搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低噪声超导量子干涉器件磁强计设计与制备

韩昊轩 张国峰 张雪 梁恬恬 应利良 王永良 彭炜 王镇

引用本文:
Citation:

低噪声超导量子干涉器件磁强计设计与制备

韩昊轩, 张国峰, 张雪, 梁恬恬, 应利良, 王永良, 彭炜, 王镇

Design and fabrication of low-noise superconducting quantum interference device magnetometer

Han Hao-Xuan, Zhang Guo-Feng, Zhang Xue, Liang Tian-Tian, Ying Li-Liang, Wang Yong-Liang, Peng Wei, Wang Zhen
PDF
HTML
导出引用
  • 超导量子干涉器件(superconducting quantum interference device, SQUID)作为一种极灵敏的磁通传感器, 在生物磁探测、低场核磁共振、地球物理等领域得到广泛应用. 本文介绍了一种基于SQUID的高灵敏度磁强计, 由SQUID和一组磁通变压器组成. SQUID采用一阶梯度构型, 增强其抗干扰性. 磁通变压器由多匝螺旋的输入线圈和大尺寸单匝探测线圈组成, 其中输入线圈与SQUID通过互感进行磁通耦合. 利用自主工艺平台, 在4英寸硅衬底上完成了基于Nb/Al-AlOx/Nb约瑟夫森隧道结的SQUID磁强计制备. 低温测试结果显示, 该磁强计磁场灵敏度为0.36 nT/Φ0, 白噪声段磁通噪声为8 μΦ0/√Hz, 等效磁场噪声为2.88 fT/√Hz.
    Superconducting quantum interference device (SQUID) is the most sensitive magnetic flux sensor known, which is widely used in biomagnetism, low-field nuclear magnetic resonance, geophysics, etc. In this paper, we introduce a high-sensitivity SQUID magnetometer, which consists of an SQUID and a flux transformer. The SQUID is first-order gradiometer configuration, which is insensitive to interference noise. The flux transformer includes a multi-turn spiral input coil and a large-sized pickup coil. And the input coil is inductively coupled to the SQUID through mutual inductance. We present an SQUID magnetometer fabricated with Nb/Al-AlOx/Nb Josephson junction technology on a 4-inch silicon wafer at our superconducting electronics facilities. We develop a fabrication process based on selective niobium etching process consisting of five mask levels. In the first two mask levels, the trilayer is patterned by a dry etch to define base electrode, contact pads, and interconnects. The shunt resistor and a dielectric insulating layer are then deposited and patterned by using lift-off and dry etchant, respectively. Finally, the niobium wiring layer is deposited and patterned by using reactive ion etching to define input, pickup and feedback coils. The measurement of the SQUID magnetometer is performed inside a magnetically shielded room. The operating temperature is realized by immersing the SQUID into the liquid helium (4.2 K). Moreover, a superconducting niobium tube is employed to protect the SQUID from being disturbed by external environments. A homemade readout electronics instrument with low input voltage noise is used to characterize the SQUID magnetometer. The results of low-temperature measurements indicate that the magnetometer has a magnetic field sensitivity of 0.36 nT/Φ0 and a white flux noise of 8 μΦ0/√Hz,corresponding to a white field noise of 2.88 fT/√Hz. This kind of SQUID magnetometer is suitable for multi-channel systems, e.g., magnetocardiography, magnetoencephalography, etc. Although the SQUID process development benefits from the rapid advance of semiconductor process technology, the uniformity of the SQUID on one wafer is fluctuated due to the film deposition. Now, we have realized a best SQUID yield of 50% on a 4-inch wafer. In the future, the SQUID chip yield should be improved by well controlling the optimizing process. The device yield is expected to reach as high as 80%.
      通信作者: 张国峰, gfzhang@mail.sim.ac.cn
      Corresponding author: Zhang Guo-Feng, gfzhang@mail.sim.ac.cn
    [1]

    Zhang S, Zhang G, Wang Y, Liu M, Li H, Qiu Y, Zeng, J, Kong X, Xie X 2013 Chin. Phys. B 22 128501Google Scholar

    [2]

    Dong H, Wang Y, Zhang S, Sun Y, Xie X 2008 Supercond. Sci. Technol. 21 115009Google Scholar

    [3]

    荣亮亮, 蒋坤, 裴易峰, 伍俊, 王远 2016 仪器仪表学报 37 12

    Rong L, Jiang K, Pei Y, Wu J, Wang Y 2016 Chin. J. Sci. Instrum. 37 12

    [4]

    Josephson B D 1962 Phys. Lett. 1 251Google Scholar

    [5]

    Tesche C D, Clarke J 1977 J. Low Temp. Phys. 27 301

    [6]

    Drung D, Matz H, Koch H 1995 Rev. Sci. Instrum. 66 3008Google Scholar

    [7]

    Schmelz M, Stolz R, Zakosarenko V, Schoenau T, Anders A, Fritzsch L, Mueck M, Meyer H G 2011 Supercond. Sci. Technol. 24 065009Google Scholar

    [8]

    Xie X, Zhang Y, Wang H, Wang Y, Mueck M, Dong H, Krause H J, Braginski A I, Offenhaeusser A, Jiang M 2010 Supercond. Sci. Technol. 23 065016Google Scholar

    [9]

    Zeng J, Zhang Y, Mueck M, Krause H J, Braginski A I, Kong X, Xie X, Offenhaeusser A, Jiang M 2013 Appl. Phys. Lett. 103 042601Google Scholar

    [10]

    Gurvitch M, Washington M A, Hugins H A 1983 Appl. Phys. Lett. 42 472Google Scholar

    [11]

    Zhang G, Zhang Y, Zhang S, Krause H J, Wang Y, Liu C, Zeng J, Qiu Y, Kong X, Dong H, Xie X, Offenhaeusser A, Jiang M 2012 Physica C 480 10Google Scholar

    [12]

    Xiong W, Xu W, Wu Y, Li G, Ying L, Peng W, Ren J, Wang Z 2018 IEEE Trans. Appl. Supercond. 28 1300605

    [13]

    Yuda M, Kuroda K, Nakano J 1987 Jpn. J. Appl. Phys. 2 6

    [14]

    Kuroda K, Yuda M 1988 Jpn. J. Appl. Phys. 63 2352Google Scholar

    [15]

    Imamura T, Hasuo S 1989 IEEE Trans. Magn. 3 3029

    [16]

    Booi P A A, Livingston C A, Benz S P 1993 IEEE Trans. Appl. Supercond. MAG-25 1119

    [17]

    Sukuda K, Kawai J, Uehara G, Kado H 1993 IEEE Trans. Magn. 3 2944

    [18]

    Amos R S, Breyer P E, Huang H H, Lichtenberger A W 1995 IEEE Trans. Magn. 5 2326

    [19]

    Kang X, Ying L, Wang H, Zhang G, Peng W, Kong X, Xie X, Wang Z 2014 Physica C 503 29Google Scholar

    [20]

    Zhao J, Zhang Y, Lee Y H, Krause H J 2014 Rev. Sci. Instrum. 85 054707Google Scholar

    [21]

    Clarke J, Goubau W M, Ketchen M B 1976 J. Low. Temp. Phys. 25 99

    [22]

    Zhang X, Zhang G, Ying L, Xiong W, Han H, Wang Y, Rong L, Xie X, Wang Z 2018 Physica C 548 1

  • 图 1  SQUID磁强计示意图

    Fig. 1.  Schematic diagram of SQUID magnetometer.

    图 2  (a) SQUID磁强计设计图; (b)等效电路图

    Fig. 2.  (a) Design of SQUID magnetometer and (b) the schematic diagram.

    图 3  器件工艺流程图

    Fig. 3.  Process flow chart of SQUID magnetometer.

    图 4  (a)电流-电压特性曲线; (b)不同偏置电流下的电压-线圈电流(磁通)调制曲线, 其中调制周期为4.3 μA/Φ0

    Fig. 4.  (a) Current-voltage curves; (b) voltage-coil current (flux) curves under different bias currents with a period of 4.3 μA/Φ0.

    图 5  SQUID磁强计噪声曲线 曲线中出现的杂峰主要是实验室震动干扰导致, 插图显示的是最佳工作点(W)时调制曲线

    Fig. 5.  Noise figure of SQUID magnetometer, in which the lines between 10–200 Hz were mainly caused by vibrations in the laboratory. The inset shows the modulation curve with the best working point.

    表 1  SQUID磁强计设计参数

    Table 1.  Design parameters of SQUID~magnetometer

    参数数值单位
    约瑟夫森结Josephson junction
    尺寸AJ4 × 4μm2
    临界电流Ic8μA
    结电容C[12]0.56pF
    并联电阻R10Ω
    SQUID
    垫圈内边长a100μm
    线宽ws300μm
    总电感Ls350pH
    输入线圈
    线圈匝数N15
    线宽win3μm
    线距sin3μm
    探测线圈
    线圈尺寸Ap15 × 15mm2
    线宽wp100μm
    下载: 导出CSV

    表 2  Nb/Al-AlOx/Nb三层膜生长参数

    Table 2.  Deposition parameters of Nb/Al-AlOx/Nb trilayer.

    薄膜背景真空Ar流量Ar气压恒电流生长速率厚度
    底层Nb2.3 × 10–5 Pa10 sccm0.573 Pa1.5 A1.2 nm/s100 nm
    Al3 × 10–5 Pa10 sccm0.573 Pa0.3 A0.25 nm/s10 nm
    AlOx氧气气压:2.6 kPa; 氧化时间:12 h~2 nm
    顶层Nb2.3 × 10–5 Pa10 sccm0.573 Pa1.5 A1.2 nm/s100 nm
    下载: 导出CSV

    表 3  SQUID磁强计测试结果

    Table 3.  Measured results of SQUID magnetometer

    参数数值单位
    临界电流I032μA
    正常态电阻Rn5Ω
    反馈线圈耦合系数1/Mf4.3μA/Φ0
    最大调制峰峰值Vpp47μV
    磁通噪声√SΦ(白噪声)8μΦ0/√Hz
    磁场灵敏度1/Aeff0.36nT/Φ0
    磁场噪声√SB(白噪声)2.88fT/√Hz
    下载: 导出CSV
  • [1]

    Zhang S, Zhang G, Wang Y, Liu M, Li H, Qiu Y, Zeng, J, Kong X, Xie X 2013 Chin. Phys. B 22 128501Google Scholar

    [2]

    Dong H, Wang Y, Zhang S, Sun Y, Xie X 2008 Supercond. Sci. Technol. 21 115009Google Scholar

    [3]

    荣亮亮, 蒋坤, 裴易峰, 伍俊, 王远 2016 仪器仪表学报 37 12

    Rong L, Jiang K, Pei Y, Wu J, Wang Y 2016 Chin. J. Sci. Instrum. 37 12

    [4]

    Josephson B D 1962 Phys. Lett. 1 251Google Scholar

    [5]

    Tesche C D, Clarke J 1977 J. Low Temp. Phys. 27 301

    [6]

    Drung D, Matz H, Koch H 1995 Rev. Sci. Instrum. 66 3008Google Scholar

    [7]

    Schmelz M, Stolz R, Zakosarenko V, Schoenau T, Anders A, Fritzsch L, Mueck M, Meyer H G 2011 Supercond. Sci. Technol. 24 065009Google Scholar

    [8]

    Xie X, Zhang Y, Wang H, Wang Y, Mueck M, Dong H, Krause H J, Braginski A I, Offenhaeusser A, Jiang M 2010 Supercond. Sci. Technol. 23 065016Google Scholar

    [9]

    Zeng J, Zhang Y, Mueck M, Krause H J, Braginski A I, Kong X, Xie X, Offenhaeusser A, Jiang M 2013 Appl. Phys. Lett. 103 042601Google Scholar

    [10]

    Gurvitch M, Washington M A, Hugins H A 1983 Appl. Phys. Lett. 42 472Google Scholar

    [11]

    Zhang G, Zhang Y, Zhang S, Krause H J, Wang Y, Liu C, Zeng J, Qiu Y, Kong X, Dong H, Xie X, Offenhaeusser A, Jiang M 2012 Physica C 480 10Google Scholar

    [12]

    Xiong W, Xu W, Wu Y, Li G, Ying L, Peng W, Ren J, Wang Z 2018 IEEE Trans. Appl. Supercond. 28 1300605

    [13]

    Yuda M, Kuroda K, Nakano J 1987 Jpn. J. Appl. Phys. 2 6

    [14]

    Kuroda K, Yuda M 1988 Jpn. J. Appl. Phys. 63 2352Google Scholar

    [15]

    Imamura T, Hasuo S 1989 IEEE Trans. Magn. 3 3029

    [16]

    Booi P A A, Livingston C A, Benz S P 1993 IEEE Trans. Appl. Supercond. MAG-25 1119

    [17]

    Sukuda K, Kawai J, Uehara G, Kado H 1993 IEEE Trans. Magn. 3 2944

    [18]

    Amos R S, Breyer P E, Huang H H, Lichtenberger A W 1995 IEEE Trans. Magn. 5 2326

    [19]

    Kang X, Ying L, Wang H, Zhang G, Peng W, Kong X, Xie X, Wang Z 2014 Physica C 503 29Google Scholar

    [20]

    Zhao J, Zhang Y, Lee Y H, Krause H J 2014 Rev. Sci. Instrum. 85 054707Google Scholar

    [21]

    Clarke J, Goubau W M, Ketchen M B 1976 J. Low. Temp. Phys. 25 99

    [22]

    Zhang X, Zhang G, Ying L, Xiong W, Han H, Wang Y, Rong L, Xie X, Wang Z 2018 Physica C 548 1

  • [1] 刘怀远, 肖建飞, 吕昭征, 吕力, 屈凡明. Bi2O2Se纳米线的生长及其超导量子干涉器件. 物理学报, 2024, 73(4): 047803. doi: 10.7498/aps.73.20231600
    [2] 何安, 薛存. 缺陷调控临界温度梯度超导膜的磁通整流反转效应. 物理学报, 2022, 71(2): 027401. doi: 10.7498/aps.71.20211157
    [3] 闻海虎. 高温超导体磁通钉扎和磁通动力学研究简介. 物理学报, 2021, 70(1): 017405. doi: 10.7498/aps.70.20201881
    [4] 郑东宁. 超导量子干涉器件. 物理学报, 2021, 70(1): 018502. doi: 10.7498/aps.70.20202131
    [5] 徐达, 钟青, 曹文会, 王雪深, 王仕建, 李劲劲, 刘建设, 陈炜. 二阶梯度交叉耦合超导量子干涉仪电流传感器研制. 物理学报, 2021, 70(12): 128501. doi: 10.7498/aps.70.20201816
    [6] 梁恬恬, 张国峰, 伍文涛, 倪志, 王永良, 应利良, 伍俊, 荣亮亮, 彭炜, 高波. 串联超导量子干涉器件阵列制备与测试分析. 物理学报, 2021, 70(17): 178501. doi: 10.7498/aps.70.20210467
    [7] 梁超, 张洁, 赵可, 羊新胜, 赵勇. 拓扑超导体FeSexTe1–x单晶超导性能与磁通钉扎. 物理学报, 2020, 69(23): 237401. doi: 10.7498/aps.69.20201125
    [8] 李耀义, 贾金锋. 在人工拓扑超导体磁通涡旋中寻找Majorana零能模. 物理学报, 2019, 68(13): 137401. doi: 10.7498/aps.68.20181698
    [9] 张永升, 邱阳, 张朝祥, 李华, 张树林, 王永良, 徐小峰, 丁红胜, 孔祥燕. 多通道心磁系统标定方法研究. 物理学报, 2014, 63(22): 228501. doi: 10.7498/aps.63.228501
    [10] 刘明, 徐小峰, 王永良, 曾佳, 李华, 邱阳, 张树林, 张国峰, 孔祥燕, 谢晓明. 超导量子干涉器件读出电路中匹配变压器的传输特性研究. 物理学报, 2013, 62(18): 188501. doi: 10.7498/aps.62.188501
    [11] 王杨婧, 谢拥军, 雷振亚. 用于射频超导量子干涉器的新型单CSRR磁通聚焦器和谐振器. 物理学报, 2012, 61(9): 094210. doi: 10.7498/aps.61.094210
    [12] 张树林, 刘扬波, 曾佳, 王永良, 孔祥燕, 谢晓明. 基于低温超导量子干涉器件的脑听觉激励磁场探测. 物理学报, 2012, 61(2): 020701. doi: 10.7498/aps.61.020701
    [13] 周世平, 瞿海, 廖红印. 高温超导混合配对态与磁通涡旋格子. 物理学报, 2002, 51(10): 2355-2361. doi: 10.7498/aps.51.2355
    [14] 刘旭东, 王进, 刘楣, 邢定钰. 磁通密度对第Ⅱ类超导体磁通动力学的影响. 物理学报, 2002, 51(5): 1122-1127. doi: 10.7498/aps.51.1122
    [15] 董正超. 铁磁-绝缘层-铁磁-d波超导结中的量子干涉效应对微分电导与散粒噪声的影响. 物理学报, 2002, 51(4): 894-897. doi: 10.7498/aps.51.894
    [16] 马平, 姚坤, 谢飞翔, 张升原, 邓鹏, 何东风, 张凡, 刘乐园, 聂瑞娟, 王福仁, 王守证, 戴远东. 利用单通道高温超导磁梯度计获取心磁地图. 物理学报, 2002, 51(2): 224-227. doi: 10.7498/aps.51.224
    [17] 冯 勇, 周 廉, 杨万民, 张翠萍, 汪京荣, 于泽铭, 吴晓祖. PMP法YGdBaCuO超导体的磁通钉扎研究. 物理学报, 2000, 49(1): 146-152. doi: 10.7498/aps.49.146
    [18] 瞿 海, 周世平. 高温超导体混合态磁通涡旋结构. 物理学报, 1999, 48(2): 352-362. doi: 10.7498/aps.48.352
    [19] 杜胜望, 戴远东, 王世光. 用射频超导量子干涉器件测量高温超导体序参量的位相. 物理学报, 1999, 48(12): 2364-2368. doi: 10.7498/aps.48.2364
    [20] 陈莺飞, S.ZAREMBINSKI. 阻尼型高温直流超导量子干涉器磁强计的设计. 物理学报, 1998, 47(8): 1369-1377. doi: 10.7498/aps.47.1369
计量
  • 文章访问数:  11691
  • PDF下载量:  277
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-02
  • 修回日期:  2019-05-06
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回