搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hamilton系统Noether理论的新型逆问题

丁光涛

引用本文:
Citation:

Hamilton系统Noether理论的新型逆问题

丁光涛

New kind of inverse problems of Noether’s theory for Hamiltonian systems

Ding Guang-Tao
PDF
导出引用
  • 研究Hamilton系统Noether理论新型的逆问题,得到利用Noether理论从已知的第一积分构建Hamilton函数和对称性的一般解法和若干特殊解法,提出由Hamilton函数直接导出守恒量的两条推论.举例说明所得结果的应用.
    In this paper, a new kind of inverse problems of Noether’s theory for Hamiltonian systems is studied. The general solution and the specific solutions of constructing the Hamiltonians and the symmetries from known first integrals by using Noether’s theory are obtained. Two corollaries according to which the conserved quantities can be deduced directly from the Hamiltonians are presented. Two examples are given to illustrate the application of the results.
    [1]

    [1]Mei F X, Liu D, Luo Y 1991 Advanced analytical mechanics (Beijing: Beijing Institute of Technology Press) (in Chinese)[梅凤翔、刘端、罗勇 1991 高等分析力学 (北京:北京理工大学出版社)]

    [2]

    [2]Галиуллин А С 1986 Методы решения обратных задач динамики (Москва: Наука)

    [3]

    [3]Mei F X 1991 Mechanics in Engineering 13 17 (in Chinese)[梅凤翔 1991 力学与实践 13 17]

    [4]

    [4]Luo S K, Zhang Y F 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) (in Chinese)[罗绍凯、张永发等 2008 约束系统动力学研究进展 (北京:科学出版社)]

    [5]

    [5]Santilli R M 1978 Foundations of Theoretical Mechanics I (New York: Springer-Verlag)

    [6]

    [6]Santilli R M 1983 Foundations of Theoretical Mechanics II (New York: Springer-Verlag)

    [7]

    [7]Noether A E 1918 Nachr.Akad.Wiss.Gottingen.Math.Phys. K I II 235

    [8]

    [8]Zhao Y Y, Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science Press) (in Chinese)[赵跃宇、梅凤翔 1999 力学系统的对称性与不变量 (北京:科学出版社)]

    [9]

    [9]Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)[梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京:科学出版社)]

    [10]

    [10]Li Z P 1981 Acta Phys.Sin. 30 1659 (in Chinese)[李子平 1981 物理学报 30 1659]

    [11]

    [11]Liu D 1990 Sci.China A (11) 1189 (in Chinese)[刘端 1990 中国科学 A辑 (11)1189]

    [12]

    [12]Li Z P 1991 Chin.Sci.Bull 36 958 (in Chinese)[李子平 1991 科学通报 36 958]

    [13]

    [13]Mei F X 1993 Sci.China A 36 1456

    [14]

    [14]Zhang Y, Shang M, Mei F X 2000 Chin.Phys. 9 401

    [15]

    [15]Luo S K 2003 Acta Phys.Sin. 52 2941 (in Chinese)[罗绍凯 2003 物理学报 52 2941]

    [16]

    [16]Goldstein H, Poole C, Safko J 2002 Classical Mechanics 3rd ed. (Redwood City: Addison-Wesley)

  • [1]

    [1]Mei F X, Liu D, Luo Y 1991 Advanced analytical mechanics (Beijing: Beijing Institute of Technology Press) (in Chinese)[梅凤翔、刘端、罗勇 1991 高等分析力学 (北京:北京理工大学出版社)]

    [2]

    [2]Галиуллин А С 1986 Методы решения обратных задач динамики (Москва: Наука)

    [3]

    [3]Mei F X 1991 Mechanics in Engineering 13 17 (in Chinese)[梅凤翔 1991 力学与实践 13 17]

    [4]

    [4]Luo S K, Zhang Y F 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) (in Chinese)[罗绍凯、张永发等 2008 约束系统动力学研究进展 (北京:科学出版社)]

    [5]

    [5]Santilli R M 1978 Foundations of Theoretical Mechanics I (New York: Springer-Verlag)

    [6]

    [6]Santilli R M 1983 Foundations of Theoretical Mechanics II (New York: Springer-Verlag)

    [7]

    [7]Noether A E 1918 Nachr.Akad.Wiss.Gottingen.Math.Phys. K I II 235

    [8]

    [8]Zhao Y Y, Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science Press) (in Chinese)[赵跃宇、梅凤翔 1999 力学系统的对称性与不变量 (北京:科学出版社)]

    [9]

    [9]Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)[梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京:科学出版社)]

    [10]

    [10]Li Z P 1981 Acta Phys.Sin. 30 1659 (in Chinese)[李子平 1981 物理学报 30 1659]

    [11]

    [11]Liu D 1990 Sci.China A (11) 1189 (in Chinese)[刘端 1990 中国科学 A辑 (11)1189]

    [12]

    [12]Li Z P 1991 Chin.Sci.Bull 36 958 (in Chinese)[李子平 1991 科学通报 36 958]

    [13]

    [13]Mei F X 1993 Sci.China A 36 1456

    [14]

    [14]Zhang Y, Shang M, Mei F X 2000 Chin.Phys. 9 401

    [15]

    [15]Luo S K 2003 Acta Phys.Sin. 52 2941 (in Chinese)[罗绍凯 2003 物理学报 52 2941]

    [16]

    [16]Goldstein H, Poole C, Safko J 2002 Classical Mechanics 3rd ed. (Redwood City: Addison-Wesley)

计量
  • 文章访问数:  4992
  • PDF下载量:  874
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-24
  • 修回日期:  2009-06-19
  • 刊出日期:  2010-03-15

Hamilton系统Noether理论的新型逆问题

  • 1. 安徽师范大学物理与电子信息学院,芜湖 241000

摘要: 研究Hamilton系统Noether理论新型的逆问题,得到利用Noether理论从已知的第一积分构建Hamilton函数和对称性的一般解法和若干特殊解法,提出由Hamilton函数直接导出守恒量的两条推论.举例说明所得结果的应用.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回