搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子网络中基于弹性散射的微波光子传输调控

马俊 欧阳鹏辉 柴亚强 蒋青权 贺青 韦联福

引用本文:
Citation:

量子网络中基于弹性散射的微波光子传输调控

马俊, 欧阳鹏辉, 柴亚强, 蒋青权, 贺青, 韦联福

Controllable microwave photon transmissions in microwave quantum networks by elastic scattering

MA Jun, OUYANG Penghui, CAI Yaqiang, JIANG Qingquan, HE Qing, WEI Lianfu
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 利用弹性散射对微波量子网络中微波光子的传输行为进行无能耗地调控,对微波量子器件的研制和多节点微波量子网络的构建等都具有现实意义。鉴于文献中存在同一器件,即约瑟夫森结器件嵌入传输线的不同电路模型(串联或并联)描述,本文从最简单的微波光子单次弹性散射模型出发,分析了单个LC回路和非线性约瑟夫森结器件不同嵌入模型描述下的微波光子弹性散射特性。结果表明,在经典微波传输理论中,串联LC回路和并联LC回路导致不同的微波光子弹性散射行为,即串联电路是共振反射的而并联电路则是共振透射的。已有文献Phys.Rev.B 86,024503分析了嵌入传输线中单个约瑟夫森结对微波光子的弹性散射特性,所给出的结果预示着嵌入传输线中的约瑟夫森结,应该是由串联嵌入电路模型所描述,因而是共振反射的。本文证明,如果采用并联电路模型描述的话,嵌入传输线中的约瑟夫森结对传输线中的微波光子弹性散射应该导致共振透射。为检验以上导致完全不同弹性散射行为的两种嵌入电路模型,哪一种在物理上是正确的,本文制备了这一结构简单的传输线中嵌入单个约瑟夫结器件,并在极低温条件下测量了其微波光子的弹性散射传输系数,结果与并联嵌入电路模型所预期的效应符合,而与文献中的串联嵌入电路模型所预期的效应正好相反。基于这一单个约瑟夫森结器件弹性散射行为的理论和实验研究,我们提出了一种可通过调制旁路电流的直流超导量子干涉器件,来调控微波光子弹性散射行为的方案,可应用于构建基于弹性散射节点调控的微波量子网络。
    Elastic scattering is one of the useful approach to control the transmission behavior of microwave photons transporting in microwave quantum networks without energy consumption. Therefore, it has practical significance for the development of microwave quantum devices and the construction of multi-node microwave quantum networks. In view of the existence of the same device, specifically the transmission line embedded by a single Josephson junction, could be described by different circuit models (the series and parallel ones), in this paper we first theoretically analyze the transporting feature for the microwave photons being scattered by the different elastic scattering model, described by either the series or the parallel embedding models, generated by a single LC loop and a nonlinear Josephson junction device, respectively. The classical microwave transport theory predicts that, the series LC loop and the parallel LC loop lead to different microwave photon elastic scattering behaviors, i.e., the series LC circuit yields the resonant reflection and the parallel LC circuit leading alternatively to the resonant transmission. Recently, the transport properties of microwave photons scattered by a Josephson junction embedded in a transmission line had been discussed, and the results suggested that the Josephson junction embedded in the transmission line should be described by a series embedding circuit, which implies the resonant reflection. We argue here that, if the Josephson junction is embedded in parallel in the transmission line, the elastically scattered microwave photons should be transmitted by resonant transmission. In order to test which of the above two different embedding circuit models, yielding the completely different elastic scattering behaviors, is physically correct, we then fabricated such a device, i.e., a single Joseph junction device embedded in a transmission line is prepared, and measured its elastic scattering transmission coeffcient at extremely low temperature. The results are consistent with the expected effects of the parallel embedding circuit model, but conflicted with the behaviors predicted by the series embedding circuit model in the literature. Based on the above theoretical and experimental analysis on the elastic scattering of a single Josephson junction device, we further propose a scheme to control the elastic scattering behavior of microwave photons by modulating a DC superconducting quantum interference device with a bypass current, which could be applied to the construction of a microwave quantum network based on elastic scattering node controls.
  • [1]

    Wei S, Jing B, Zhang X, Liao J, Yuan C, Fan B, Lyu C, Zhou D, Wang Y, Deng G, Song H, Oblak D, Guo G, Zhou Q 2022 Laser Photonics Rev. 162100219

    [2]

    Wallquist M, Shumeiko V S, Wendin G 2006 Phys. Rev. B 74224506

    [3]

    Devoret M H, Schoelkopf R J 2013 Science 3391169

    [4]

    Bautista-Salvador A, Zarantonello G, Hahn H, Preciado-Grijalva A, Morgner J, Wahnschaffe M, Ospelkaus C 2019 New J. Phys. 21043011

    [5]

    Slussarenko S, Pryde G J 2019 Appl. Phys. Rev. 6041303

    [6]

    Blais A, Grimsmo A L, Girvin S M, Wallraff A 2021 Rev. Mod. Phys. 93025005

    [7]

    Tseng P, Chen L, Shiu J S, Chen Y 2024 Phys. Rev. A 109043716

    [8]

    Ma S, Zhu C, Quan D, Nie M 2022 Entropy 24794

    [9]

    Zueco D, Mazo J J, Solano E, García-Ripoll J J 2012 Phys. Rev. B 86024503

    [10]

    He S, He Q, Wei L 2021 Opt. Express 2943148

    [11]

    Bi Y, Huang L, Li X, Wang Y 2021 Front. Optoelectron. 14154

    [12]

    Astafiev O, Zagoskin A M, Abdumalikov A A, Pashkin Y A, Yamamoto T, Inomata K, Nakamura Y, Tsai J S 2010 Science 327840

    [13]

    Jain V, Kurilovich V D, Dahmani Y D, Lei C U, Mason D, Yoon T, Rakich P T, Glazman L I, Schoelkopf R J 2023 Phys. Rev. Appl. 20014018

    [14]

    Abdumalikov A A, Astafiev O, Zagoskin A M, Pashkin Y A, Nakamura Y, Tsai J S 2010 Phys. Rev. Lett. 104193601

    [15]

    Soloviev I I, Klenov N V, Bakurskiy S V, Kupriyanov M Y, Gudkov A L, Sidorenko A S 2017 Beilstein J. Nanotechnol. 82689

    [16]

    Feldhoff F, Toepfer H 2021 IEEE Trans. Appl. Supercond. 311

    [17]

    Rabbi K, Athukorala L, Panagamuwa C, Vardaxoglou J C, Budimir D 2013 Microw. Opt. Technol. Lett. 551331

    [18]

    Taris T, Kraimia H, Belot D, Deval Y 2015 J. Low Power Electron. Appl. 5274

    [19]

    Bourassa J, Beaudoin F, Gambetta J M, Blais A 2012 Phys. Rev. A 86013814

    [20]

    Clemente-Gallardo J, Scherpen J 2003 IEEE Trans. Circuits Syst. 501359

    [21]

    Aldrigo M, Zappelli L, Cismaru A, Dragoman M, Iordanescu S, Mladenovic D, Parvulescu C, Joseph C H, Mencarelli D, Pierantoni L, Russo P 2023 J. Comput. Electron. 221031

    [22]

    Li J, Zhu X, Shen C, Peng X, Cummer S A 2019 Phys. Rev. B 100144311

    [23]

    Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6021318

    [24]

    Campagne-Ibarcq P, Zalys-Geller E, Narla A, Shankar S, Reinhold P, Burkhart L, Axline C, Pfaff W, Frunzio L, Schoelkopf R J, Devoret M H 2018 Phys. Rev. Lett. 120200501

    [25]

    Ouyang P, He S, Wang Y, Chai Y, He J, Chang H, Wei L 2024 Phys. Rev. Res. 6013236

    [26]

    Erickson R P, Pappas D P 2017 Phys. Rev. B 95104506

    [27]

    Zueco D, Fernández-Juez C, Yago J, Naether U, Peropadre B, García-Ripoll J J, Mazo J J 2013 Supercond. Sci. Technol. 26074006

    [28]

    Han J, Ouyang P, Li E, Wang Y, Wei L 2021 Acta Phys. Sin. 70170304(in Chinses) [韩金舸,欧阳鹏辉,李恩平,王轶文,韦联福2021物理学报70170304]

    [29]

    Zheng D 2021 Acta Phys. Sin. 70018502(in Chinses) [郑东宁2021物理学报70018502]

    [30]

    Castro C, Araújo M R, Cruz C 2021 Phys. Scr. 96105101

    [31]

    Hua M, Tao M, Deng F 2016 Sci. Rep. 622037

    [32]

    Leung N, Lu Y, Chakram S, Naik R K, Earnest N, Ma R, Jacobs K, Cleland A N, Schuster D I 2019 npj Quantum Inf. 518

  • [1] 李中祥, 王淑亚, 黄自强, 王晨, 穆清. 原子级控制的约瑟夫森结中Al2O3势垒层制备工艺. 物理学报, doi: 10.7498/aps.71.20220820
    [2] 梁恬恬, 张国峰, 伍文涛, 倪志, 王永良, 应利良, 伍俊, 荣亮亮, 彭炜, 高波. 串联超导量子干涉器件阵列制备与测试分析. 物理学报, doi: 10.7498/aps.70.20210467
    [3] 金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民. 温稠密物质中不同价态离子分布对X-射线弹性散射光谱计算的影响. 物理学报, doi: 10.7498/aps.70.20201483
    [4] 郑东宁. 超导量子干涉器件. 物理学报, doi: 10.7498/aps.70.20202131
    [5] 韩金舸, 欧阳鹏辉, 李恩平, 王轶文, 韦联福. 超导约瑟夫森结物理参数的实验推算. 物理学报, doi: 10.7498/aps.70.20210393
    [6] 许家豪, 王云新, 王大勇, 周涛, 杨锋, 钟欣, 张弘骉, 杨登才. 基于载波抑制单边带调制的微波光子本振倍频上转换方法. 物理学报, doi: 10.7498/aps.68.20190266
    [7] 韩昊轩, 张国峰, 张雪, 梁恬恬, 应利良, 王永良, 彭炜, 王镇. 低噪声超导量子干涉器件磁强计设计与制备. 物理学报, doi: 10.7498/aps.68.20190483
    [8] 陈恒杰, 薛航, 李邵雄, 王镇. 一种通过约瑟夫森结非线性频率响应确定微波耗散的方法. 物理学报, doi: 10.7498/aps.68.20190167
    [9] 王松, 王星云, 周章渝, 杨发顺, 杨健, 傅兴华. 硼膜制备工艺、微观结构及其在硼化镁超导约瑟夫森结中的应用. 物理学报, doi: 10.7498/aps.65.017401
    [10] 陈钊, 何根芳, 张青雅, 刘建设, 李铁夫, 陈炜. 具有Washer型输入线圈的超导量子干涉放大器的制备与表征. 物理学报, doi: 10.7498/aps.64.128501
    [11] 曹文会, 李劲劲, 钟青, 郭小玮, 贺青, 迟宗涛. 用于电压基准的Nb/NbxSi1-x/Nb约瑟夫森单结的研制. 物理学报, doi: 10.7498/aps.61.170304
    [12] 张树林, 刘扬波, 曾佳, 王永良, 孔祥燕, 谢晓明. 基于低温超导量子干涉器件的脑听觉激励磁场探测. 物理学报, doi: 10.7498/aps.61.020701
    [13] 张立森, 蔡理, 冯朝文. 约瑟夫森结中周期解及其稳定性的解析分析. 物理学报, doi: 10.7498/aps.60.030308
    [14] 岳宏卫, 阎少林, 周铁戈, 谢清连, 游峰, 王争, 何明, 赵新杰, 方兰, 杨扬, 王福音, 陶薇薇. 嵌入Fabry-Perot谐振腔的高温超导双晶约瑟夫森结的毫米波辐照特性研究. 物理学报, doi: 10.7498/aps.59.1282
    [15] 岳宏卫, 王争, 樊彬, 宋凤斌, 游峰, 赵新杰, 何明, 方兰, 阎少林. 高温超导双晶约瑟夫森结阵列毫米波相干辐射. 物理学报, doi: 10.7498/aps.59.5755
    [16] 马引群, 马中玉. 6Li与核弹性散射的微观光学势. 物理学报, doi: 10.7498/aps.57.74
    [17] 崔大健, 林德华, 于海峰, 彭智慧, 朱晓波, 郑东宁, 景秀年, 吕 力, 赵士平. 本征约瑟夫森结跳变电流分布的量子修正. 物理学报, doi: 10.7498/aps.57.5933
    [18] 李照鑫, 邹 健, 蔡金芳, 邵 彬. 电荷量子比特与量子化光场之间的纠缠. 物理学报, doi: 10.7498/aps.55.1580
    [19] 肖宇飞, 王登龙, 王凤姣, 颜晓红. 非对称的玻色-爱因斯坦凝聚中的约瑟夫森结的动力学性质. 物理学报, doi: 10.7498/aps.55.547
    [20] 王震宇, 廖红印, 周世平. 直流偏置的与RLC谐振器耦合的约瑟夫森结动力学行为的数值模拟. 物理学报, doi: 10.7498/aps.50.1996
计量
  • 文章访问数:  42
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-14

/

返回文章
返回