搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiO2/聚四氟乙烯复合介质材料热性能和介电性能的数值模拟

刘曰利 赵思杰 陈文 周静

引用本文:
Citation:

SiO2/聚四氟乙烯复合介质材料热性能和介电性能的数值模拟

刘曰利, 赵思杰, 陈文, 周静

Numerical simulation of thermal and dielectric properties for SiO2/polytetrafluoroethylene dielectric composite

Liu Yue-Li, Zhao Si-Jie, Chen Wen, Zhou Jing
PDF
HTML
导出引用
  • SiO2/聚四氟乙烯(polytetrafluoroethylene, PTFE)复合介质材料的热膨胀系数和介电常数主要受到SiO2填充量的影响, 如何准确预测其影响至今仍是一个很大的挑战. 本文通过数值模拟系统地研究SiO2/PTFE复合介质材料的热膨胀系数和介电常数. 结果表明, 随着SiO2填充量的增加, SiO2/PTFE复合介质材料的热膨胀系数降低, 介电常数增加, 且与文献报道数据取得良好的一致性(Han K K, Zhou J, Li Q Z, Shen J, Qi Y Y, Yao X P, Chen W 2020 J. Mater. Sci. Mater. Electron. 31 9196). 研究发现, 实心SiO2球(体积分数为30%)/PTFE复合介质材料的热膨胀系数最小, 为7.5×10–5 K–1; 而空心SiO2球(体积分数为10%)/PTFE的介电常数最小, 为2.06. 由于底部的实心SiO2球充当支撑作用, 底部实心SiO2球较密集的实心SiO2/PTFE复合介质材料具有更低的热膨胀系数. SiO2填料的大长径比会降低SiO2/PTFE复合介质材料的热膨胀系数. 成型工艺对实心SiO2/PTFE复合介质材料的热膨胀系数几乎没有影响. 该工作为通过调控SiO2/PTFE复合介质材料的微观结构来控制其热膨胀系数和介电常数提供清晰的思路.
    Coefficient of thermal expansion (CTE) and dielectric constant for the SiO2/polytetrafluoroethylene (SiO2/PTFE) dielectric composite are mainly influenced by their filling content, and how to accurately predict the effect is still a great challenge untill now. In this work, the CTE and dielectric constant of SiO2/PTFE dielectric composite are systematically investigated by numerical simulation. The results show that with the increase of SiO2 content, CTE of SiO2/PTFE dielectric composite decreases, and the dielectric constant increases, which are in good agreement with the data reported in the literature (Han K K, Zhou J, Li Q Z, Shen J, Qi Y Y, Yao X P, Chen W 2020 J. Mater. Sci. Mater. Electron. 31 9196). The 30% (volume fraction) solid SiO2 sphere (SSS)/PTFE dielectric composite is the smallest CTE of 7.5×10–5 K–1, while 10% (volume fraction) hollow solid sphere (HSS)/PTFE possesses the smallest dielectric constant of 2.06. The CTE of SiO2/PTFE dielectric composite may decrease when the SiO2 distribution is dense at the bottom. The large aspect ratio of SiO2 filler may reduce CTEx of SiO2/PTFE dielectric composite. The molding parameters have little effect on the thermal expansion coefficient of the solid SiO2/PTFE composite dielectric material. This work provides a clear insight into the controlling of CTE and dielectric constant of SiO2/PTFE dielectric composite by adjusting its microstructure.
      通信作者: 周静, zhoujing@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174298)、湖北省自然科学基金重点项目(批准号: 2019CFA044)、海南省科技计划三亚崖州湾科技城联合项目(批准号: 20201g0158)和深圳市自然科学基金(批准号: JCYJ20210324135002007)资助的课题.
      Corresponding author: Zhou Jing, zhoujing@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174298), the Key Projects of Natural Science Foundation of Hubei Province, China (Grant No. 2019CFA044), the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City, China (Grant No. 20201g0158), and the National Natural Science Foundation of Shenzhen City, China (Grant No. JCYJ20210324135002007).
    [1]

    Sebastian M T, Jantunen H 2010 Int. J. Appl. Ceram. Technol. 7 415Google Scholar

    [2]

    Sadeghifar H, Djilali N, Bahrami M 2014 J. Power Sources 248 632Google Scholar

    [3]

    Feng X, Diao X S, Shi Y J, Wang H Y, Sun S H, Lu X H 2006 Wear 261 1208Google Scholar

    [4]

    Murali K P, Rajesh S, Prakash O, Kulkarni A R, Ratheesh R 2009 Compos. Pt. A: Appl. Sci. Manuf. 40 1179Google Scholar

    [5]

    Yuan Y, Yin Y T, Yu D D, Lin H D, Wang J, Tang B, Li E Z 2017 J. Mater. Sci. Mater. Electron. 28 3356Google Scholar

    [6]

    Tang A G, Wang M L, Huang W, Wang X L 2015 Surf. Coat. Technol. 282 121Google Scholar

    [7]

    Luo F C, Tang B, Yuan Y, Fang Z X, Zhang S R 2018 Appl. Surf. Sci. 456 637Google Scholar

    [8]

    Zheng L, Zhou J, Shen J, Qi Y Y, Li S, Shen S 2018 J. Mater. Sci. Mater. Electron. 29 17195Google Scholar

    [9]

    Ren J Q, Yang P, Peng Z J, Fu X L 2021 Ceram. Int. 47 20867Google Scholar

    [10]

    Jiang P F, Bian J J 2019 Int. J. Appl. Ceram. Technol. 16 152Google Scholar

    [11]

    Chen W Z, Yu Y L, Gu Y P, Ji Y C, He J J, Li Z D, Zheng G Y, Wang J L, Wu Y, Long F 2022 Compos. Pt. A: Appl. Sci. Manuf. 154 106783Google Scholar

    [12]

    Yuan Y, Li Z T, Cao L, Tang B, Zhang S R 2019 Ceram. Int. 45 16569Google Scholar

    [13]

    Dai J H, Liang F, Zhang R, Lu W Z, Fan G F 2022 Ceram. Int. 48 2362Google Scholar

    [14]

    Murali K P, Rajesh S, Prakash O, Kulkarni A R, Ratheesh R 2010 Mater. Chem. Phys. 122 317Google Scholar

    [15]

    王娇, 刘少辉, 周梦, 郝好山, 翟继卫 2020 物理学报 69 218101Google Scholar

    Wang J, Liu S H, Zhou M, Hao H S, Zhai J W 2020 Acta Phys. Sin. 69 218101Google Scholar

    [16]

    Peng H Y, Ren H S, Dang M Z, Zhang Y, Yao X G, Lin H X 2018 Ceram. Int. 44 16556Google Scholar

    [17]

    Sasikala T S, Sebastian M T 2016 Ceram. Int. 42 7551Google Scholar

    [18]

    Chen Y C, Lin H C, Lee Y D 2003 J. Polym. Res. 10 247Google Scholar

    [19]

    Kemaloglu S, Ozkoc G, Aytac A 2010 Polym. Compos. 31 1398Google Scholar

    [20]

    Zhou W Y, Wang C F, Ai T, Wu K, Zhao F J, Gu H Z 2009 Compos. Pt. A: Appl. Sci. Manuf. 40 830Google Scholar

    [21]

    Zhou H, Wei D Y, Fan Y, Chen H, Yang Y S, Yu J J, Jin L G 2016 Mater. Sci. Eng. B:Adv. Funct. Solid: State Mater. 203 13Google Scholar

    [22]

    Jiang Z H, Yuan Y 2018 Mater. Res. Express 5 066306Google Scholar

    [23]

    Ndayishimiye A, Tsuji K, Wang K, Bang S H, Randall C A 2019 J. Eur. Ceram. Soc. 39 4743Google Scholar

    [24]

    刘康, 孙华锐 2020 物理学报 69 028501Google Scholar

    Liu K, Sun H R 2020 Acta Phys. Sin. 69 028501Google Scholar

    [25]

    黎威志, 王军 2012 物理学报 61 114401Google Scholar

    Li W Z, Wang J 2012 Acta Phys. Sin. 61 114401Google Scholar

    [26]

    邵春瑞, 李海洋, 王军, 夏国栋 2021 物理学报 70 236501Google Scholar

    Shao C R, Li H Y, Wang J, Xia G D 2021 Acta Phys. Sin. 70 236501Google Scholar

    [27]

    Shi X L, Aghdam M K H, Ansari R 2019 Proc. Inst. Mech. Eng. Pt. L: J. Mater. Design Appl. 233 1843Google Scholar

    [28]

    Hassanzadeh-Aghdam M K, Ansari R 2020 Mater. Chem. Phys. 252 123273Google Scholar

    [29]

    Chawla N, Deng X, Schnell D R M 2006 Mater. Sci. Eng. A: Struct. Mater. Prop. Microstruct. Process. 426 314Google Scholar

    [30]

    Gurrum S P, Zhao J H, Edwards D R 2011 J. Mater. Sci. 46 101Google Scholar

    [31]

    Han K K, Zhou J, Li Q Z, Shen J, Qi Y Y, Yao X P, Chen W 2020 J. Mater. Sci. Mater. Electron. 31 9196Google Scholar

    [32]

    Kang S, Hong S I, Choe C R, et al. 2001 Polymer 42 879Google Scholar

    [33]

    Pan J, Bian L C 2017 Acta. Mech. 228 4341Google Scholar

    [34]

    La Carrubba V, Butters M, Zoetelief W 2008 Polym. Bull. 59 813Google Scholar

  • 图 1  SiO2/PTFE复合介质材料的几何结构 (a) SSS; (b) HSS

    Fig. 1.  Geometric structure of the SiO2/PTFE dielectric composite: (a) SSS; (b) HSS.

    图 2  SiO2/PTFE复合介质材料的热通量边界条件示意图 (a) 垂直表面; (b)上下表面

    Fig. 2.  Schematic diagram of heat flux boundary conditions for SiO2/PTFE dielectric composite: (a) Vertical surface; (b) upper and lower surfaces.

    图 3  SiO2/PTFE复合介质材料的边界载荷和固定边界条件示意图

    Fig. 3.  Schematic diagram of boundary loading and fixed boundary condition for SiO2/PTFE dielectric composite.

    图 4  SiO2/PTFE复合介质材料应用非结构化四面体网格

    Fig. 4.  Schematic diagram of applied unstructured tetrahedral mesh for SiO2/PTFE dielectric composite.

    图 5  Z轴位移分布示意图 (a) PTFE; (b) SiO2

    Fig. 5.  Schematic diagram of Z-axis displacement distribution: (a) PTFE; (b) SiO2.

    图 6  不同SSS填充量的SSS/PTFE复合介质材料的位移分布 (a) 10%; (b) 15%; (c) 20%; (d) 25%; (e) 30%

    Fig. 6.  Surface displacement distribution map of SSS/PTFE dielectric composite with different filling amounts of SSS: (a) 10%; (b) 15%; (c) 20%; (d) 25%; (e) 30%.

    图 7  SSS/PTFE复合介质材料的CTE和介电常数随SSS填充量的变化曲线 (a) CTE; (b) 介电常数

    Fig. 7.  CTE and dielectric constant variations of SSS/PTFE composites with SSS filler contents: (a) CTE; (b) dielectric constant.

    图 8  不同HSS填充量的HSS/PTFE复合介质材料的位移分布 (a) 10%; (b) 15%; (c) 20%; (d) 25%; (e) 30%

    Fig. 8.  Surface displacement distribution map of HSS/PTFE dielectric composite with different HSS filling amounts: (a) 10%; (b) 15%; (c) 20%; (d) 25%; (e) 30%.

    图 9  HSS/PTFE复合介质材料的热膨胀系数和介电常数随HSS填充量的变化曲线 (a) CTE; (b) 介电常数

    Fig. 9.  CTE and dielectric constant variations of HSS/PTFE dielectric composites with HSS filler contents: (a) CTE; (b) dielectric constant.

    图 10  不同长径比的纤维状SiO2/PTFE复合介质材料的X, Y, Z轴位移分布 (a)—(c) 长径比为5; (d)—(f) 长径比为10; (g)—(i) 长径比为20

    Fig. 10.  X, Y, Z axes displacement distribution of SiO2/PTFE dielectric composite with different aspect ratios of SiO2 fiber: (a)–(c) Aspect ratio of 5; (d)–(f) aspect ratio of 10; (g)–(i) aspect ratio of 20.

    图 11  不同长径比的薄片状SiO2/PTFE复合介质材料X, Y, Z轴位移分布 (a)—(c) 长径比为5; (d)—(f) 长径比为10; (g)—(i) 长径比为20

    Fig. 11.  X, Y, Z axes displacement distribution of SiO2/PTFE dielectric composite with different aspect ratios of SiO2 flake: (a)–(c) Aspect ratio of 5; (d)–(f) aspect ratio of 10; (g)–(i) aspect ratio of 20.

    图 12  不同SiO2长径比SiO2/PTFE复合介质材料的CTE (a) 纤维状SiO2; (b) 薄片状SiO2

    Fig. 12.  CTE of SiO2/PTFE dielectric composite with different aspect ratios of SiO2 filler: (a) SiO2 fiber; (b) SiO2 flake.

    图 13  SiO2/PTFE复合介质材料的SiO2分布模型

    Fig. 13.  SiO2 distribution model of SiO2/PTFE dielectric composite.

    图 14  SiO2/PTFE复合介质材料的位移随时间的变化

    Fig. 14.  Displacement variations of SiO2/PTFE dielectric composite with different time.

    表 1  材料物性参数

    Table 1.  Physical parameters of materials.

    材料PTFESiO2空气
    密度 ρ/(g·cm–3)2.102.20
    热导率 k/(W·m–1·K–1)0.241.40
    比热容 c/(103 J·kg–1·K–1)1.050.73
    泊松比 ν0.400.220
    杨氏模量 E/GPa0.2870.0
    CTE/(10–6 K–1)1090.50
    介电常数2.053.501.00
    下载: 导出CSV

    表 2  SiO2/PTFE复合介质材料的CTE

    Table 2.  CTE of SiO2/PTFE dielectric composite.

    不同的分布情况CTE/(10–6 K–1)
    1, 2, 3, 4分布10%; 5, 6, 7, 8分布20%101.34
    1, 2, 3, 4分布20%; 5, 6, 7, 8分布10%96.78
    1, 3, 4, 5分布20%; 2, 6, 7, 8分布10%97.85
    1, 3, 4, 6分布20%; 2, 5, 7, 8分布10%98.05
    1, 3, 4, 7分布20%; 2, 5, 6, 8分布10%97.81
    1, 3, 4, 8分布20%; 2, 5, 6, 7分布10%97.80
    1, 3, 5, 7分布20%; 2, 4, 6, 8分布10%98.71
    1, 3, 6, 8分布20%; 2, 4, 5, 7分布10%99.09
    1, 6, 7, 8分布20%; 2, 3, 4, 5分布10%100.02
    下载: 导出CSV
  • [1]

    Sebastian M T, Jantunen H 2010 Int. J. Appl. Ceram. Technol. 7 415Google Scholar

    [2]

    Sadeghifar H, Djilali N, Bahrami M 2014 J. Power Sources 248 632Google Scholar

    [3]

    Feng X, Diao X S, Shi Y J, Wang H Y, Sun S H, Lu X H 2006 Wear 261 1208Google Scholar

    [4]

    Murali K P, Rajesh S, Prakash O, Kulkarni A R, Ratheesh R 2009 Compos. Pt. A: Appl. Sci. Manuf. 40 1179Google Scholar

    [5]

    Yuan Y, Yin Y T, Yu D D, Lin H D, Wang J, Tang B, Li E Z 2017 J. Mater. Sci. Mater. Electron. 28 3356Google Scholar

    [6]

    Tang A G, Wang M L, Huang W, Wang X L 2015 Surf. Coat. Technol. 282 121Google Scholar

    [7]

    Luo F C, Tang B, Yuan Y, Fang Z X, Zhang S R 2018 Appl. Surf. Sci. 456 637Google Scholar

    [8]

    Zheng L, Zhou J, Shen J, Qi Y Y, Li S, Shen S 2018 J. Mater. Sci. Mater. Electron. 29 17195Google Scholar

    [9]

    Ren J Q, Yang P, Peng Z J, Fu X L 2021 Ceram. Int. 47 20867Google Scholar

    [10]

    Jiang P F, Bian J J 2019 Int. J. Appl. Ceram. Technol. 16 152Google Scholar

    [11]

    Chen W Z, Yu Y L, Gu Y P, Ji Y C, He J J, Li Z D, Zheng G Y, Wang J L, Wu Y, Long F 2022 Compos. Pt. A: Appl. Sci. Manuf. 154 106783Google Scholar

    [12]

    Yuan Y, Li Z T, Cao L, Tang B, Zhang S R 2019 Ceram. Int. 45 16569Google Scholar

    [13]

    Dai J H, Liang F, Zhang R, Lu W Z, Fan G F 2022 Ceram. Int. 48 2362Google Scholar

    [14]

    Murali K P, Rajesh S, Prakash O, Kulkarni A R, Ratheesh R 2010 Mater. Chem. Phys. 122 317Google Scholar

    [15]

    王娇, 刘少辉, 周梦, 郝好山, 翟继卫 2020 物理学报 69 218101Google Scholar

    Wang J, Liu S H, Zhou M, Hao H S, Zhai J W 2020 Acta Phys. Sin. 69 218101Google Scholar

    [16]

    Peng H Y, Ren H S, Dang M Z, Zhang Y, Yao X G, Lin H X 2018 Ceram. Int. 44 16556Google Scholar

    [17]

    Sasikala T S, Sebastian M T 2016 Ceram. Int. 42 7551Google Scholar

    [18]

    Chen Y C, Lin H C, Lee Y D 2003 J. Polym. Res. 10 247Google Scholar

    [19]

    Kemaloglu S, Ozkoc G, Aytac A 2010 Polym. Compos. 31 1398Google Scholar

    [20]

    Zhou W Y, Wang C F, Ai T, Wu K, Zhao F J, Gu H Z 2009 Compos. Pt. A: Appl. Sci. Manuf. 40 830Google Scholar

    [21]

    Zhou H, Wei D Y, Fan Y, Chen H, Yang Y S, Yu J J, Jin L G 2016 Mater. Sci. Eng. B:Adv. Funct. Solid: State Mater. 203 13Google Scholar

    [22]

    Jiang Z H, Yuan Y 2018 Mater. Res. Express 5 066306Google Scholar

    [23]

    Ndayishimiye A, Tsuji K, Wang K, Bang S H, Randall C A 2019 J. Eur. Ceram. Soc. 39 4743Google Scholar

    [24]

    刘康, 孙华锐 2020 物理学报 69 028501Google Scholar

    Liu K, Sun H R 2020 Acta Phys. Sin. 69 028501Google Scholar

    [25]

    黎威志, 王军 2012 物理学报 61 114401Google Scholar

    Li W Z, Wang J 2012 Acta Phys. Sin. 61 114401Google Scholar

    [26]

    邵春瑞, 李海洋, 王军, 夏国栋 2021 物理学报 70 236501Google Scholar

    Shao C R, Li H Y, Wang J, Xia G D 2021 Acta Phys. Sin. 70 236501Google Scholar

    [27]

    Shi X L, Aghdam M K H, Ansari R 2019 Proc. Inst. Mech. Eng. Pt. L: J. Mater. Design Appl. 233 1843Google Scholar

    [28]

    Hassanzadeh-Aghdam M K, Ansari R 2020 Mater. Chem. Phys. 252 123273Google Scholar

    [29]

    Chawla N, Deng X, Schnell D R M 2006 Mater. Sci. Eng. A: Struct. Mater. Prop. Microstruct. Process. 426 314Google Scholar

    [30]

    Gurrum S P, Zhao J H, Edwards D R 2011 J. Mater. Sci. 46 101Google Scholar

    [31]

    Han K K, Zhou J, Li Q Z, Shen J, Qi Y Y, Yao X P, Chen W 2020 J. Mater. Sci. Mater. Electron. 31 9196Google Scholar

    [32]

    Kang S, Hong S I, Choe C R, et al. 2001 Polymer 42 879Google Scholar

    [33]

    Pan J, Bian L C 2017 Acta. Mech. 228 4341Google Scholar

    [34]

    La Carrubba V, Butters M, Zoetelief W 2008 Polym. Bull. 59 813Google Scholar

  • [1] 廖庆, 李炳生, 葛芳芳, 张宏鹏, 申铁龙, 毛雪丽, 王任大, 盛彦斌, 常海龙, 王志光, 徐帅, 陈黎明, 何晓珣. T91钢和SIMP钢表面AlOx涂层在600 ℃静态液态铅铋共晶中的稳定性和腐蚀行为. 物理学报, 2022, 71(15): 156103. doi: 10.7498/aps.71.20220356
    [2] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析. 物理学报, 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [3] 王党会, 许天旱, 宋海洋. 纤锌矿GaN外延层薄膜热膨胀行为的变温Raman散射研究. 物理学报, 2016, 65(13): 130702. doi: 10.7498/aps.65.130702
    [4] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究. 物理学报, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [5] 黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益. 硅基板和铜基板垂直结构GaN基LED变温变电流发光性能的研究. 物理学报, 2014, 63(21): 217806. doi: 10.7498/aps.63.217806
    [6] 王小娟, 阮莹, 洪振宇. Al-Cu-Ge合金的热物理性质与快速凝固规律研究. 物理学报, 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [7] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [8] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟. 物理学报, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [9] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比. 物理学报, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [10] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [11] 刘福生, 陈贤鹏, 谢华兴, 敖伟琴, 李均钦. Sc2-xGaxW3O12体系负热膨胀性能研究. 物理学报, 2010, 59(5): 3350-3356. doi: 10.7498/aps.59.3350
    [12] 刘东戎, 桑宝光, 康秀红, 李殿中. 考虑固相移动的大尺寸钢锭宏观偏析数值模拟. 物理学报, 2009, 58(13): 104-S111. doi: 10.7498/aps.58.104
    [13] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [14] 江慧丰, 张青川, 陈学东, 范志超, 陈忠家, 伍小平. 位错与溶质原子间动态相互作用的数值模拟研究. 物理学报, 2007, 56(6): 3388-3392. doi: 10.7498/aps.56.3388
    [15] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [16] 朱昌盛, 王智平, 荆 涛, 肖荣振. 二元合金微观偏析的相场法数值模拟. 物理学报, 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
    [17] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [18] 邹 军, 张连翰, 周圣明, 徐 军, 韩 平, 张 荣. γ-LiAlO2晶体生长、改性和热学性质研究. 物理学报, 2005, 54(9): 4269-4272. doi: 10.7498/aps.54.4269
    [19] 柳学榕, 胡泊, 刘文汉, 高琛. 扫描近场微波显微镜测量非线性介电常数的理论校准系数. 物理学报, 2003, 52(1): 34-38. doi: 10.7498/aps.52.34
    [20] 丁伯江, 匡光力, 刘岳修, 沈慰慈, 俞家文, 石跃江. 低杂波电流驱动的数值模拟. 物理学报, 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
计量
  • 文章访问数:  4666
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-27
  • 修回日期:  2022-07-07
  • 上网日期:  2022-10-20
  • 刊出日期:  2022-11-05

/

返回文章
返回