-
压电驻极体(也称为铁电驻极体)是一类具有强压电效应的微孔结构驻极体材料, 具有柔韧、低密度、低特性声阻抗等特征, 是制备柔性空气耦合声电换能器的理想材料. 针对器件对高灵敏度和高温工作环境的应用需求, 本文报道高性能氟化乙丙烯/聚四氟乙烯(FEP/PTFE)复合膜压电驻极体的制备和性能表征. 研究结果表明, FEP/PTFE膜的特性声阻抗为0.02 MRayl (1 Rayl = 10 Pa·s/m); 在小压强范围内的准静态压电电荷系数d33可高达800 pC/N, 且具有良好的压强特性. 基于FEP/PTFE复合膜压电驻极体的麦克风的灵敏度最高可达6.4 mV/Pa@1 kHz, 远高于文献报道的相同结构的压电驻极体麦克风的灵敏度, 且具有平坦的频响曲线. 对于直径为20 mm的超声波发射器, 当驱动电压Vp为600 V时, 样品中轴线上距离器件表面100 mm处, 40—80 kHz频率范围内产生的超声波的声压级为80—90 dB (参考声压为 20 µPa). 基于FEP/PTFE复合膜压电驻极体的声电换能器的热稳定性显著优于聚丙烯(PP)压电驻极体声电换能器: 在125 ℃下老化211 h, 器件的灵敏度保持初值的26%, 这得益于基体材料FEP和PTFE优良的空间电荷储存稳定性.
-
关键词:
- 压电驻极体 /
- 氟化乙丙烯/聚四氟乙烯复合膜 /
- 声电换能器 /
- 空气耦合
Piezoelectret (also known as ferroelectret) is a kind of cellular electret material with strong piezoelectric effect. Such a material exhibits flexibility, low density and small acoustic impedance. Therefore, piezoelectret is an ideal material for air-borne flexible sound transducers. Aiming at high-sensitivity and thermal-stability sound transducers, in this work, laminated fluorinated polyethylene propylene (FEP) and polytetrafluoroethylene (PTFE) piezoelectret film with a regular cellular microstructure is prepared by a procedure involving template-based cellular structure formation and polarization. The results show that the characteristic acoustic impedance of such a laminated FEP/PTFE film is 0.02 MRayl. The quasi-static piezoelectric charge coefficient d33 up to 800 pC/N is achieved in a small applied pressure range. The maximum value of sensitivity of the microphones based on laminated FEP/PTFE piezoelectrets film can reach to 6.4 mV/Pa at 1 kHz. Besides, the frequency response curve of the device is flat in the whole audio range. For an ultrasonic transmitter with a diameter of 20 mm, driven by a voltage of 600 V (Vp), the sound pressure level (SPL) generated by it increases from 80 to 90 dB (Ref. 20 µPA) as frequency increases from 40 to 80 kHz. The thermal stability of the sensitivity for the transducers made of such a laminated FEP/PTFE piezoelectret film is much superior to that of polypropylene (PP) piezoelectret based device. The sensitivity of the present device remains 26% of the initial value after being annealed at 125 ℃ for 211 h. The improvement of thermal stability is attributed to the excellent space charge storage stability of FEP and PTFE.-
Keywords:
- piezoelectret /
- laminated FEP/PTFE film /
- sound transducer /
- air-borne
[1] https://doi.org/10.1080/15583724.2021.1901737 [2021-8-10]
[2] Lim H R, Kim H S, Qazi R, Kwon Y T, Jeong J W, Yeo W H 2020 Adv. Mater. 32 1901924Google Scholar
[3] Ma J, Fan H, Zhang W, Sui J, Wang C, Zhang M, Zhao N, Yadav A K, Wang W, Dong W, Wang S 2020 Sens. Actuators, B 305 127456Google Scholar
[4] Lia H, Fan H, Wang B, Wang C, Zhang M, Chen G, Jiang X, Zhao N, Lu J, Zhang J 2020 J. Eur. Ceram. Soc. 40 3072Google Scholar
[5] Hu N, Lin L, Tan J, Wang W, Lei L, Fan H, Wang J, Müller-Buschbaum P, Zhong Q 2020 ACS Appl. Mater. Interfaces 12 56480Google Scholar
[6] Ma J, Fan H, Li Z, Jia Y, Yadav A K, Dong G, Wang W, Dong W, Wang S 2021 Sens. Actuators, B 334 129677Google Scholar
[7] Mattiat O E, Mason W P 1972 Phys. Today 25 57
[8] Lee M C 1982 IEEE Trans. Son. Ultrason 29 170
[9] Gururaja R T, Schulze A W, Cross E L, Newnham E R 1985 IEEE Transactions on Sonics and Ultrasonics 32 481Google Scholar
[10] Bauer S, Gerhard-Multhaupt R, Sessler G M 2004 Phys. Today 57 37
[11] Bauer S 2006 IEEE Trans. Dielectr. Electr. Insul. 13 953Google Scholar
[12] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪 2014 物理学报 63 157703Google Scholar
Zhang T L, Huang X, Zheng K, Zhang X W, Wang Y J, Wu L M, Zhang X Q, Zheng J, Zhu B 2014 Acta Phys. Sin. 63 157703Google Scholar
[13] 张咪, 左西, 杨同青, 张晓青 2020 物理学报 69 247701Google Scholar
Zhang M, Zuo X, Yang T Q, Zhang X Q 2020 Acta Phys. Sin. 69 247701Google Scholar
[14] Sessler G M, Hillenbrand J 2013 Appl. Phys. Lett. 103 122904Google Scholar
[15] Kressmann R 2001 J. Acoust. Soc. Am. 109 1412Google Scholar
[16] Hillenbrand J, Sessler G M 2004 J. Acoust. Soc. Am. 116 3267Google Scholar
[17] Hillenbrand J, Sessler G 2006 IEEE Trans. Dielectr. Electr. Insul. 13 973Google Scholar
[18] Sessler G M, Hillenbrand J 2009 IEEE International Ultrasonics Symposium Rome Sept. 20–23, 2009 pp393−397
[19] Hillenbrand J, Haberzettl S, Sessler G M 2011 14th International Symposium on Electrets Montpellier, France, Aug. 28−31, 2011 pp27−28
[20] Ealo J L, Jimenez A R, Seco F, Prieto C 2006 IEEE Ultrasonics Symposium Vancouver, BC, Canada, Oct. 2−6, 2006 pp812−815
[21] Ealo J L, Camacho J, Fritsch C, Seco F, Roa J 2008 IEEE International Ultrasonics Symposium Abstract Book Beijing, China, Nov. 2–5, 2008 p891
[22] Ealo J L, Camacho J J, Fritsch C IEEE Trans. Ultrason. Ferr. 56 848
[23] Ealo J, Camacho J, Seco F, Fritsch C 2010 AIP Conf. Proc. 1211 933
[24] Gaal M, Dring J, Bartusch J, Lange T, Kreutzbruck M 2013 AIP Conference Proceedings 1511 1543
[25] Gaal M, Bartusch J, Dohse E, Kreutzbruck M, Amos J 2014 AIP Conf. Proc. 1581 471
[26] Gaal M, Kotschate D 2018 12th European Conference on Non-Destructive Testing, Goteborg, Sweden, June 11, 2018 pp1−9
[27] Gaal M, Kotschate D, Bente K 2019 Proceedings of Meetings on Acoustics 38 030003Google Scholar
[28] Xue Y, Zhang X, Chadda R, Sessler G M, Kupnik M 2020 J. Acoust. Soc. Am. 147 EL421Google Scholar
[29] 孙转兰, 张晓青, 曹功勋, 王学文, 夏钟福 2010 物理学报 59 5061Google Scholar
Sun Z L, Zhang X Q, Cao G X, Wang X W, Xia Z F 2010 Acta Phys. Sin. 59 5061Google Scholar
[30] Sun Z, Zhang X, Xia Z, Qiu X, Wirges W, Gerhard R, Zeng C, Zhang C, Wang B 2011 Appl. Phys. A 105 197Google Scholar
[31] Axel, Mellinger 2003 IEEE Trans. Dielectr. Electr. Insul. 10 842Google Scholar
[32] Rosen C Z, Hiremath B V 1992 Piezoelectricity (New York: American Institute of Physics) p215
[33] Zhang X Q, Sessler G M, Xue Y, Ma X C 2016 J. Phys. D:Appl. Phys. 49 205502Google Scholar
[34] http://sinocera.net/en/piezo_material.asp [2021-8-10]
[35] Ohigashi H 1976 J. Appl. Phys. 47 949Google Scholar
[36] Zhang X, Hillenbrand J, Sessler G M 2007 J. Appl. Phys 101 850
[37] Zhang X, Hillenbrand J, Sessler G, Haberzettl S, Lou K 2012 Appl. Phys. A 107 621Google Scholar
[38] Xue Y, Zhang X, Zheng J, Liu T, Zhu B 2018 IEEE Trans. Dielectr. Electr. Insul. 25 228Google Scholar
-
图 5 FEP/PTFE复合膜压电驻极体的热稳定性和电荷输运特性 (a)未经过热老化处理样品在90和120 ℃下的等温衰减图线; (b)经过90℃预老化33.5 h和120 ℃预老化30.5 h处理的样品在90 ℃下的等温衰减图线; (c)热刺激放电实验中样品的电荷分布示意图; (d)不同温度下经过5 h热老化处理样品的短路热刺激放电电流谱. 升温速率为3 ℃/min
Fig. 5. Thermal stability and dynamics of charges in laminated FEP/PTFE piezoelectret films. (a) Normalized isothermal decay of piezoelectric d33 coefficients as a function of annealing time at 90 and 120 °C, respectively. The samples are not pre-aged before tests. (b) Normalized isothermal decay of piezoelectric d33 coefficients as a function of annealing time at 90 °C for the samples pre-aged at 90 °C for 33.5 h and at 120 °C for 30.5 h. (c) Schematic diagram of the charge distribution and shift in the sample during the TSD measurement. (d) TSD current spectra of the laminated FEP/PTFE piezoelectret film samples after pre-aging treatment at various temperature for 5 h. The heating rate is 3 ℃/min.
图 6 基于FEP/PTFE复合膜压电驻极体的麦克风的灵敏度 (a) 在125 ℃下经历不同时间老化的样品的电压灵敏度的频响曲线; (b)在125 ℃下, 麦克风电压灵敏度的衰减曲线
Fig. 6. Sensitivity of a microphone based on laminated FEP/PTFE piezoelectret film: (a) Piezoelectric d33 coefficient as a function of frequency for the sample annealed at 125 ℃ with different annealing time; (b) isothermal decay of sensitivity at 1 kHz for a microphone at annealing temperature of 125 ℃.
图 7 基于FEP/PTFE复合膜压电驻极体的超声波发射器的性能 (a) 声压级随频率的变化; (b)声压级与驱动电压之间的关系. 样品直径为20 mm, 测试位置在器件轴线上距离样品表面100 mm处
Fig. 7. Performance of the ultrasonic transmitters based on laminated FEP/PTFE piezoelectret films: (a) Sound pressure level as a function of frequency; (b) relationship between sound pressure level and driving voltage. The diameter of the sample is 20 mm, and the test position is 100 mm away from the surface of the sample on the device axis.
-
[1] https://doi.org/10.1080/15583724.2021.1901737 [2021-8-10]
[2] Lim H R, Kim H S, Qazi R, Kwon Y T, Jeong J W, Yeo W H 2020 Adv. Mater. 32 1901924Google Scholar
[3] Ma J, Fan H, Zhang W, Sui J, Wang C, Zhang M, Zhao N, Yadav A K, Wang W, Dong W, Wang S 2020 Sens. Actuators, B 305 127456Google Scholar
[4] Lia H, Fan H, Wang B, Wang C, Zhang M, Chen G, Jiang X, Zhao N, Lu J, Zhang J 2020 J. Eur. Ceram. Soc. 40 3072Google Scholar
[5] Hu N, Lin L, Tan J, Wang W, Lei L, Fan H, Wang J, Müller-Buschbaum P, Zhong Q 2020 ACS Appl. Mater. Interfaces 12 56480Google Scholar
[6] Ma J, Fan H, Li Z, Jia Y, Yadav A K, Dong G, Wang W, Dong W, Wang S 2021 Sens. Actuators, B 334 129677Google Scholar
[7] Mattiat O E, Mason W P 1972 Phys. Today 25 57
[8] Lee M C 1982 IEEE Trans. Son. Ultrason 29 170
[9] Gururaja R T, Schulze A W, Cross E L, Newnham E R 1985 IEEE Transactions on Sonics and Ultrasonics 32 481Google Scholar
[10] Bauer S, Gerhard-Multhaupt R, Sessler G M 2004 Phys. Today 57 37
[11] Bauer S 2006 IEEE Trans. Dielectr. Electr. Insul. 13 953Google Scholar
[12] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪 2014 物理学报 63 157703Google Scholar
Zhang T L, Huang X, Zheng K, Zhang X W, Wang Y J, Wu L M, Zhang X Q, Zheng J, Zhu B 2014 Acta Phys. Sin. 63 157703Google Scholar
[13] 张咪, 左西, 杨同青, 张晓青 2020 物理学报 69 247701Google Scholar
Zhang M, Zuo X, Yang T Q, Zhang X Q 2020 Acta Phys. Sin. 69 247701Google Scholar
[14] Sessler G M, Hillenbrand J 2013 Appl. Phys. Lett. 103 122904Google Scholar
[15] Kressmann R 2001 J. Acoust. Soc. Am. 109 1412Google Scholar
[16] Hillenbrand J, Sessler G M 2004 J. Acoust. Soc. Am. 116 3267Google Scholar
[17] Hillenbrand J, Sessler G 2006 IEEE Trans. Dielectr. Electr. Insul. 13 973Google Scholar
[18] Sessler G M, Hillenbrand J 2009 IEEE International Ultrasonics Symposium Rome Sept. 20–23, 2009 pp393−397
[19] Hillenbrand J, Haberzettl S, Sessler G M 2011 14th International Symposium on Electrets Montpellier, France, Aug. 28−31, 2011 pp27−28
[20] Ealo J L, Jimenez A R, Seco F, Prieto C 2006 IEEE Ultrasonics Symposium Vancouver, BC, Canada, Oct. 2−6, 2006 pp812−815
[21] Ealo J L, Camacho J, Fritsch C, Seco F, Roa J 2008 IEEE International Ultrasonics Symposium Abstract Book Beijing, China, Nov. 2–5, 2008 p891
[22] Ealo J L, Camacho J J, Fritsch C IEEE Trans. Ultrason. Ferr. 56 848
[23] Ealo J, Camacho J, Seco F, Fritsch C 2010 AIP Conf. Proc. 1211 933
[24] Gaal M, Dring J, Bartusch J, Lange T, Kreutzbruck M 2013 AIP Conference Proceedings 1511 1543
[25] Gaal M, Bartusch J, Dohse E, Kreutzbruck M, Amos J 2014 AIP Conf. Proc. 1581 471
[26] Gaal M, Kotschate D 2018 12th European Conference on Non-Destructive Testing, Goteborg, Sweden, June 11, 2018 pp1−9
[27] Gaal M, Kotschate D, Bente K 2019 Proceedings of Meetings on Acoustics 38 030003Google Scholar
[28] Xue Y, Zhang X, Chadda R, Sessler G M, Kupnik M 2020 J. Acoust. Soc. Am. 147 EL421Google Scholar
[29] 孙转兰, 张晓青, 曹功勋, 王学文, 夏钟福 2010 物理学报 59 5061Google Scholar
Sun Z L, Zhang X Q, Cao G X, Wang X W, Xia Z F 2010 Acta Phys. Sin. 59 5061Google Scholar
[30] Sun Z, Zhang X, Xia Z, Qiu X, Wirges W, Gerhard R, Zeng C, Zhang C, Wang B 2011 Appl. Phys. A 105 197Google Scholar
[31] Axel, Mellinger 2003 IEEE Trans. Dielectr. Electr. Insul. 10 842Google Scholar
[32] Rosen C Z, Hiremath B V 1992 Piezoelectricity (New York: American Institute of Physics) p215
[33] Zhang X Q, Sessler G M, Xue Y, Ma X C 2016 J. Phys. D:Appl. Phys. 49 205502Google Scholar
[34] http://sinocera.net/en/piezo_material.asp [2021-8-10]
[35] Ohigashi H 1976 J. Appl. Phys. 47 949Google Scholar
[36] Zhang X, Hillenbrand J, Sessler G M 2007 J. Appl. Phys 101 850
[37] Zhang X, Hillenbrand J, Sessler G, Haberzettl S, Lou K 2012 Appl. Phys. A 107 621Google Scholar
[38] Xue Y, Zhang X, Zheng J, Liu T, Zhu B 2018 IEEE Trans. Dielectr. Electr. Insul. 25 228Google Scholar
计量
- 文章访问数: 5324
- PDF下载量: 110
- 被引次数: 0