搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

P波间期的心脏电流源重建及电活动磁成像

周大方 蒋式勤 赵晨 Petervan Leeuwen

引用本文:
Citation:

P波间期的心脏电流源重建及电活动磁成像

周大方, 蒋式勤, 赵晨, Petervan Leeuwen

Current source reconstructing and magnetic imaging of cardiac electrical activity during P-wave

Zhou Da-Fang, Jiang Shi-Qin, Zhao Chen, Peter van Leeuwen
PDF
HTML
导出引用
  • 用超导量子干涉仪在人体胸腔表面测量的磁场数据重建心脏电流源及其成像, 是一种无创获取心脏电活动信息的新技术. 由于P波间期的心脏磁信号比R波峰值弱, 信噪比较低, 本文提出了一种可提高分布源空间谱估计强度对比度(IIC)的波束成形方法. 该方法分两步: 1)在空间滤波器的加权矩阵中引入导联场矩阵, 使滤波器输出估计对磁场电流源及其分布比较敏感. 通过求解逆问题, 可以改进重建分布源强度的对比度; 2)通过设置源强度阈值, 提取每个时刻重建源中偶极矩强度极大的电流源, 消除其他位置上相对弱的伪源, 可提高P波间期电流源重建的精度. 文中采用理论分析与仿真试验, 比较了IIC与3种其他电流源重建方法的性能. 结果表明, IIC的单源空间谱估计的强度对比度较高, 电流源重建精度相对较好. 文中还分析了2个健康人的61通道心磁测量数据, 以及他们P波间期的心脏电活动成像. 与其他3种方法相比, IIC的电流源成像结果最优. 能够显示健康人P波峰时刻心房的电活动较心室强. P波间期右心房除极时, 心脏电活动具有方向特征.
    The current source reconstruction and magnetic imaging is a new technique to non-invasively obtain spatial information regarding cardiac electrical activity using magnetocardiogram (MCG) signals measured by the superconducting quantum interference device (SQUID) on the human thorax surface. Using MCG signals to reconstruct distributed current sources needs to solve the inverse problem of magnetic field. The beamforming is a type of spatial filter method that has been used for distributed source reconstruction and source imaging in electroencephalogram (EEG) and magnetoencephalogram (MEG). In this paper, the dipole moment of distributed current source is estimated with corresponding each spatial filter based on the cardiac source field model. The purpose is to enhance the intensity contrast of the dipole moment of distributed current sources in distributed source spatial spectrum estimation with beamforming, so that the reconstructed-pseudo sources beyond the heart can be removed for imaging cardiac electric activity well. A new beamforming method of improving intensity contrast (IIC) of distributed source spatial spectrum estimation is developed for imaging cardiac electric activity in P-wave, due to cardiac magnetic signals in P-wave lower than that of the peak value of R-wave, which has a relatively low signal-to-noise ratio (SNR). For enhancing the accuracy of current source reconstruction in P-wave, the IIC divided into two steps: firstly, to introduce the lead-field matrix, which represents the measurement sensor-array sensitivity to magnetic field current sources, into a weight matrix of the spatial filter for making the output estimation of the filter more sensitive to the current sourcedistribution, so as to improve the intensity contrast of the reconstructed distributed sources.Secondly, by setting a threshold of source intensity from experience, to extract the reconstructed source with locally-maximal dipole strength at each time for eliminating the relatively weak pseudo sources in other locations, so as to enhance the accuracy of current source reconstruction during P-wave. In this paper, the IIC and three other methods, including minimum variance beamforming (MVB), suppressing spatial filter output noise-power gain (SONG) and trust region reflective (TRR), are compared by using the theoretical analysis and simulation experiments of MCG current source reconstruction during P-wave. The results show that the IIC has higher intensity contrast of the single source spatial spectrum estimation, and possesses better accuracy of the current source reconstruction. The 61-channel MCG signals of two healthy subjects and their imaging of cardiac electrical activity during P-wave also are analyzed. The result shows that the IIC is better than the other three methods. It is indicated that two healthy subjects have stronger electrical activity in the atrium than that in the ventricle at Ppeak time, also that the electrical activity has the direction feature when the right-atrium is depolarized during P-wave. In summary, the IIC is useful for imaging the cardiac electrical activity. However, it is needed to carry out a further research on patients with local myocardial ischemia and left or right coronary artery stenosis, and to establish the evaluation index for imaging of cardiac electrical activity in such patients.
      通信作者: 蒋式勤, sqjiang@tongji.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 60771030)、国家高技术研究发展计划(批准号: 2008AA02Z308)、上海市科学技术发展基金(批准号: 08JC1421800)、中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室开放项目(批准号: SKL2013010)和复旦大学上海医学院上海市医学图像计算与计算机辅助干预重点实验室开放项目(批准号: 13DZ2272200-2)资助的课题.
      Corresponding author: Jiang Shi-Qin, sqjiang@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60771030), the National High Technology Research and Development Program of China (Grant No. 2008AA02Z308), the Shanghai Foundation for Development of Science and Technology, China (Grant No. 08JC1421800), the Open Project of State Key Laboratory of Function Materials for Information, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China (Grant No. SKL2013010), and the Open Project of Key Laboratory of Medical Image Computing and Computer Assisted Intervention of Shanghai, Shanghai Medical College of Fudan University, China (Grant No. 13DZ2272200-2)
    [1]

    Cohen D, Edelsack E A, Zimmerman J E 1970 Appl. Phys. Lett. 16 278Google Scholar

    [2]

    Van Leeuwen P, Hailer B, Lange S, Klein A, Geue D, Seybold K, Poplutz C, Grönemeyer D 2008 Phys. Med. Biol. 53 2291Google Scholar

    [3]

    Zhang S L, Wang Y L, Wang H W, Jiang S Q, Xie X M 2009 Phys. Med. Biol. 54 4793Google Scholar

    [4]

    Chen T, Zhao C, Jiang S Q, van Leeuwen P, Gronemeyer D 2014 Sci. Bull. 59 1123Google Scholar

    [5]

    李明, 张朝祥, 张树林, 陈威, 鲁丽, 王毅, 孔祥燕 2017 低温物理学报 39 4

    Li M, Zhang C Y, Zhang S L, Chen W, Lu L, Wang Y, Kong X Y 2017 Chin. J. Low Temp. Phys. 39 4

    [6]

    Zhao C, Jiang S Q, Wu Y H, Zhu J J, Zhou D F, Hailer B, Gronemeyer D, van Leeuwen P 2017 IEEE J. Biomed. Health 22 495

    [7]

    Tao R, Zhang S L, Huang X, Tao M F, Ma J, Ma S X, Zhang C X, Zhang T X, Tang F K, Lu J P, Shen C X, Xie X M 2018 IEEE Trans. Biomed. Eng. 66 1658

    [8]

    Zhang S L, Zhang G F, Wang Y L, Zeng J, Qiu Y, Liu M, Kong X Y, Xie X M 2013 Sci. Bull. 58 2917Google Scholar

    [9]

    Tripp J H 1983 Biomagnetism: An Interdisciplinary Approach (New York: Springer) p101

    [10]

    Sarvas J 1987 Phys. Med. Biol. 32 11Google Scholar

    [11]

    Sekihara K, Nagarajan S S, Poeppel D, Marantz A 2002 IEEE Trans. Biomed. Eng. 49 1534Google Scholar

    [12]

    Sekihara K, Sahani M, Nagarajan S S 2005 NeuroImage 25 1056Google Scholar

    [13]

    Sekihara K, Nagarajan S S 2005 Modeling and Imaging of Bioelectrical Activity: Principles and Applications (New York: Kluwer Academic/Plenum Publishers) p213

    [14]

    Van Veen B, Van Drongelen W, Yuchtman M, Suzuki A 1997 IEEE Trans. Biomed. Eng. 44 867Google Scholar

    [15]

    Gramfort A, Strohmeier D, Haueison J, Hämäläinen M S, Kowalski M 2013 NeuroImage 70 410Google Scholar

    [16]

    王伟远, 蒋式勤, 周大方, 朱嘉辰, 闫玉蕊, 权薇薇 2014 物理学报 63 248701Google Scholar

    Wang W Y, Jiang S Q, Zhou D F, Zhu J C, Yan Y R, Quan W W 2014 Acta Phys. Sin. 63 248701Google Scholar

    [17]

    Ha T, Kim K, Lim S, Yu K K, Kwon H 2015 IEEE Trans. Biomed. Eng. 62 60Google Scholar

    [18]

    Nenonen J, Pesola K, Hänninen H, Lauerma K, Takala P, Mäkelä T, Mäkijärvi M, Knuuti J, Toivonen L, Katila T 2001 J. Electrocardiol. 34 37Google Scholar

    [19]

    Kobayashi K, Uchikawa Y, Nakai K, Yoshizawa M 2004 IEEE Trans. Magn. 40 2970Google Scholar

    [20]

    Kim K, Lee Y, Kwon H, Kim J, Bae J 2006 Comput. Biol. Med. 36 253Google Scholar

    [21]

    Zhu J J, Jiang S Q, Wang W Y, Zhao C, Wu Y H, Luo M, Quan W W 2014 Chin. Phys. B 23 048702Google Scholar

    [22]

    Chen M, Jiang S, Bing L, Zhao C, Hailer B, Grönemeyer D, Van Leeuwen P 2015 Sci. Bull. 60 1235Google Scholar

    [23]

    Brookes M J, Vrba J, Robinson S E, Stevenson C M, Peters A M, Barnes G R, Hillebrand A, Morris P G 2008 NeuroImage 39 1788Google Scholar

    [24]

    Kumihashi I, Sekihara K 2010 IEEE Trans. Biomed. Eng. 57 1358Google Scholar

    [25]

    Nakai K, Kawazoe K, Izumoto H, Tsuboi J, Oshima Y, Oka T, Yoshioka K, Shozushima M, Suwabe A, Itoh M, Kobayashi K, Shimizu T, Yoshizawa M 2005 Int. J. Cardiovasc Imaging 21 555Google Scholar

    [26]

    Nakai K, Izumoto H, Kawazoe K, Tsuboi J, Fukuhiro Y, Oka T, Yoshioka K, Shozushima M, Itoh M, Suwabe A, Yoshizawa M 2006 Int. J. Cardiovasc Imaging 22 573Google Scholar

    [27]

    周大方, 张树林, 蒋式勤 2018 物理学报 67 158702Google Scholar

    Zhou D F, Zhang S L, Jiang S Q 2018 Acta Phys. Sin. 67 158702Google Scholar

    [28]

    Gross J, Ioannides A A 1999 Phys. Med. Biol. 44 2081Google Scholar

    [29]

    Horn R A, Johnson C R 2013 Matrix Analysis (New York: Cambridge University Press) p49, p139, p231

    [30]

    Coleman T F, Li Y 1993 SIAM J. Optim. 6 418

    [31]

    Coleman T F, Li Y 1994 Math. Program. 67 189Google Scholar

    [32]

    赵晨, 蒋式勤, 石明伟, 朱俊杰 2014 物理学报 63 078702Google Scholar

    Zhao C, Jiang S Q, Shi M W, Zhu J J 2014 Acta Phys. Sin. 63 078702Google Scholar

    [33]

    Malmivuo J, Plonsey R 1995 Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields (New York: Oxford University Press) p165

    [34]

    Durrer D, Van Dam R T, Freud G E, Janse M J, Meijler F L, Arzbaecher R C 1970 Circulation 41 899Google Scholar

  • 图 1  分布源位置及指定的26个邻域位置, 分别用红色和蓝色表示

    Fig. 1.  The position of the source and 26 specified adjacent positions are shown in red and blue colors, respectively

    图 2  (a) 水平分层导体. 其中黑色直线表示分层躯干的边界, 黄色椭圆体表示心脏; (b), (c) 测量通道1和61的磁场导联$l_{j,k}^\zeta , \left( {\zeta = X, Y, Z} \right)$曲线. 其中红、绿和蓝色分别表示X, YZ方向导联的曲线

    Fig. 2.  (a) The horizontally layered conductor (HLC), where the black line indicates the boundary of HLC, and the yellow spheroid the heart; (b),(c) The X, Y and Z lead-field based plots of channels 1 and 61 are expressed in red, green and blue, respectively

    图 3  (a) 黑色圆圈○和箭头表示沿直线方向的参考路径1; (b)−(e) 是SNR = 20 dB时, IIC, SONG, MVB和TRR方法的源重建结果. 黑圈中的浅绿色到深绿色表示重建电流源位置随时间的变化

    Fig. 3.  (a) The black circles ○ and arrow indicate the reference path 1 along the straight line; (b)−(e) The results of the current source reconstruction using IIC, SONG, MVB and TRR methods when SNR is 20 dB. The green points at different color levels denote the reconstructed source locations at different times

    图 4  (a) 黑色圆圈○和箭头表示沿直线方向的参考路径2; (b)−(e) SNR = 20 dB时, IIC,SONG,MVB和TRR方法的源重建结果. 黑圈中的浅绿色到深绿色表示重建电流源位置随时间的变化

    Fig. 4.  (a) The black circles ○ and arrow indicate the reference path 2 along the straight line; (b)−(e) The results of the current source reconstruction using IIC, SONG, MVB and TRR methods when SNR is 20 dB. The green points at different color levels denote the reconstructed source locations at different times

    图 5  (a), (b) 健康人A与B的单周期61通道心脏磁场信号及其Ppeak时刻; (c), (d) 用IIC,SONG与MVB方法得到的2个健康人Ppeak时刻源空间谱强度的XYXZ面等高线图

    Fig. 5.  (a),(b) The 61-channel MCG signals and Ppeak time of single-cycle from healthy subjects A and B; (c),(d) The XY and XZ based spatial spectrum intensity contours from subjects A and B at Ppeak using IIC, SONG or MVB

    图 6  (a), (b) 健康人A与B的单周期61通道心脏磁场信号及其Ponset-Ppeak段; (c), (d) 用IIC, SONG, MVB和TRR得到的2个健康人的Ponset-Ppeak段的心脏电流源重建结果. 圆点中的浅红色到深红色表示重建电流源随时间的位置变化. 绿色箭头表示电活动的方向

    Fig. 6.  (a),(b) 61-channel MCG signal and Ponset-Ppeak segment of single-cycle from healthy subjects A and B; (c), (d) The cardiac current sources reconstruction of subjects A and B in Ponset-Ppeak segment using IIC, SONG, MVB or TRR. The reconstructed current sources change the color from white to red with time. The green arrow shows the direction of electrical activity

    表 1  参考路径1对应的单源估计误差

    Table 1.  The error of single source estimation correspond to the reference path 1

    参数设置 方法 单源估计误差/cm
    MV/m/s SNR/dB E EX EY EZ
    $\sqrt 3 $ 无噪声 IIC 1.29 0.75 0.75 0.75
    SONG 1.27 0.74 0.74 0.74
    MVB 1.39 0.80 0.80 0.80
    TRR 0.72 0.52 0.24 0.43
    30 IIC 1.37 0.79 0.79 0.79
    SONG 1.73 1.13 0.81 1.04
    MVB 5.76 3.08 3.73 3.12
    TRR 1.50 0.83 0.17 1.24
    20 IIC 1.19 0.68 0.68 0.68
    SONG 1.67 1.17 0.69 0.98
    MVB 6.73 4.04 3.88 3.74
    TRR 2.13 1.17 1.26 1.26
    下载: 导出CSV

    表 2  参考路径2对应的双电流源估计误差

    Table 2.  The error of two sources estimation correspond to the reference path 2

    参数设置 方法 一条路径的源估计误差/cm 另一路径的源估计误差/cm
    MV/m/s SNR/dB E EX EY EZ E EX EY EZ
    1 无噪声 IIC 1.71 1.07 0.80 1.07 0.82 0 0.82 0
    SONG 1.70 1.07 0.79 1.07 1.05 0.47 0.81 0.47
    MVB 2.73 0.85 2.45 0.84 2.80 1.53 1.66 1.64
    TRR * * * * * * * *
    30 IIC 1.73 1.06 0.86 1.06 1.76 1.03 0.80 1.18
    SONG 1.98 1.09 1.26 1.07 2.18 1.33 1.01 1.40
    MVB 5.00 2.47 4.15 1.30 4.93 1.84 3.27 3.20
    TRR * * * * * * * *
    20 IIC 1.66 0.96 0.92 1.00 2.44 1.52 1.38 1.32
    SONG 6.51 2.26 6.01 1.04 4.13 2.04 3.01 1.96
    MVB 5.62 2.58 4.84 1.24 5.20 2.05 3.57 3.17
    TRR * * * * * * * *
    下载: 导出CSV
  • [1]

    Cohen D, Edelsack E A, Zimmerman J E 1970 Appl. Phys. Lett. 16 278Google Scholar

    [2]

    Van Leeuwen P, Hailer B, Lange S, Klein A, Geue D, Seybold K, Poplutz C, Grönemeyer D 2008 Phys. Med. Biol. 53 2291Google Scholar

    [3]

    Zhang S L, Wang Y L, Wang H W, Jiang S Q, Xie X M 2009 Phys. Med. Biol. 54 4793Google Scholar

    [4]

    Chen T, Zhao C, Jiang S Q, van Leeuwen P, Gronemeyer D 2014 Sci. Bull. 59 1123Google Scholar

    [5]

    李明, 张朝祥, 张树林, 陈威, 鲁丽, 王毅, 孔祥燕 2017 低温物理学报 39 4

    Li M, Zhang C Y, Zhang S L, Chen W, Lu L, Wang Y, Kong X Y 2017 Chin. J. Low Temp. Phys. 39 4

    [6]

    Zhao C, Jiang S Q, Wu Y H, Zhu J J, Zhou D F, Hailer B, Gronemeyer D, van Leeuwen P 2017 IEEE J. Biomed. Health 22 495

    [7]

    Tao R, Zhang S L, Huang X, Tao M F, Ma J, Ma S X, Zhang C X, Zhang T X, Tang F K, Lu J P, Shen C X, Xie X M 2018 IEEE Trans. Biomed. Eng. 66 1658

    [8]

    Zhang S L, Zhang G F, Wang Y L, Zeng J, Qiu Y, Liu M, Kong X Y, Xie X M 2013 Sci. Bull. 58 2917Google Scholar

    [9]

    Tripp J H 1983 Biomagnetism: An Interdisciplinary Approach (New York: Springer) p101

    [10]

    Sarvas J 1987 Phys. Med. Biol. 32 11Google Scholar

    [11]

    Sekihara K, Nagarajan S S, Poeppel D, Marantz A 2002 IEEE Trans. Biomed. Eng. 49 1534Google Scholar

    [12]

    Sekihara K, Sahani M, Nagarajan S S 2005 NeuroImage 25 1056Google Scholar

    [13]

    Sekihara K, Nagarajan S S 2005 Modeling and Imaging of Bioelectrical Activity: Principles and Applications (New York: Kluwer Academic/Plenum Publishers) p213

    [14]

    Van Veen B, Van Drongelen W, Yuchtman M, Suzuki A 1997 IEEE Trans. Biomed. Eng. 44 867Google Scholar

    [15]

    Gramfort A, Strohmeier D, Haueison J, Hämäläinen M S, Kowalski M 2013 NeuroImage 70 410Google Scholar

    [16]

    王伟远, 蒋式勤, 周大方, 朱嘉辰, 闫玉蕊, 权薇薇 2014 物理学报 63 248701Google Scholar

    Wang W Y, Jiang S Q, Zhou D F, Zhu J C, Yan Y R, Quan W W 2014 Acta Phys. Sin. 63 248701Google Scholar

    [17]

    Ha T, Kim K, Lim S, Yu K K, Kwon H 2015 IEEE Trans. Biomed. Eng. 62 60Google Scholar

    [18]

    Nenonen J, Pesola K, Hänninen H, Lauerma K, Takala P, Mäkelä T, Mäkijärvi M, Knuuti J, Toivonen L, Katila T 2001 J. Electrocardiol. 34 37Google Scholar

    [19]

    Kobayashi K, Uchikawa Y, Nakai K, Yoshizawa M 2004 IEEE Trans. Magn. 40 2970Google Scholar

    [20]

    Kim K, Lee Y, Kwon H, Kim J, Bae J 2006 Comput. Biol. Med. 36 253Google Scholar

    [21]

    Zhu J J, Jiang S Q, Wang W Y, Zhao C, Wu Y H, Luo M, Quan W W 2014 Chin. Phys. B 23 048702Google Scholar

    [22]

    Chen M, Jiang S, Bing L, Zhao C, Hailer B, Grönemeyer D, Van Leeuwen P 2015 Sci. Bull. 60 1235Google Scholar

    [23]

    Brookes M J, Vrba J, Robinson S E, Stevenson C M, Peters A M, Barnes G R, Hillebrand A, Morris P G 2008 NeuroImage 39 1788Google Scholar

    [24]

    Kumihashi I, Sekihara K 2010 IEEE Trans. Biomed. Eng. 57 1358Google Scholar

    [25]

    Nakai K, Kawazoe K, Izumoto H, Tsuboi J, Oshima Y, Oka T, Yoshioka K, Shozushima M, Suwabe A, Itoh M, Kobayashi K, Shimizu T, Yoshizawa M 2005 Int. J. Cardiovasc Imaging 21 555Google Scholar

    [26]

    Nakai K, Izumoto H, Kawazoe K, Tsuboi J, Fukuhiro Y, Oka T, Yoshioka K, Shozushima M, Itoh M, Suwabe A, Yoshizawa M 2006 Int. J. Cardiovasc Imaging 22 573Google Scholar

    [27]

    周大方, 张树林, 蒋式勤 2018 物理学报 67 158702Google Scholar

    Zhou D F, Zhang S L, Jiang S Q 2018 Acta Phys. Sin. 67 158702Google Scholar

    [28]

    Gross J, Ioannides A A 1999 Phys. Med. Biol. 44 2081Google Scholar

    [29]

    Horn R A, Johnson C R 2013 Matrix Analysis (New York: Cambridge University Press) p49, p139, p231

    [30]

    Coleman T F, Li Y 1993 SIAM J. Optim. 6 418

    [31]

    Coleman T F, Li Y 1994 Math. Program. 67 189Google Scholar

    [32]

    赵晨, 蒋式勤, 石明伟, 朱俊杰 2014 物理学报 63 078702Google Scholar

    Zhao C, Jiang S Q, Shi M W, Zhu J J 2014 Acta Phys. Sin. 63 078702Google Scholar

    [33]

    Malmivuo J, Plonsey R 1995 Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields (New York: Oxford University Press) p165

    [34]

    Durrer D, Van Dam R T, Freud G E, Janse M J, Meijler F L, Arzbaecher R C 1970 Circulation 41 899Google Scholar

  • [1] 刘金品, 王秉中, 陈传升, 王任. 基于深度物理启发神经网络的微波波导器件逆设计方法. 物理学报, 2023, 72(8): 080201. doi: 10.7498/aps.72.20230031
    [2] 董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国. 磁性斯格明子的多场调控研究. 物理学报, 2018, 67(13): 137507. doi: 10.7498/aps.67.20180931
    [3] 王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰. 基于金刚石NV色心的纳米尺度磁场测量和成像技术. 物理学报, 2018, 67(13): 130701. doi: 10.7498/aps.67.20180243
    [4] 周大方, 张树林, 蒋式勤. 用于心脏电活动成像的空间滤波器输出噪声抑制方法. 物理学报, 2018, 67(15): 158702. doi: 10.7498/aps.67.20180294
    [5] 黄卫立. 一般完整系统Mei对称性的逆问题. 物理学报, 2015, 64(17): 170202. doi: 10.7498/aps.64.170202
    [6] 刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴. 小宽带光谱色散匀滑光束传输特性研究. 物理学报, 2014, 63(16): 164201. doi: 10.7498/aps.63.164201
    [7] 赵晨, 蒋式勤, 石明伟, 朱俊杰. 非均匀电磁介质中的等效源重构. 物理学报, 2014, 63(7): 078702. doi: 10.7498/aps.63.078702
    [8] 朱俊杰, 蒋式勤, 王伟远, 赵晨, 王永良, 李文生, 权薇薇. 多腔体心脏磁场模型的研究与应用. 物理学报, 2014, 63(5): 058703. doi: 10.7498/aps.63.058703
    [9] 邴璐, 王伟远, 王永良, 蒋式勤. 基于贪婪稀疏方法的心脏磁场源重构. 物理学报, 2013, 62(11): 118703. doi: 10.7498/aps.62.118703
    [10] 丁光涛. 一类Painleve方程的Lagrange函数族. 物理学报, 2012, 61(11): 110202. doi: 10.7498/aps.61.110202
    [11] 韩建, 巴音贺希格, 李文昊. 全息光栅曝光系统中空间滤波器孔径与激光束腰关系的选择方法. 物理学报, 2012, 61(8): 084202. doi: 10.7498/aps.61.084202
    [12] 丁光涛. 一维变系数耗散系统Lagrange函数和Hamilton函数的新构造方法. 物理学报, 2011, 60(4): 044503. doi: 10.7498/aps.60.044503
    [13] 高妍琦, 朱宝强, 刘代中, 彭增云, 林尊琪. 神光Ⅱ升级装置远场准直系统研究. 物理学报, 2011, 60(6): 065204. doi: 10.7498/aps.60.065204
    [14] 丁光涛. 关于Birkhoff表示的Lagrange像的研究. 物理学报, 2010, 59(1): 15-19. doi: 10.7498/aps.59.15
    [15] 丁光涛. Hamilton系统Noether理论的新型逆问题. 物理学报, 2010, 59(3): 1423-1427. doi: 10.7498/aps.59.1423
    [16] 李国林, 舒挺, 袁成卫, 张军, 靳振兴, 杨建华, 钟辉煌, 杨杰, 武大鹏. 一种高功率微波空间滤波器的设计与初步实验研究. 物理学报, 2010, 59(12): 8591-8596. doi: 10.7498/aps.59.8591
    [17] 曾曙光, 张彬. 光参量啁啾脉冲放大的逆问题. 物理学报, 2009, 58(4): 2476-2481. doi: 10.7498/aps.58.2476
    [18] 楚晓亮, 张 彬, 蔡邦维, 魏晓峰, 朱启华, 黄小军, 袁晓东, 曾小明, 刘兰琴, 王 逍, 王晓东, 周凯南, 郭 仪. 啁啾脉冲多程放大及其逆问题的研究. 物理学报, 2005, 54(10): 4696-4700. doi: 10.7498/aps.54.4696
    [19] 于 飞, 陈心昭, 李卫兵, 陈 剑. 空间声场全息重建的波叠加方法研究. 物理学报, 2004, 53(8): 2607-2613. doi: 10.7498/aps.53.2607
    [20] 朱红毅, 沈建其, 李 军. 一种新的求解脑磁逆问题的搜索方法. 物理学报, 2004, 53(3): 947-951. doi: 10.7498/aps.53.947
计量
  • 文章访问数:  5572
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-02
  • 修回日期:  2019-04-25
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回