搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子网络中基于弹性散射的微波光子传输调控

马俊 欧阳鹏辉 柴亚强 蒋青权 贺青 韦联福

引用本文:
Citation:

量子网络中基于弹性散射的微波光子传输调控

马俊, 欧阳鹏辉, 柴亚强, 蒋青权, 贺青, 韦联福

Controllable microwave photon transmissions in microwave quantum networks by elastic scattering

MA Jun, OUYANG Penghui, CHAI Yaqiang, JIANG Qingquan, HE Qing, WEI Lianfu
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 利用弹性散射对微波量子网络中微波光子的传输行为进行无能耗的调控, 对微波量子器件的研发和构建多节点微波量子网络等具有现实意义. 本文从最简单的微波光子单个散射体的弹性散射出发, 对构成量子网络中最简单节点器件, 如LC回路、单个约瑟夫森结器件和超导量子干涉器件等对微波光子弹性散射行为进行了详细讨论. 结果表明, 线性LC回路对微波光子的弹性散射行为与它们在经典微波电路中的作用相同, 但非线性约瑟夫森结对微波光子弹性散射行为的调控, 则与其在网络中的等效模型建模有关; 约瑟夫森结的并联或串联嵌入模型对微波光子的弹性散射, 表现出截然不同的调控行为. 为检验哪种建模是物理上正确的, 本文通过实验测量了传输线中嵌入单个约瑟夫结情况下的微波光子传输系数, 证实了并联嵌人模型的正确性. 基于这些单个散射体弹性散射行为的研究, 我们提出了一种通过旁路电流调制直流超导量子干涉器件磁通来实现微波光子弹性散射行为调控的方案, 有望应用于微波量子网络的构建.
    Elastic scattering is one of the useful approach to control the transmission behavior of microwave photons transporting in microwave quantum networks without energy consumption. Therefore, it has practical significance for the development of microwave quantum devices and the construction of multi-node microwave quantum networks. In view of the existence of the same device, specifically the transmission line embedded by a single Josephson junction, could be described by different circuit models (the series and parallel ones), in this paper we first theoretically analyze the transporting feature for the microwave photons being scattered by the different elastic scattering model, described by either the series or the parallel embedding models, generated by a single LC loop and a nonlinear Josephson junction device, respectively. The classical microwave transport theory predicts that, the series LC loop and the parallel LC loop lead to different microwave photon elastic scattering behaviors, i.e., the series LC circuit yields the resonant reflection and the parallel LC circuit leading alternatively to the resonant transmission. Recently, the transport properties of microwave photons scattered by a Josephson junction embedded in a transmission line had been discussed, and the results suggested that the Josephson junction embedded in the transmission line should be described by a series embedding circuit, which implies the resonant reflection. We argue here that, if the Josephson junction is embedded in parallel in the transmission line, the elastically scattered microwave photons should be transmitted by resonant transmission. In order to test which of the above two different embedding circuit models, yielding the completely different elastic scattering behaviors, is physically correct, we then fabricated such a device, i.e., a single Joseph junction device embedded in a transmission line is prepared, and measured its elastic scattering transmission coefficient at extremely low temperature. The results are consistent with the expected effects of the parallel embedding circuit model, but conflicted with the behaviors predicted by the series embedding circuit model in the literature. Based on the above theoretical and experimental analysis on the elastic scattering of a single Josephson junction device, we further propose a scheme to control the elastic scattering behavior of microwave photons by modulating a DC superconducting quantum interference device with a bypass current, which could be applied to the construction of a microwave quantum network based on elastic scattering node controls.
  • 图 1  (a) 单节点的微波光子弹性散射等效电路模型, 黑色框代表散射体; (b) 传统的微波散射的二端口网络模型

    Fig. 1.  (a) The single-node microwave photonic elastic scattering equivalent circuit model, with the black box representing the scatterer; (b) The usual microwave scattering two-port networks model.

    图 2  (a) 无限长传输线中串联嵌入线性LC回路的等效电路模型示意图; (b) 串联嵌入线性LC回路对微波光子弹性散射的反射谱和透射谱, 内嵌图为与之相对应的相移谱. 这里, 相关参数设置为: $ Z_0/Z_{LC}=10 $

    Fig. 2.  (a) Schematic diagram of the equivalent circuit model of a linear LC loop embedded in series in an infinitely long transmission line; (b) The reflection and transmission spectra of microwave photons elastically scattered by the series-embedded linear LC loop, with the inset showing the corresponding phase shift spectrum. Here, the relevant parameters are set as: $ Z_0/Z_{LC}=10 $

    图 3  (a) 无限长传输线中并联嵌入LC回路等效电路模型示意图; (b) 并联嵌入线性LC回路对微波光子弹性散射的反射谱和透射谱, 内嵌图为与之对应的相移谱. 这里, 相关参数设置为: $ Z_0/Z_{LC}=10 $

    Fig. 3.  (a) Schematic diagram of the equivalent circuit model of a linear LC loop parallelly embedded in an infinitely long transmission line; (b) The reflection and transmission spectra of microwave photons elastically scattered by the parallel-embedded linear LC loop, with the inset showing the corresponding phase shift spectrum. Here, the relevant parameters are set as: $ Z_0/Z_{LC}=10 $.

    图 4  单个约瑟夫森结作为散射体时不同嵌入等效电路模型示意图 (a) 串联嵌入; (b) 并联嵌入

    Fig. 4.  Schematic diagrams of different embedded equivalent circuit models of a single Josephson junction as the scatterer: (a) Series embedding; (b) Parallel embedding.

    图 5  不同嵌入模型下约瑟夫森结的微波光子弹性散射透射谱

    Fig. 5.  The transmission spectra of microwave photons elastically scattered by a Josephson junction with different embedded models.

    图 6  约瑟夫森结嵌入共面波导传输线的器件实物图[25] (a) 器件电路实物图, 红框处为约瑟夫森结; (b) 红框处放大的显微镜图像; (c) 橙框处放大的扫描电子显微镜图像, 结区面积为1.26 μm2

    Fig. 6.  The physical image of the device with a Josephson junction embedded in a coplanar waveguide transmission[25]: (a) The physical image of the device circuit, with the Josephson junction marked by the red box; (b) The magnified microscopic image of the red box area; (c) The magnified scanning electron microscope image of the orange box area, where the junction area is 1.26 μm2.

    图 7  嵌入共面波导传输线中的单个约瑟夫森结对微波光子的散射特性[25] 插图(a)中红色代表实验测量的约瑟夫森结对微波光子形成的透射谱, 即黑框处放大图像, 而黑色代表约瑟夫森结并联嵌入模型下的理论分析结果; 插图(b)为插图(a)所对应的相移谱

    Fig. 7.  The scattering characteristics of microwave photons by a single Josephson junction embedded in a coplanar waveguide transmission line[25]. In inset (a), the red curve represents the experimentally measured transmission spectrum of microwave photons formed by the Josephson junction. Specifically, it is the magnified image within the black box. The black curve, on the other hand, represents the theoretical analysis results based on the model where the Josephson junction is embedded in parallel. Inset (b) shows the corresponding phase - shift spectrum of inset (a).

    图 8  无限长传输线中并联嵌入DC-SQUID等效电路模型示意图, 紫色为磁通偏置线

    Fig. 8.  Schematic diagram of the equivalent circuit model of DC-SQUID parallelly embedded in an infinitely long transmission line, wherein the purple refers to its flux bias.

    图 9  不同磁通偏置下, 并联嵌入DC-SQUID对微波光子弹性散射的透射谱及其相移谱. 相关参数设置为: $ Z_0/ $$ Z_{J_0}=10 $ (a) 透射谱; (b) 透射相移谱

    Fig. 9.  The transmission spectra and phase shift spectra of microwave photons elastically scattered by the parallel-embedded DC-SQUID under different magnetic flux biases. The relevant parameters are set as: $ Z_0/Z_{J_0}=10 $. (a) Transmission spectrum; (b) Transmission phase shift spectrum.

  • [1]

    Wei S, Jing B, Zhang X, Liao J, Yuan C, Fan B, Lyu C, Zhou D, Wang Y, Deng G, Song H, Oblak D, Guo G, Zhou Q 2022 Laser Photonics Rev. 16 2100219Google Scholar

    [2]

    Wallquist M, Shumeiko V S, Wendin G 2006 Phys. Rev. B 74 224506Google Scholar

    [3]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar

    [4]

    Bautista-Salvador A, Zarantonello G, Hahn H, Preciado-Grijalva A, Morgner J, Wahnschaffe M, Ospelkaus C 2019 New J. Phys. 21 043011Google Scholar

    [5]

    Slussarenko S, Pryde G J 2019 Appl. Phys. Rev. 6 041303Google Scholar

    [6]

    Blais A, Grimsmo A L, Girvin S M, Wallraff A 2021 Rev. Mod. Phys. 93 025005Google Scholar

    [7]

    Tseng P, Chen L, Shiu J S, Chen Y 2024 Phys. Rev. A 109 043716Google Scholar

    [8]

    Ma S, Zhu C, Quan D, Nie M 2022 Entropy 24 794Google Scholar

    [9]

    Zueco D, Mazo J J, Solano E, García-Ripoll J J 2012 Phys. Rev. B 86 024503Google Scholar

    [10]

    He S, He Q, Wei L 2021 Opt. Express 29 43148Google Scholar

    [11]

    Bi Y, Huang L, Li X, Wang Y 2021 Front. Optoelectron. 14 154Google Scholar

    [12]

    Astafiev O, Zagoskin A M, Abdumalikov A A, Pashkin Y A, Yamamoto T, Inomata K, Nakamura Y, Tsai J S 2010 Science 327 840Google Scholar

    [13]

    Jain V, Kurilovich V D, Dahmani Y D, Lei C U, Mason D, Yoon T, Rakich P T, Glazman L I, Schoelkopf R J 2023 Phys. Rev. Appl. 20 014018Google Scholar

    [14]

    Abdumalikov A A, Astafiev O, Zagoskin A M, Pashkin Y A, Nakamura Y, Tsai J S 2010 Phys. Rev. Lett. 104 193601Google Scholar

    [15]

    Soloviev I I, Klenov N V, Bakurskiy S V, Kupriyanov M Y, Gudkov A L, Sidorenko A S 2017 Beilstein J. Nanotechnol. 8 2689Google Scholar

    [16]

    Feldhoff F, Toepfer H 2021 IEEE Trans. Appl. Supercond. 31 1

    [17]

    Rabbi K, Athukorala L, Panagamuwa C, Vardaxoglou J C, Budimir D 2013 Microw. Opt. Technol. Lett. 55 1331Google Scholar

    [18]

    Taris T, Kraimia H, Belot D, Deval Y 2015 J. Low Power Electron. Appl. 5 274Google Scholar

    [19]

    Bourassa J, Beaudoin F, Gambetta J M, Blais A 2012 Phys. Rev. A 86 013814Google Scholar

    [20]

    Clemente-Gallardo J, Scherpen J 2003 IEEE Trans. Circuits Syst. 50 1359Google Scholar

    [21]

    Aldrigo M, Zappelli L, Cismaru A, Dragoman M, Iordanescu S, Mladenovic D, Parvulescu C, Joseph C H, Mencarelli D, Pierantoni L, Russo P 2023 J. Comput. Electron. 22 1031Google Scholar

    [22]

    Li J, Zhu X, Shen C, Peng X, Cummer S A 2019 Phys. Rev. B 100 144311Google Scholar

    [23]

    Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6 021318Google Scholar

    [24]

    Campagne-Ibarcq P, Zalys-Geller E, Narla A, Shankar S, Reinhold P, Burkhart L, Axline C, Pfaff W, Frunzio L, Schoelkopf R J, Devoret M H 2018 Phys. Rev. Lett. 120 200501Google Scholar

    [25]

    Ouyang P, He S, Wang Y, Chai Y, He J, Chang H, Wei L 2024 Phys. Rev. Res. 6 013236Google Scholar

    [26]

    Erickson R P, Pappas D P 2017 Phys. Rev. B 95 104506Google Scholar

    [27]

    Zueco D, Fernández-Juez C, Yago J, Naether U, Peropadre B, García-Ripoll J J, Mazo J J 2013 Supercond. Sci. Technol. 26 074006Google Scholar

    [28]

    韩金舸, 欧阳鹏辉, 李恩平, 王轶文, 韦联福 2021 物理学报 70 170304Google Scholar

    Han J, Ouyang P, Li E, Wang Y, Wei L 2021 Acta Phys. Sin. 70 170304Google Scholar

    [29]

    郑东宁 2021 物理学报 70 018502Google Scholar

    Zheng D 2021 Acta Phys. Sin. 70 018502Google Scholar

    [30]

    Castro C, Araújo M R, Cruz C 2021 Phys. Scr. 96 105101Google Scholar

    [31]

    Hua M, Tao M, Deng F 2016 Sci. Rep. 6 22037Google Scholar

    [32]

    Leung N, Lu Y, Chakram S, Naik R K, Earnest N, Ma R, Jacobs K, Cleland A N, Schuster D I 2019 npj Quantum Inf. 5 18Google Scholar

  • [1] 李中祥, 王淑亚, 黄自强, 王晨, 穆清. 原子级控制的约瑟夫森结中Al2O3势垒层制备工艺. 物理学报, doi: 10.7498/aps.71.20220820
    [2] 梁恬恬, 张国峰, 伍文涛, 倪志, 王永良, 应利良, 伍俊, 荣亮亮, 彭炜, 高波. 串联超导量子干涉器件阵列制备与测试分析. 物理学报, doi: 10.7498/aps.70.20210467
    [3] 金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民. 温稠密物质中不同价态离子分布对X-射线弹性散射光谱计算的影响. 物理学报, doi: 10.7498/aps.70.20201483
    [4] 郑东宁. 超导量子干涉器件. 物理学报, doi: 10.7498/aps.70.20202131
    [5] 韩金舸, 欧阳鹏辉, 李恩平, 王轶文, 韦联福. 超导约瑟夫森结物理参数的实验推算. 物理学报, doi: 10.7498/aps.70.20210393
    [6] 许家豪, 王云新, 王大勇, 周涛, 杨锋, 钟欣, 张弘骉, 杨登才. 基于载波抑制单边带调制的微波光子本振倍频上转换方法. 物理学报, doi: 10.7498/aps.68.20190266
    [7] 韩昊轩, 张国峰, 张雪, 梁恬恬, 应利良, 王永良, 彭炜, 王镇. 低噪声超导量子干涉器件磁强计设计与制备. 物理学报, doi: 10.7498/aps.68.20190483
    [8] 陈恒杰, 薛航, 李邵雄, 王镇. 一种通过约瑟夫森结非线性频率响应确定微波耗散的方法. 物理学报, doi: 10.7498/aps.68.20190167
    [9] 王松, 王星云, 周章渝, 杨发顺, 杨健, 傅兴华. 硼膜制备工艺、微观结构及其在硼化镁超导约瑟夫森结中的应用. 物理学报, doi: 10.7498/aps.65.017401
    [10] 陈钊, 何根芳, 张青雅, 刘建设, 李铁夫, 陈炜. 具有Washer型输入线圈的超导量子干涉放大器的制备与表征. 物理学报, doi: 10.7498/aps.64.128501
    [11] 曹文会, 李劲劲, 钟青, 郭小玮, 贺青, 迟宗涛. 用于电压基准的Nb/NbxSi1-x/Nb约瑟夫森单结的研制. 物理学报, doi: 10.7498/aps.61.170304
    [12] 张树林, 刘扬波, 曾佳, 王永良, 孔祥燕, 谢晓明. 基于低温超导量子干涉器件的脑听觉激励磁场探测. 物理学报, doi: 10.7498/aps.61.020701
    [13] 张立森, 蔡理, 冯朝文. 约瑟夫森结中周期解及其稳定性的解析分析. 物理学报, doi: 10.7498/aps.60.030308
    [14] 岳宏卫, 阎少林, 周铁戈, 谢清连, 游峰, 王争, 何明, 赵新杰, 方兰, 杨扬, 王福音, 陶薇薇. 嵌入Fabry-Perot谐振腔的高温超导双晶约瑟夫森结的毫米波辐照特性研究. 物理学报, doi: 10.7498/aps.59.1282
    [15] 岳宏卫, 王争, 樊彬, 宋凤斌, 游峰, 赵新杰, 何明, 方兰, 阎少林. 高温超导双晶约瑟夫森结阵列毫米波相干辐射. 物理学报, doi: 10.7498/aps.59.5755
    [16] 马引群, 马中玉. 6Li与核弹性散射的微观光学势. 物理学报, doi: 10.7498/aps.57.74
    [17] 崔大健, 林德华, 于海峰, 彭智慧, 朱晓波, 郑东宁, 景秀年, 吕 力, 赵士平. 本征约瑟夫森结跳变电流分布的量子修正. 物理学报, doi: 10.7498/aps.57.5933
    [18] 李照鑫, 邹 健, 蔡金芳, 邵 彬. 电荷量子比特与量子化光场之间的纠缠. 物理学报, doi: 10.7498/aps.55.1580
    [19] 肖宇飞, 王登龙, 王凤姣, 颜晓红. 非对称的玻色-爱因斯坦凝聚中的约瑟夫森结的动力学性质. 物理学报, doi: 10.7498/aps.55.547
    [20] 王震宇, 廖红印, 周世平. 直流偏置的与RLC谐振器耦合的约瑟夫森结动力学行为的数值模拟. 物理学报, doi: 10.7498/aps.50.1996
计量
  • 文章访问数:  295
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-14

/

返回文章
返回