-
利用弹性散射对微波量子网络中微波光子的传输行为进行无能耗的调控, 对微波量子器件的研发和构建多节点微波量子网络等具有现实意义. 本文从最简单的微波光子单个散射体的弹性散射出发, 对构成量子网络中最简单节点器件, 如LC回路、单个约瑟夫森结器件和超导量子干涉器件等对微波光子弹性散射行为进行了详细讨论. 结果表明, 线性LC回路对微波光子的弹性散射行为与它们在经典微波电路中的作用相同, 但非线性约瑟夫森结对微波光子弹性散射行为的调控, 则与其在网络中的等效模型建模有关; 约瑟夫森结的并联或串联嵌入模型对微波光子的弹性散射, 表现出截然不同的调控行为. 为检验哪种建模是物理上正确的, 本文通过实验测量了传输线中嵌入单个约瑟夫结情况下的微波光子传输系数, 证实了并联嵌人模型的正确性. 基于这些单个散射体弹性散射行为的研究, 我们提出了一种通过旁路电流调制直流超导量子干涉器件磁通来实现微波光子弹性散射行为调控的方案, 有望应用于微波量子网络的构建.Elastic scattering is one of the useful approach to control the transmission behavior of microwave photons transporting in microwave quantum networks without energy consumption. Therefore, it has practical significance for the development of microwave quantum devices and the construction of multi-node microwave quantum networks. In view of the existence of the same device, specifically the transmission line embedded by a single Josephson junction, could be described by different circuit models (the series and parallel ones), in this paper we first theoretically analyze the transporting feature for the microwave photons being scattered by the different elastic scattering model, described by either the series or the parallel embedding models, generated by a single LC loop and a nonlinear Josephson junction device, respectively. The classical microwave transport theory predicts that, the series LC loop and the parallel LC loop lead to different microwave photon elastic scattering behaviors, i.e., the series LC circuit yields the resonant reflection and the parallel LC circuit leading alternatively to the resonant transmission. Recently, the transport properties of microwave photons scattered by a Josephson junction embedded in a transmission line had been discussed, and the results suggested that the Josephson junction embedded in the transmission line should be described by a series embedding circuit, which implies the resonant reflection. We argue here that, if the Josephson junction is embedded in parallel in the transmission line, the elastically scattered microwave photons should be transmitted by resonant transmission. In order to test which of the above two different embedding circuit models, yielding the completely different elastic scattering behaviors, is physically correct, we then fabricated such a device, i.e., a single Joseph junction device embedded in a transmission line is prepared, and measured its elastic scattering transmission coefficient at extremely low temperature. The results are consistent with the expected effects of the parallel embedding circuit model, but conflicted with the behaviors predicted by the series embedding circuit model in the literature. Based on the above theoretical and experimental analysis on the elastic scattering of a single Josephson junction device, we further propose a scheme to control the elastic scattering behavior of microwave photons by modulating a DC superconducting quantum interference device with a bypass current, which could be applied to the construction of a microwave quantum network based on elastic scattering node controls.
-
Keywords:
- elastic scattering /
- microwave photons /
- Josephson junction /
- superconducting quantum interference device
-
图 2 (a) 无限长传输线中串联嵌入线性LC回路的等效电路模型示意图; (b) 串联嵌入线性LC回路对微波光子弹性散射的反射谱和透射谱, 内嵌图为与之相对应的相移谱. 这里, 相关参数设置为: $ Z_0/Z_{LC}=10 $
Fig. 2. (a) Schematic diagram of the equivalent circuit model of a linear LC loop embedded in series in an infinitely long transmission line; (b) The reflection and transmission spectra of microwave photons elastically scattered by the series-embedded linear LC loop, with the inset showing the corresponding phase shift spectrum. Here, the relevant parameters are set as: $ Z_0/Z_{LC}=10 $
图 3 (a) 无限长传输线中并联嵌入LC回路等效电路模型示意图; (b) 并联嵌入线性LC回路对微波光子弹性散射的反射谱和透射谱, 内嵌图为与之对应的相移谱. 这里, 相关参数设置为: $ Z_0/Z_{LC}=10 $
Fig. 3. (a) Schematic diagram of the equivalent circuit model of a linear LC loop parallelly embedded in an infinitely long transmission line; (b) The reflection and transmission spectra of microwave photons elastically scattered by the parallel-embedded linear LC loop, with the inset showing the corresponding phase shift spectrum. Here, the relevant parameters are set as: $ Z_0/Z_{LC}=10 $.
图 6 约瑟夫森结嵌入共面波导传输线的器件实物图[25] (a) 器件电路实物图, 红框处为约瑟夫森结; (b) 红框处放大的显微镜图像; (c) 橙框处放大的扫描电子显微镜图像, 结区面积为1.26 μm2
Fig. 6. The physical image of the device with a Josephson junction embedded in a coplanar waveguide transmission[25]: (a) The physical image of the device circuit, with the Josephson junction marked by the red box; (b) The magnified microscopic image of the red box area; (c) The magnified scanning electron microscope image of the orange box area, where the junction area is 1.26 μm2.
图 7 嵌入共面波导传输线中的单个约瑟夫森结对微波光子的散射特性[25] 插图(a)中红色代表实验测量的约瑟夫森结对微波光子形成的透射谱, 即黑框处放大图像, 而黑色代表约瑟夫森结并联嵌入模型下的理论分析结果; 插图(b)为插图(a)所对应的相移谱
Fig. 7. The scattering characteristics of microwave photons by a single Josephson junction embedded in a coplanar waveguide transmission line[25]. In inset (a), the red curve represents the experimentally measured transmission spectrum of microwave photons formed by the Josephson junction. Specifically, it is the magnified image within the black box. The black curve, on the other hand, represents the theoretical analysis results based on the model where the Josephson junction is embedded in parallel. Inset (b) shows the corresponding phase - shift spectrum of inset (a).
图 9 不同磁通偏置下, 并联嵌入DC-SQUID对微波光子弹性散射的透射谱及其相移谱. 相关参数设置为: $ Z_0/ $$ Z_{J_0}=10 $ (a) 透射谱; (b) 透射相移谱
Fig. 9. The transmission spectra and phase shift spectra of microwave photons elastically scattered by the parallel-embedded DC-SQUID under different magnetic flux biases. The relevant parameters are set as: $ Z_0/Z_{J_0}=10 $. (a) Transmission spectrum; (b) Transmission phase shift spectrum.
-
[1] Wei S, Jing B, Zhang X, Liao J, Yuan C, Fan B, Lyu C, Zhou D, Wang Y, Deng G, Song H, Oblak D, Guo G, Zhou Q 2022 Laser Photonics Rev. 16 2100219
Google Scholar
[2] Wallquist M, Shumeiko V S, Wendin G 2006 Phys. Rev. B 74 224506
Google Scholar
[3] Devoret M H, Schoelkopf R J 2013 Science 339 1169
Google Scholar
[4] Bautista-Salvador A, Zarantonello G, Hahn H, Preciado-Grijalva A, Morgner J, Wahnschaffe M, Ospelkaus C 2019 New J. Phys. 21 043011
Google Scholar
[5] Slussarenko S, Pryde G J 2019 Appl. Phys. Rev. 6 041303
Google Scholar
[6] Blais A, Grimsmo A L, Girvin S M, Wallraff A 2021 Rev. Mod. Phys. 93 025005
Google Scholar
[7] Tseng P, Chen L, Shiu J S, Chen Y 2024 Phys. Rev. A 109 043716
Google Scholar
[8] Ma S, Zhu C, Quan D, Nie M 2022 Entropy 24 794
Google Scholar
[9] Zueco D, Mazo J J, Solano E, García-Ripoll J J 2012 Phys. Rev. B 86 024503
Google Scholar
[10] He S, He Q, Wei L 2021 Opt. Express 29 43148
Google Scholar
[11] Bi Y, Huang L, Li X, Wang Y 2021 Front. Optoelectron. 14 154
Google Scholar
[12] Astafiev O, Zagoskin A M, Abdumalikov A A, Pashkin Y A, Yamamoto T, Inomata K, Nakamura Y, Tsai J S 2010 Science 327 840
Google Scholar
[13] Jain V, Kurilovich V D, Dahmani Y D, Lei C U, Mason D, Yoon T, Rakich P T, Glazman L I, Schoelkopf R J 2023 Phys. Rev. Appl. 20 014018
Google Scholar
[14] Abdumalikov A A, Astafiev O, Zagoskin A M, Pashkin Y A, Nakamura Y, Tsai J S 2010 Phys. Rev. Lett. 104 193601
Google Scholar
[15] Soloviev I I, Klenov N V, Bakurskiy S V, Kupriyanov M Y, Gudkov A L, Sidorenko A S 2017 Beilstein J. Nanotechnol. 8 2689
Google Scholar
[16] Feldhoff F, Toepfer H 2021 IEEE Trans. Appl. Supercond. 31 1
[17] Rabbi K, Athukorala L, Panagamuwa C, Vardaxoglou J C, Budimir D 2013 Microw. Opt. Technol. Lett. 55 1331
Google Scholar
[18] Taris T, Kraimia H, Belot D, Deval Y 2015 J. Low Power Electron. Appl. 5 274
Google Scholar
[19] Bourassa J, Beaudoin F, Gambetta J M, Blais A 2012 Phys. Rev. A 86 013814
Google Scholar
[20] Clemente-Gallardo J, Scherpen J 2003 IEEE Trans. Circuits Syst. 50 1359
Google Scholar
[21] Aldrigo M, Zappelli L, Cismaru A, Dragoman M, Iordanescu S, Mladenovic D, Parvulescu C, Joseph C H, Mencarelli D, Pierantoni L, Russo P 2023 J. Comput. Electron. 22 1031
Google Scholar
[22] Li J, Zhu X, Shen C, Peng X, Cummer S A 2019 Phys. Rev. B 100 144311
Google Scholar
[23] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6 021318
Google Scholar
[24] Campagne-Ibarcq P, Zalys-Geller E, Narla A, Shankar S, Reinhold P, Burkhart L, Axline C, Pfaff W, Frunzio L, Schoelkopf R J, Devoret M H 2018 Phys. Rev. Lett. 120 200501
Google Scholar
[25] Ouyang P, He S, Wang Y, Chai Y, He J, Chang H, Wei L 2024 Phys. Rev. Res. 6 013236
Google Scholar
[26] Erickson R P, Pappas D P 2017 Phys. Rev. B 95 104506
Google Scholar
[27] Zueco D, Fernández-Juez C, Yago J, Naether U, Peropadre B, García-Ripoll J J, Mazo J J 2013 Supercond. Sci. Technol. 26 074006
Google Scholar
[28] 韩金舸, 欧阳鹏辉, 李恩平, 王轶文, 韦联福 2021 物理学报 70 170304
Google Scholar
Han J, Ouyang P, Li E, Wang Y, Wei L 2021 Acta Phys. Sin. 70 170304
Google Scholar
[29] 郑东宁 2021 物理学报 70 018502
Google Scholar
Zheng D 2021 Acta Phys. Sin. 70 018502
Google Scholar
[30] Castro C, Araújo M R, Cruz C 2021 Phys. Scr. 96 105101
Google Scholar
[31] Hua M, Tao M, Deng F 2016 Sci. Rep. 6 22037
Google Scholar
[32] Leung N, Lu Y, Chakram S, Naik R K, Earnest N, Ma R, Jacobs K, Cleland A N, Schuster D I 2019 npj Quantum Inf. 5 18
Google Scholar
计量
- 文章访问数: 295
- PDF下载量: 13
- 被引次数: 0