搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缺陷调控临界温度梯度超导膜的磁通整流反转效应

何安 薛存

引用本文:
Citation:

缺陷调控临界温度梯度超导膜的磁通整流反转效应

何安, 薛存

Tunable reversal rectification in $T_{\rm{c}}$-gradient superconducting film by slit

He An, Xue Cun
PDF
HTML
导出引用
  • 超导涡旋运动引起的棘齿效应可以广泛应用于磁通泵、整流器和超导开关等装置. 金兹堡-朗道理论是研究超导磁通涡旋问题强有力的工具和手段. 本文采用有限差分法数值求解时间相关的金兹堡-朗道方程, 利用快速傅里叶变换方法求解耦合的热传导方程, 数值模拟了临界温度梯度超导薄膜磁通涡旋动力学行为, 提出了一种新的调节超导整流效应的方式, 并研究了临界温度梯度大小和缺陷位置对超导整流电压反转现象的影响规律. 由于超导边界势垒和缺陷吸引势对磁通涡旋的共同作用, 当缺陷位置偏向临界温度较高的一侧或者临界温度梯度较小时有利于观察到整流电压随交流幅值增大发生的反转现象.
    The ratchet effect caused by superconducting vortex motion can be widely used in flux pumps, rectifiers and superconducting switches. Ginzburg-Landau theory provides a powerful tool to investigate superconducting vortex matter. In this paper, the finite difference method is used to numerically solve the time-dependent Ginzburg-Landau equation, and the fast Fourier transform method is used to solve the coupled heat conduction equation. The vortex dynamic behavior of the superconducting thin film with a linear change of critical temperature is simulated numerically, and a new way to regulate the superconducting rectification effect is proposed. The effect of critical temperature gradient and slit location on the reversal phenomenon of rectified voltage are studied. Because of the influence of edge barrier and the defect attraction potential on vortex motion, it is beneficial to observing the reversal rectified voltage with increasing AC amplitude that the defect location is near to the side of the higher critical temperature or the gradient of the critical temperature is small.
      通信作者: 薛存, xuecun@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11702034, 11972298, 11702218)、中央高校基本科研业务费专项资金(批准号: 300102121201)和中国博士后科学基金(批准号: 2019M663812) 资助的课题
      Corresponding author: Xue Cun, xuecun@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11702034, 11972298, 11702218), the Fundamental Research Fund for the Central Universities, China (Grant No. 300102121201), and the China Postdoctoral Science Foundation (Grant No. 2019M663812)
    [1]

    Silhanek A V, van Look L, Raedts S, Jonckheere R, Moshchalkov V V 2003 Phys. Rev. B 68 214504Google Scholar

    [2]

    Silhanek A V, Gillijns W, Moshchalkov V V, Metlushko V, Ilic B 2006 Appl. Phys. Lett. 89 182505Google Scholar

    [3]

    Milošević M V, Gillijns W, Silhanek A V, Libál A, Peeters F M, Moshchalkov V V 2010 Appl. Phys. Lett. 96 032503Google Scholar

    [4]

    Hänggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387Google Scholar

    [5]

    Ooi S, Savel’ev S, Gaifullin M B, Mochiku T, Hirata K, Nori F 2007 Phys. Rev. Lett. 99 207003Google Scholar

    [6]

    Marrocco N, Pepe G P, Capretti A, Parlato L, Pagliarulo V, Peluso G, Barone A, Cristiano R, Ejrnaes M, Casaburi A, Kashiwazaki N, Taino T, Myoren H, Sobolewski R 2010 Appl. Phys. Lett. 97 092504Google Scholar

    [7]

    Kremen A, Wissberg S, Haham N, Persky E, Frenkel Y, Kalisky B 2016 Nano Lett. 16 1626Google Scholar

    [8]

    Semenov A, Charaev I, Lusche R, Ilin K, Siegel M, Hübers H W, Bralović N, Dopf K, Vodolazov D Y 2015 Phys. Rev. B 92 174518Google Scholar

    [9]

    Berdiyorov G R, MiloševićM V, Peeters F M 2012 Appl. Phys. Lett. 100 262603Google Scholar

    [10]

    Lee C S, Jankó B, Derényi I, Barabá si A L 1999 Nature 400 337Google Scholar

    [11]

    Zhu B Y, Marchesoni F, Nori F 2004 Phys. Rev. Lett. 92 180602Google Scholar

    [12]

    Olson C J, Reichhardt C, Janko B, Nori F 2001 Phys. Rev. Lett. 87 177002Google Scholar

    [13]

    van de Vondel J, Gladilin V N, Silhanek A V, Gillijns W, Tempere J, Devreese J T, Moshchalkov V V 2011 Phys. Rev. Lett. 106 137003Google Scholar

    [14]

    Lu Q M, Olson Reichhardt C J, Reichhardt C 2007 Phys. Rev. B 75 054502Google Scholar

    [15]

    Berdiyorov G R, Milošević M V, Covaci L, Peeters F M 2011 Phys. Rev. Lett. 107 177008Google Scholar

    [16]

    He A, Xue C, Zhou Y H 2018 Chin. Phys. B 27 057402Google Scholar

    [17]

    Ooi S, Mochikua T, Hirataa K 2008 Physica C 468 1291Google Scholar

    [18]

    Wu T C, Horng L, Wu J C, Cao R, Koláček J, Yang T J 2007 J. Appl. Phys. 102 033918Google Scholar

    [19]

    Reichhardt C, Ray D, Olson Reichhardt C J 2015 Phys. Rev. B 91 184502Google Scholar

    [20]

    Gillijns W, Silhanek A V, Moshchalkov V V, Olson Reichhardt C J, Reichhardt C 2007 Phys. Rev. Lett. 99 247002Google Scholar

    [21]

    Adami O A, Cerbu D, Cabosart D, Motta M, Cuppens J, Ortiz W A, Moshchalkov V V, Hackens B, Delamare R, Van de Vondel J, Silhanek A V 2013 Appl. Phys. Lett. 102 052603Google Scholar

    [22]

    Ji J D, Yuan J, He G, Jin B H, Zhu B Y, Kong X D, Jia X Q, Kang L, Jin K, Wu P H 2016 Appl. Phys. Lett. 109 242601Google Scholar

    [23]

    Wang Y L, Ma X Y, Xu J, Xiao Z L, Snezhko A, Divan R, Ocola L E, Pearson J E, Janko B Wai K K 2018 Nat. Nanotechnol. 13 560Google Scholar

    [24]

    Villegas J E, Savel’ev S, Nori F, Gonzalez E M, Anguita J V, Garcia R, Vicent J L 2003 Science 302 1188Google Scholar

    [25]

    de Souza Silva C C, van de Vondel J, Morelle M, Moshchalkov V V 2006 Nature 440 651Google Scholar

    [26]

    de Souza Silva C C, Silhanek A V, van de Vondel J, Gillijns W, Metlushko V, Ilic B, Moshchalkov V V 2007 Phys. Rev. Lett. 98 117005Google Scholar

    [27]

    He A, Xue C, Zhou Y H 2019 Appl. Phys. Lett. 115 032602Google Scholar

    [28]

    He A, Xue C 2020 Chin. Phys. B 29 127401Google Scholar

    [29]

    Kramer L, Watts-Tobin R J 1978 Phys. Rev. Lett. 40 1041Google Scholar

    [30]

    Berdiyorov G, Harrabi K, Oktasendra F, Gasmi K, Mansour A I, Maneval J P, Peeters F M 2014 Phys. Rev. B 90 054506Google Scholar

    [31]

    Sadovskyya I A, Kosheleva A E, Phillipsb C L, Karpeyevc D A, Glatz A 2015 J. Comput. Phys. 294 639Google Scholar

    [32]

    Berdiyorov G R, MiloševićM V, Latimer M L, Xiao Z L, Kwok W K, Peeters F M 2012 Phys. Rev. Lett. 109 057004Google Scholar

    [33]

    Vodolazov D Y, Peeters F M, Morelle M, Moshchalkov V V 2005 Phys. Rev. B 71 184502Google Scholar

    [34]

    Adami O A, Jelić Ž L, Xue C, Abdel-Hafiez M, Hackens B, Moshchalkov V V, Milošević M V, Van de Vondel J, Silhanek A V 2015 Phys. Rev. B 92 134506Google Scholar

    [35]

    Sadovskyy I A, Koshelev A E, Glatz A, Ortalan V, Rupich M W, Leroux M 2016 Phys. Rev. Appl. 5 014011Google Scholar

  • 图 1  含长方形缺陷的临界温度梯度超导薄膜示意图, 临界温度沿着y轴从$T_{{\rm{cmin}}}$ 线性增大到$T_{{\rm{cmax}}}$. 超导薄膜宽为w, 沿着x轴无限长, 缺陷的长度和宽度分别为$c_{\rm{l}}$$c_{\rm{w}}$, 缺陷中心距离临界温度较低$T_{{\rm{cmin}}}$ 的下边界为$C_{\rm{p}}$. 沿着x轴的一方形波交流电$I_{{\rm{a}}}(t)$和沿着z轴的垂直磁场加载于超导薄膜, 沿着电流加载方向计算直流电压$V_{{\rm{dc}}}$, 磁通涡旋沿着y轴方向运动.

    Fig. 1.  Schematic diagram of critical temperature gradient superconducting film with slit. The critical temperature increases linearly from $T_{{\rm{cmin}}}$ upward to $T_{{\rm{cmax}}}$ along the y axis. The superconducting film of width w is infinite along x axis. The slit length and width are $c_{\rm{l}}$and $c_{\rm{w }}$, respectively. The distance of defect center to sample upper boundary is $C_{\rm{P}}$. Superconducting film is applied by a square-wave ac current $I_{{\rm{a}}}(t)$ along x axis and a perpendicular magnetic field $H_{\rm{a}}$ along z axis, and the DC voltage $V_{{\rm{dc}}}$ is calculated along the direction of applied current. The direction of vortex motion is along y axis.

    图 2  (a)不同磁场和正反电流下电流-电压(I-V)特征曲线, 插图1—插图6表示I-V曲线上对应点的超导电子密度. 红色箭头表示输运电流的加载方向, 黑色箭头代表涡旋的运动方向. (b)缺陷位于样品中心$ C_{\rm{p}} = w/2 $ 时整流电压随交流幅值的变化规律. 超导样品上下边界的临界温度分别为$T_{{\rm{cmax}}} = 12\; {\rm{K }}$$T_{{\rm{cmin}}} = 4.7 \;{\rm{K}}$(见多媒体动画A1)

    Fig. 2.  (a) Characteristic curves of current-voltage (I-V) at several magnetic fields for $ +I_{\rm{a}} $ and $ -I_{\rm{a}} $. Snapshots 1–6 indicate the corresponding cooper-pair density shown in the I-V curves; (b) variations of rectified voltage as a function of ac amplitude for slit located at the middle of the sample $ C_{\rm{p}} = w/2 $. The critical temperature of superconducting film at the top and bottom boundary are $T_{{\rm{cmax}}} = 12\;{\rm{ K}}$ and $T_{{\rm{cmin}}} = 4.7\; {\rm{K}}$, respectively (multimedia view A1 of the supplementary materials).

    图 3  不同磁场下(a)缺陷靠近样品下边界$ C_{\rm{p}} = w/3 $和(b)缺陷靠近样品上边界$ C_{\rm{p }}= 2 w/3 $时整流电压随交流幅值的变化规律. 超导样品上下边界的临界温度分别为$T_{{\rm{cmax}}} = 12 \;{\rm{K}}$$T_{{\rm{cmin}}} = 4.7\; {\rm{K}}$(见补充材料动画A2A3)

    Fig. 3.  Variations of rectified voltage as a function of ac amplitude for several magnetic fields with defect located at (a) $ C_{\rm{p}} = w/3 $ and (b) $ C_{\rm{p}} = 2 w/3 $. The critical temperature of superconducting film at the top and bottom boundary are $T_{{\rm{cmax}}} {=} 12\; {\rm{K}}$ and $T_{{\rm{cmin}}} {=} 4.7\; {\rm{K}}$, respectively (multimedia view A2 and A3 of the supplementary materials).

    图 4  缺陷靠近样品上边界($ C_{\rm{p}} = 2 w/3 $)和磁场$ H_{{\rm{a}}} = 0.1 $时超导处于平衡状态下, 当电流幅值(a) $I_{{\rm{ac}}} = 0.13$和(b) $I_{{\rm{ac}}} = $$ 0.14$时电压随时间的周期振荡曲线. 插图表示V-t曲线上对应点的超导电子密度云图, 黑色箭头代表涡旋的运动方向. 超导样品上下边界的临界温度分别为$T_{{\rm{cmax}}} = 12\;{\rm{ K}}$$T_{{\rm{cmin}}} = 4.7\; {\rm{K}}$

    Fig. 4.  Variations of equilibrated voltage as a function of ac amplitude time with magnetic field $ H_{{\rm{a}}} = 0.1 $ and slit location $ C_{\rm{p}} = 2 w/3 $ for (a) $ I_{{\rm{ac}}} = 0.13 $ and (b) $ I_{{\rm{ac}}} = 0.14 $. Snapshots indicate the corresponding Cooper-pair density shown in the V-t curves. The black arrows indicate the direction of vortex motion. The critical temperature of superconducting film at the top and bottom boundary are $T_{{\rm{cmax}}} = 12 \;{\rm{K}}$ and $T_{{\rm{cmin}}} = 4.7\; {\rm{K}}$, respectively.

    图 5  缺陷位置为(a) $ C_{\rm{p}} = w/2 $和(b) $ C_{\rm{p}} = 2 w/3 $时整流电压随磁场和电流变化的相图. 白色虚线代表整流电压发生反转的区域. 插图表示缺陷位置$ C_{\rm{p}} = 2 w/3 $时不同磁场下和电流下的超导电子密度, 左栏表示正方向加载电流的情形, 右栏表示负方向加载电流的情形, 黑色箭头表示涡旋的运动方向. 超导样品上下边界的临界温度分别为$T_{{\rm{cmax}}} = 12\; {\rm{K}}$$T_{{\rm{cmin}}} = 4.7\;{\rm{ K}}$

    Fig. 5.  Contour plot of $ V_{{\rm{dc}}} $ as a function of magnetic field and current amplitude with slit location (a) $ C_{\rm{p}} = w/2 $ and (b) $ C_{\rm{p}} = $$ 2 w/3 $. The white dotted lines represent the area of reversal rectified voltage. Snapshots show the superconducting Cooper-pair density at the defect location $ C_{\rm{p}} = 2 w/3 $ under different magnetic fields and currents. The left column represents the condition of applied current along the positive direction, and the right column represents that of applied current along the negative direction. The black arrows represent the direction of vortex motion. The critical temperature of superconducting film at the top and bottom boundary are $T_{{\rm{cmax}}} = 12 \;{\rm{K}}$ and $T_{{\rm{cmin}}} = 4.7\; {\rm{K}}$, respectively.

    图 6  (a)缺陷处于样品中心($ C_{\rm{p}} = w/2 $)、最低临界温度$T_{{\rm{cmin}}} = 4.7\; {\rm{K }}$和磁场$ H_{{\rm{a}}} = 0.1 $, 超导样品上边界的最高临界温度分别为$ T_{{\rm{cmax}}} $ = 6, 8, 10和12 K时整流电压随交流幅值的变化规律; (b) $ I_{{\rm{ac}}} = 0.095 $和(c) $I_{{\rm{ac}}} = 0.1$超导处于平衡状态时电压随时间的周期振荡曲线. 插图表示V-t曲线上对应点的超导电子密度, 黑色箭头代表涡旋的运动方向(见补充材料多媒体动画A4和A5 )

    Fig. 6.  (a) Variations of rectified voltage as a function of ac amplitude with slit location $ C_{\rm{p}} = w/2 $, $T_{{\rm{cmin}}} = 4.7\; {\rm{K}}$ and magnetic field $ H_{{\rm{a}}} = 0.1 $ for several maximum critical temperature $ T_{{\rm{cmax}}} $ = 6, 8, 10 and 12 K. Dependencies of equilibrated voltage versus time for (b) $ I_{{\rm{ac}}} = 0.095 $ and (c)$ I_{{\rm{ac}}} = $$ 0.1 $. Snapshots indicate the corresponding cooper-pair density shown in the V-t curves. The black arrows indicate the direction of vortex motion (multimedia view A4 and A5 of supplementary materials)

  • [1]

    Silhanek A V, van Look L, Raedts S, Jonckheere R, Moshchalkov V V 2003 Phys. Rev. B 68 214504Google Scholar

    [2]

    Silhanek A V, Gillijns W, Moshchalkov V V, Metlushko V, Ilic B 2006 Appl. Phys. Lett. 89 182505Google Scholar

    [3]

    Milošević M V, Gillijns W, Silhanek A V, Libál A, Peeters F M, Moshchalkov V V 2010 Appl. Phys. Lett. 96 032503Google Scholar

    [4]

    Hänggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387Google Scholar

    [5]

    Ooi S, Savel’ev S, Gaifullin M B, Mochiku T, Hirata K, Nori F 2007 Phys. Rev. Lett. 99 207003Google Scholar

    [6]

    Marrocco N, Pepe G P, Capretti A, Parlato L, Pagliarulo V, Peluso G, Barone A, Cristiano R, Ejrnaes M, Casaburi A, Kashiwazaki N, Taino T, Myoren H, Sobolewski R 2010 Appl. Phys. Lett. 97 092504Google Scholar

    [7]

    Kremen A, Wissberg S, Haham N, Persky E, Frenkel Y, Kalisky B 2016 Nano Lett. 16 1626Google Scholar

    [8]

    Semenov A, Charaev I, Lusche R, Ilin K, Siegel M, Hübers H W, Bralović N, Dopf K, Vodolazov D Y 2015 Phys. Rev. B 92 174518Google Scholar

    [9]

    Berdiyorov G R, MiloševićM V, Peeters F M 2012 Appl. Phys. Lett. 100 262603Google Scholar

    [10]

    Lee C S, Jankó B, Derényi I, Barabá si A L 1999 Nature 400 337Google Scholar

    [11]

    Zhu B Y, Marchesoni F, Nori F 2004 Phys. Rev. Lett. 92 180602Google Scholar

    [12]

    Olson C J, Reichhardt C, Janko B, Nori F 2001 Phys. Rev. Lett. 87 177002Google Scholar

    [13]

    van de Vondel J, Gladilin V N, Silhanek A V, Gillijns W, Tempere J, Devreese J T, Moshchalkov V V 2011 Phys. Rev. Lett. 106 137003Google Scholar

    [14]

    Lu Q M, Olson Reichhardt C J, Reichhardt C 2007 Phys. Rev. B 75 054502Google Scholar

    [15]

    Berdiyorov G R, Milošević M V, Covaci L, Peeters F M 2011 Phys. Rev. Lett. 107 177008Google Scholar

    [16]

    He A, Xue C, Zhou Y H 2018 Chin. Phys. B 27 057402Google Scholar

    [17]

    Ooi S, Mochikua T, Hirataa K 2008 Physica C 468 1291Google Scholar

    [18]

    Wu T C, Horng L, Wu J C, Cao R, Koláček J, Yang T J 2007 J. Appl. Phys. 102 033918Google Scholar

    [19]

    Reichhardt C, Ray D, Olson Reichhardt C J 2015 Phys. Rev. B 91 184502Google Scholar

    [20]

    Gillijns W, Silhanek A V, Moshchalkov V V, Olson Reichhardt C J, Reichhardt C 2007 Phys. Rev. Lett. 99 247002Google Scholar

    [21]

    Adami O A, Cerbu D, Cabosart D, Motta M, Cuppens J, Ortiz W A, Moshchalkov V V, Hackens B, Delamare R, Van de Vondel J, Silhanek A V 2013 Appl. Phys. Lett. 102 052603Google Scholar

    [22]

    Ji J D, Yuan J, He G, Jin B H, Zhu B Y, Kong X D, Jia X Q, Kang L, Jin K, Wu P H 2016 Appl. Phys. Lett. 109 242601Google Scholar

    [23]

    Wang Y L, Ma X Y, Xu J, Xiao Z L, Snezhko A, Divan R, Ocola L E, Pearson J E, Janko B Wai K K 2018 Nat. Nanotechnol. 13 560Google Scholar

    [24]

    Villegas J E, Savel’ev S, Nori F, Gonzalez E M, Anguita J V, Garcia R, Vicent J L 2003 Science 302 1188Google Scholar

    [25]

    de Souza Silva C C, van de Vondel J, Morelle M, Moshchalkov V V 2006 Nature 440 651Google Scholar

    [26]

    de Souza Silva C C, Silhanek A V, van de Vondel J, Gillijns W, Metlushko V, Ilic B, Moshchalkov V V 2007 Phys. Rev. Lett. 98 117005Google Scholar

    [27]

    He A, Xue C, Zhou Y H 2019 Appl. Phys. Lett. 115 032602Google Scholar

    [28]

    He A, Xue C 2020 Chin. Phys. B 29 127401Google Scholar

    [29]

    Kramer L, Watts-Tobin R J 1978 Phys. Rev. Lett. 40 1041Google Scholar

    [30]

    Berdiyorov G, Harrabi K, Oktasendra F, Gasmi K, Mansour A I, Maneval J P, Peeters F M 2014 Phys. Rev. B 90 054506Google Scholar

    [31]

    Sadovskyya I A, Kosheleva A E, Phillipsb C L, Karpeyevc D A, Glatz A 2015 J. Comput. Phys. 294 639Google Scholar

    [32]

    Berdiyorov G R, MiloševićM V, Latimer M L, Xiao Z L, Kwok W K, Peeters F M 2012 Phys. Rev. Lett. 109 057004Google Scholar

    [33]

    Vodolazov D Y, Peeters F M, Morelle M, Moshchalkov V V 2005 Phys. Rev. B 71 184502Google Scholar

    [34]

    Adami O A, Jelić Ž L, Xue C, Abdel-Hafiez M, Hackens B, Moshchalkov V V, Milošević M V, Van de Vondel J, Silhanek A V 2015 Phys. Rev. B 92 134506Google Scholar

    [35]

    Sadovskyy I A, Koshelev A E, Glatz A, Ortalan V, Rupich M W, Leroux M 2016 Phys. Rev. Appl. 5 014011Google Scholar

  • [1] 王垚, 姜璐, 周又和, 薛存. 超导薄膜磁-热不稳定与强非线性电磁本构的关联性. 物理学报, 2022, 71(20): 207401. doi: 10.7498/aps.71.20220285
    [2] 张硕, 龙连春, 刘静毅, 杨洋. 缺陷对铁单质薄膜磁致伸缩与磁矩演化的影响. 物理学报, 2022, 71(1): 017502. doi: 10.7498/aps.71.20211177
    [3] 张硕, 龙连春, 刘静毅, 杨洋. 分子动力学方法研究缺陷对铁单质薄膜磁致伸缩的影响. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211177
    [4] 王凯悦, 郭睿昂, 王宏兴. 金刚石氮-空位缺陷发光的温度依赖性. 物理学报, 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [5] 吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义. 钙钛矿薄膜气相制备的晶粒尺寸优化及高效光伏转换. 物理学报, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [6] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质. 物理学报, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [7] 董晓莉, 袁洁, 黄裕龙, 冯中沛, 倪顺利, 田金朋, 周放, 金魁, 赵忠贤. 铁硒基超导研究新进展:高质量(Li,Fe)OHFeSe单晶薄膜. 物理学报, 2018, 67(12): 127403. doi: 10.7498/aps.67.20180770
    [8] 邢兰俊, 常永勤, 邵长景, 王琳, 龙毅. Sn掺杂ZnO薄膜的室温气敏性能及其气敏机理. 物理学报, 2016, 65(9): 097302. doi: 10.7498/aps.65.097302
    [9] 朱金荣, 范吕超, 苏垣昌, 胡经国. 温度、缺陷对磁畴壁动力学行为的影响. 物理学报, 2016, 65(23): 237501. doi: 10.7498/aps.65.237501
    [10] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [11] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [12] 张鲁山, 于洪飞, 郭永权. FeTe合金结构分析及其薄膜制备. 物理学报, 2012, 61(1): 016101. doi: 10.7498/aps.61.016101
    [13] 张培健, 孟洋, 刘紫玉, 潘新宇, 梁学锦, 陈东敏, 赵宏武. 缺陷分布对Ag-SiO2薄膜电阻翻转效应的影响. 物理学报, 2012, 61(10): 107703. doi: 10.7498/aps.61.107703
    [14] 王鑫华, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 郑英奎, 魏珂, 刘新宇. GaN HEMT栅边缘电容用于缺陷的研究. 物理学报, 2011, 60(9): 097101. doi: 10.7498/aps.60.097101
    [15] 史力斌, 郑 岩, 任骏原, 李明标, 张国华. YBa2Cu3O7-δ/LaAlO3和Tl2Ba2CaCu2O8/LaAlO3高温超导薄膜内的应变对其微波表面电阻影响的研究. 物理学报, 2008, 57(2): 1183-1189. doi: 10.7498/aps.57.1183
    [16] 陈 浩, 邓金祥, 刘钧锴, 周 涛, 张 岩, 陈光华. 立方氮化硼薄膜沉积过程的相变研究. 物理学报, 2007, 56(6): 3418-3427. doi: 10.7498/aps.56.3418
    [17] 姜本学, 徐 军, 李红军, 王静雅, 赵广军, 赵志伟. 温度梯度法生长Nd:YAG激光晶体的核心分布. 物理学报, 2007, 56(2): 1014-1019. doi: 10.7498/aps.56.1014
    [18] 夏志林, 邵建达, 范正修. 薄膜体内缺陷对损伤概率的影响. 物理学报, 2007, 56(1): 400-406. doi: 10.7498/aps.56.400
    [19] 孙贤开, 林碧霞, 朱俊杰, 张 杨, 傅竹西. LP-MOCVD异质外延ZnO薄膜中的应力及对缺陷的影响. 物理学报, 2005, 54(6): 2899-2903. doi: 10.7498/aps.54.2899
    [20] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
计量
  • 文章访问数:  3879
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-20
  • 修回日期:  2021-09-17
  • 上网日期:  2022-01-04
  • 刊出日期:  2022-01-20

/

返回文章
返回