhang D, Ma T, Lin F, Guo H, Zhang W, Chen L 2020 Adv. Quantum Technol. 3 2000073Google Scholar

    [10]

    Azuma K, Economou S E, Elkouss D, Hilaire P, Jiang L, Lo H K, Tzitrin I 2023 Rev. Mod. Phys. 95 045006Google Scholar

    [11]

    Liu S, Lv Y, Wang X, Wang J, Lou Y, Jing J 2024 Phys. Rev. Lett. 132 100801Google Scholar

    [12]

    Zhang Z, Sang Y 2023 Quantum Inf. Process. 22 201Google Scholar

    [13]

    Peev M, Pacher C, Alléaume R, Barreiro C, Bouda J, Boxleitner W, Debuisschert T, Diamanti E, Dianati M, Dynes J F, Fasel S, Fossier S, Fürst M, Gautier J D, Gay O, Gisin N, Grangier P, Happe A, Hasani Y, Hentschel M, Hübel H, Humer G, Länger T, Legré M, Lieger R, Lodewyck J, Lorünser T, Lütkenhaus N, Marhold A, Matyus T, Maurhart O, Monat L, Nauerth S, Page J B, Poppe A, Querasser E, Ribordy G, Robyr S, Salvail L, Sharpe A W, Shields A J, Stucki D, Suda M, Tamas C, Themel T, Thew R T, Thoma Y, Treiber A, Trinkler P, Tualle-Brouri R, Vannel F, Walenta N, Weier H, Weinfurter H, Wimberger I, Yuan Z L, Zbinden H, Zeilinger A 2009 New J. Phys. 11 075001Google Scholar

    [14]

    Sasaki M, Fujiwara M, Ishizuka H, Klaus W, Wakui K, Takeoka M, Miki S, Yamashita T, Wang Z, Tanaka A, Yoshino K, Nambu Y, Takahashi S, Tajima A, Tomita A, Domeki T, Hasegawa T, Sakai Y, Kobayashi H, Asai T, Shimizu K, Tokura T, Tsurumaru T, Matsui M, Honjo T, Tamaki K, Takesue H, Tokura Y, Dynes J F, Dixon A R, Sharpe A W, Yuan Z L, Shields A J, Uchikoga S, Legré M, Robyr S, Trinkler P, Monat L, Page J B, Ribordy G, Poppe A, Allacher A, Maurhart O, Länger T, Peev M, Zeilinger A 2011 Opt. Express 19 10387Google Scholar

    [15]

    Huang Y, Li Y, Qi Z, Yang Y, Zheng Y, Chen X 2023 Quantum Frontiers 2 4Google Scholar

    [16]

    Jing X, Qian C, Weng C X, Li B H, Chen Z, Wang C Q, Tang J, Gu X W, Kong Y C, Chen T S, Yin H L, Jiang D, Niu B, Lu L L 2024 Sci. Adv. 10 eadp2877Google Scholar

    [17]

    Qi Z, Huang Y, Lu C, Ni F, Li Y, Zheng Y, Chen X 2023 Phys. Rev. Appl. 19 014045Google Scholar

    [18]

    Qi Z, Li Y, Huang Y, Feng J, Zheng Y, Chen X 2021 Light Sci. Appl. 10 183Google Scholar

    [19]

    Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516Google Scholar

    [20]

    Wengerowsky S, Joshi S K, Steinlechner F, Hübel H, Ursin R 2018 Nature 564 225Google Scholar

    [21]

    Treiber A, Poppe A, Hentschel M, Ferrini D, Lorünser T, Querasser E, Matyus T, Hübel H, Zeilinger A 2009 New J. Phys. 11 045013Google Scholar

    [22]

    Kaiser F, Issautier A, Ngah L A, Alibart O, Martin A, Tanzilli S 2013 Laser Phys. Lett. 10 045202Google Scholar

    [23]

    Liu B X, Yang Y G, Xu G B, Jiang D H, Zhou Y H, Shi W M, Li D 2024 Physica A 639 129683Google Scholar

    [24]

    Kim J H, Chae J W, Jeong Y C, Kim Y H 2022 APL Photonics 7 016106Google Scholar

    [25]

    Huang Y, Qi Z, Yang Y, Zhang Y, Li Y, Zheng Y, Chen X 2025 Laser Photonics Rev. 19 2301026Google Scholar

    [26]

    Xie Z, Zhong T, Shrestha S, Xu X, Liang J, Gong Y X, Bienfang J C, Restelli A, Shapiro J H, Wong F N C, Wei Wong C 2015 Nat. Phys. 9 536

    [27]

    Luo M X, Li H R, Lai H, Wang X 2016 Sci. Rep. 6 25977Google Scholar

    [28]

    Luo M X, Li H R, Lai H, Wang X 2016 Phys. Rev. A 93 012332Google Scholar

    [29]

    Erhard M, Krenn M, Zeilinger A 2020 Nat. Rev. Phys. 2 365Google Scholar

    [30]

    Prabhu A V, Suri B, Chandrashekar C M 2021 Phys. Rev. A 103 052608Google Scholar

    [31]

    Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880Google Scholar

    [32]

    Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S 2014 Rev. Mod. Phys. 86 419Google Scholar

    [33]

    Sun Q C, Mao Y L, Jiang Y F, Zhao Q, Chen S J, Zhang W, Zhang W J, Jiang X, Chen T Y, You L X, Li L, Huang Y D, Chen X F, Wang Z, Ma X, Zhang Q, Pan J W 2017 Phys. Rev. A 95 032306Google Scholar

  • [1] 马俊, 欧阳鹏辉, 柴亚强, 蒋青权, 贺青, 韦联福. 量子网络中基于弹性散射的微波光子传输调控. 物理学报, doi: 10.7498/aps.74.20250404
    [2] 郭鹏亮, 席舜, 高成艳. 基于线性光学元件的偏振-时间超纠缠W态浓缩. 物理学报, doi: 10.7498/aps.74.20241642
    [3] 李涛, 王雪琦, 解志浩. 量子多模下的非局域量子纠缠制备研究进展. 物理学报, doi: 10.7498/aps.74.20250589
    [4] 陈越, 刘长杰, 郑伊佳, 曹原, 郭明轩, 朱佳莉, 周星宇, 郁小松, 赵永利, 王琴. 多域跨协议量子网络的域间密钥业务按需提供策略. 物理学报, doi: 10.7498/aps.73.20240819
    [5] 赖红, 任黎, 黄钟锐, 万林春. 基于多尺度纠缠重整化假设的量子网络通信资源优化方案. 物理学报, doi: 10.7498/aps.73.20241382
    [6] 杨光, 刘琦, 聂敏, 刘原华, 张美玲. 基于极化-空间模超纠缠的量子网络多跳纠缠交换方法研究. 物理学报, doi: 10.7498/aps.71.20212173
    [7] 贺振兴, 范兴奎, 初鹏程, 马鸿洋. 基于Cayley图上量子漫步的匿名通信方案. 物理学报, doi: 10.7498/aps.69.20200333
    [8] 杨天书, 周宗权, 李传锋, 郭光灿. 多模式固态量子存储. 物理学报, doi: 10.7498/aps.68.20182207
    [9] 何英秋, 丁东, 彭涛, 闫凤利, 高亭. 基于自发参量下转换源二阶激发过程产生四光子超纠缠态. 物理学报, doi: 10.7498/aps.67.20172230
    [10] 刘岩, 李健军, 高冬阳, 翟文超, 胡友勃, 郭园园, 夏茂鹏, 郑小兵. I类自发参量下转换相关光子圆环的时间相关特性研究. 物理学报, doi: 10.7498/aps.65.194211
    [11] 任宝藏, 邓富国. 光子两自由度超并行量子计算与超纠缠态操控. 物理学报, doi: 10.7498/aps.64.160303
    [12] 杨光, 廉保旺, 聂敏. 多跳噪声量子纠缠信道特性及最佳中继协议. 物理学报, doi: 10.7498/aps.64.240304
    [13] 马鸿洋, 秦国卿, 范兴奎, 初鹏程. 噪声情况下的量子网络直接通信. 物理学报, doi: 10.7498/aps.64.160306
    [14] 胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍. 基于条件参量下转换光子对的非正交编码诱惑态量子密钥分发. 物理学报, doi: 10.7498/aps.59.287
    [15] 付邦, 邓文基. 任意正多边形量子环自旋输运的普遍解. 物理学报, doi: 10.7498/aps.59.2739
    [16] 卢宗贵, 刘红军, 景峰, 赵卫, 王屹山, 彭志涛. 基于自发参量下转换产生参量荧光的光谱分布特性理论分析. 物理学报, doi: 10.7498/aps.58.4689
    [17] 李鹏, 邓文基. 正多边形量子环自旋输运的严格解. 物理学报, doi: 10.7498/aps.58.2713
    [18] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发. 物理学报, doi: 10.7498/aps.56.1924
    [19] 季玲玲, 吴令安. 光学超晶格中级联参量过程制备纠缠光子对. 物理学报, doi: 10.7498/aps.54.736
    [20] 孙利群, 张彦鹏, 刘亚芳, 唐天同, 杨照金, 向世明. 自发参量下转换双光子场绝对校准光电探测器的方法研究. 物理学报, doi: 10.7498/aps.49.724
计量
  • 文章访问数:  310
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-08
  • 修回日期:  2025-05-06
  • 上网日期:  2025-05-10

/

返回文章
返回