-
利用弹性散射对微波量子网络中微波光子的传输行为进行无能耗地调控,对微波量子器件的研制和多节点微波量子网络的构建等都具有现实意义。鉴于文献中存在同一器件,即约瑟夫森结器件嵌入传输线的不同电路模型(串联或并联)描述,本文从最简单的微波光子单次弹性散射模型出发,分析了单个LC回路和非线性约瑟夫森结器件不同嵌入模型描述下的微波光子弹性散射特性。结果表明,在经典微波传输理论中,串联LC回路和并联LC回路导致不同的微波光子弹性散射行为,即串联电路是共振反射的而并联电路则是共振透射的。已有文献Phys.Rev.B 86,024503分析了嵌入传输线中单个约瑟夫森结对微波光子的弹性散射特性,所给出的结果预示着嵌入传输线中的约瑟夫森结,应该是由串联嵌入电路模型所描述,因而是共振反射的。本文证明,如果采用并联电路模型描述的话,嵌入传输线中的约瑟夫森结对传输线中的微波光子弹性散射应该导致共振透射。为检验以上导致完全不同弹性散射行为的两种嵌入电路模型,哪一种在物理上是正确的,本文制备了这一结构简单的传输线中嵌入单个约瑟夫结器件,并在极低温条件下测量了其微波光子的弹性散射传输系数,结果与并联嵌入电路模型所预期的效应符合,而与文献中的串联嵌入电路模型所预期的效应正好相反。基于这一单个约瑟夫森结器件弹性散射行为的理论和实验研究,我们提出了一种可通过调制旁路电流的直流超导量子干涉器件,来调控微波光子弹性散射行为的方案,可应用于构建基于弹性散射节点调控的微波量子网络。Elastic scattering is one of the useful approach to control the transmission behavior of microwave photons transporting in microwave quantum networks without energy consumption. Therefore, it has practical significance for the development of microwave quantum devices and the construction of multi-node microwave quantum networks. In view of the existence of the same device, specifically the transmission line embedded by a single Josephson junction, could be described by different circuit models (the series and parallel ones), in this paper we first theoretically analyze the transporting feature for the microwave photons being scattered by the different elastic scattering model, described by either the series or the parallel embedding models, generated by a single LC loop and a nonlinear Josephson junction device, respectively. The classical microwave transport theory predicts that, the series LC loop and the parallel LC loop lead to different microwave photon elastic scattering behaviors, i.e., the series LC circuit yields the resonant reflection and the parallel LC circuit leading alternatively to the resonant transmission. Recently, the transport properties of microwave photons scattered by a Josephson junction embedded in a transmission line had been discussed, and the results suggested that the Josephson junction embedded in the transmission line should be described by a series embedding circuit, which implies the resonant reflection. We argue here that, if the Josephson junction is embedded in parallel in the transmission line, the elastically scattered microwave photons should be transmitted by resonant transmission. In order to test which of the above two different embedding circuit models, yielding the completely different elastic scattering behaviors, is physically correct, we then fabricated such a device, i.e., a single Joseph junction device embedded in a transmission line is prepared, and measured its elastic scattering transmission coeffcient at extremely low temperature. The results are consistent with the expected effects of the parallel embedding circuit model, but conflicted with the behaviors predicted by the series embedding circuit model in the literature. Based on the above theoretical and experimental analysis on the elastic scattering of a single Josephson junction device, we further propose a scheme to control the elastic scattering behavior of microwave photons by modulating a DC superconducting quantum interference device with a bypass current, which could be applied to the construction of a microwave quantum network based on elastic scattering node controls.
-
Keywords:
- Elastic scattering /
- Microwave photons /
- Josephson junction /
- Superconducting quantum interference device
-
[1] Wei S, Jing B, Zhang X, Liao J, Yuan C, Fan B, Lyu C, Zhou D, Wang Y, Deng G, Song H, Oblak D, Guo G, Zhou Q 2022 Laser Photonics Rev. 162100219
[2] Wallquist M, Shumeiko V S, Wendin G 2006 Phys. Rev. B 74224506
[3] Devoret M H, Schoelkopf R J 2013 Science 3391169
[4] Bautista-Salvador A, Zarantonello G, Hahn H, Preciado-Grijalva A, Morgner J, Wahnschaffe M, Ospelkaus C 2019 New J. Phys. 21043011
[5] Slussarenko S, Pryde G J 2019 Appl. Phys. Rev. 6041303
[6] Blais A, Grimsmo A L, Girvin S M, Wallraff A 2021 Rev. Mod. Phys. 93025005
[7] Tseng P, Chen L, Shiu J S, Chen Y 2024 Phys. Rev. A 109043716
[8] Ma S, Zhu C, Quan D, Nie M 2022 Entropy 24794
[9] Zueco D, Mazo J J, Solano E, García-Ripoll J J 2012 Phys. Rev. B 86024503
[10] He S, He Q, Wei L 2021 Opt. Express 2943148
[11] Bi Y, Huang L, Li X, Wang Y 2021 Front. Optoelectron. 14154
[12] Astafiev O, Zagoskin A M, Abdumalikov A A, Pashkin Y A, Yamamoto T, Inomata K, Nakamura Y, Tsai J S 2010 Science 327840
[13] Jain V, Kurilovich V D, Dahmani Y D, Lei C U, Mason D, Yoon T, Rakich P T, Glazman L I, Schoelkopf R J 2023 Phys. Rev. Appl. 20014018
[14] Abdumalikov A A, Astafiev O, Zagoskin A M, Pashkin Y A, Nakamura Y, Tsai J S 2010 Phys. Rev. Lett. 104193601
[15] Soloviev I I, Klenov N V, Bakurskiy S V, Kupriyanov M Y, Gudkov A L, Sidorenko A S 2017 Beilstein J. Nanotechnol. 82689
[16] Feldhoff F, Toepfer H 2021 IEEE Trans. Appl. Supercond. 311
[17] Rabbi K, Athukorala L, Panagamuwa C, Vardaxoglou J C, Budimir D 2013 Microw. Opt. Technol. Lett. 551331
[18] Taris T, Kraimia H, Belot D, Deval Y 2015 J. Low Power Electron. Appl. 5274
[19] Bourassa J, Beaudoin F, Gambetta J M, Blais A 2012 Phys. Rev. A 86013814
[20] Clemente-Gallardo J, Scherpen J 2003 IEEE Trans. Circuits Syst. 501359
[21] Aldrigo M, Zappelli L, Cismaru A, Dragoman M, Iordanescu S, Mladenovic D, Parvulescu C, Joseph C H, Mencarelli D, Pierantoni L, Russo P 2023 J. Comput. Electron. 221031
[22] Li J, Zhu X, Shen C, Peng X, Cummer S A 2019 Phys. Rev. B 100144311
[23] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6021318
[24] Campagne-Ibarcq P, Zalys-Geller E, Narla A, Shankar S, Reinhold P, Burkhart L, Axline C, Pfaff W, Frunzio L, Schoelkopf R J, Devoret M H 2018 Phys. Rev. Lett. 120200501
[25] Ouyang P, He S, Wang Y, Chai Y, He J, Chang H, Wei L 2024 Phys. Rev. Res. 6013236
[26] Erickson R P, Pappas D P 2017 Phys. Rev. B 95104506
[27] Zueco D, Fernández-Juez C, Yago J, Naether U, Peropadre B, García-Ripoll J J, Mazo J J 2013 Supercond. Sci. Technol. 26074006
[28] Han J, Ouyang P, Li E, Wang Y, Wei L 2021 Acta Phys. Sin. 70170304(in Chinses) [韩金舸,欧阳鹏辉,李恩平,王轶文,韦联福2021物理学报70170304]
[29] Zheng D 2021 Acta Phys. Sin. 70018502(in Chinses) [郑东宁2021物理学报70018502]
[30] Castro C, Araújo M R, Cruz C 2021 Phys. Scr. 96105101
[31] Hua M, Tao M, Deng F 2016 Sci. Rep. 622037
[32] Leung N, Lu Y, Chakram S, Naik R K, Earnest N, Ma R, Jacobs K, Cleland A N, Schuster D I 2019 npj Quantum Inf. 518
计量
- 文章访问数: 42
- PDF下载量: 3
- 被引次数: 0