-
光致变色材料作为一种自适应型智能材料, 在智能窗户、光电传感器、光学存储等领域均有广泛的应用. 稀土含氧氢化物(REHxOy)薄膜作为一种新型光致变色材料, 自发现以来, 就以其高效可逆的变色性能、简单可重复的制备方法、快速的着褪色时间受到了大量的关注. 本文基于近年来针对稀土含氧氢化物光致变色薄膜的结构组成、变色机理、性能调控的研究现状进行了综述. REHxOy薄膜可以响应紫外光和可见光的激发, 对全光谱波段透过率进行大幅调节. 光致变色机理可归类为晶格收缩机制、氧交换机制、局部金属相变、氢迁移机制4种解释. 目前可以通过控制薄膜形貌、设计化学组分、提高衬底适配、多层膜结构设计等方式进行性能调控. 最后对薄膜之后的研究重点进行了展望.Photochromic material, as an adaptive smart material, has a wide range of applications in smart windows, photoelectric sensors, optical storage, etc. Oxygen-containing rare-earth metal hydride (REHxOy) film, a new type of photochromic material, has attracted the attention of researchers for its efficient and reversible color-changing properties, simple and reproducible preparation methods, and fast darkening-bleaching time. In this paper we review the current research status of structural composition, color change mechanism, and property modulation of oxygen-containing rare-earth metal hydride films. Exposure to visible light and ultraviolet (UV) light can lead the optical transmission of visible and infrared (IR) light to degrade. The photochromic mechanisms can be grouped into four mechanisms: lattice contraction mechanism, oxygen exchange mechanism, local metal phase change, and hydrogen migration mechanism. Currently, performance can be tuned by controlling film morphology, designing chemical components, improving substrate adaptation, multilayer film structure design, etc. Finally, the future research focus of thin film is prospected.
-
Keywords:
- photochromic materials /
- REHxOy thin film /
- structural composition /
- mechanism /
- property modulation
[1] Ke Y, Chen J, Lin G, Wang S, Zhou Y, Yin J, Pooi S L, Long Y 2019 Adv. Energy Mater. 9 1902066Google Scholar
[2] Ma Y, Yu Y, She P, Lu J, Liu S, Huang W, Zhao Q 2020 Sci. Adv. 6 2386Google Scholar
[3] Barachevsky V A, Strokach Y P, Krayushkin M M 2007 J. Phys. Org. Chem. 20 1007Google Scholar
[4] Qin M, Huang Y, Li F, Song Y 2015 J. Mater. Chem. C 3 9265Google Scholar
[5] Gavrilyuk A I 2013 Appl. Surf. Sci. 273 735Google Scholar
[6] Eglitis R, Zukuls A, Viter R 2020 Photochem. Photobiol. Sci. 19 1072Google Scholar
[7] Zhu Y, Yao Y, Chen, Zhang Z, Zhang P, Cheng Z, Gao Y 2022 Sol. Energy Mater. Sol. Cells 239 111664Google Scholar
[8] Tang W 2022 Chem. Eng. J. 435 134670Google Scholar
[9] Huiberts J N, Griessen R, Rector J H, Wijngaarden R J, Dekker J P 1996 Nature 380 231Google Scholar
[10] Hoekstra A F T, Roy A S, Rosenbaum T F, Griessen R 2001 Phys. Rev. Lett. 86 5349Google Scholar
[11] Ngene P, Longo A, Moojj L 2017 Nat. Commun. 8 1846Google Scholar
[12] Ohumura A, Machida A, Watanuki T 2007 Appl. Phys. Lett. 91 151904Google Scholar
[13] Mongstad T, Platzer-Bjorkman C, Maehlen J, Lennard P A M, Yevheniy P, Dam B, Marstein E, Karazhanov S Z 2011 Sol. Energy Mater. Sol. Cells 95 3596Google Scholar
[14] Nafezarefi F, Schreuders H, Dam B 2017 Appl. Phys. Lett. 111 103903Google Scholar
[15] Colombi G, Dekrom T, Chaykina D 2021 ACS Photonics 8 709Google Scholar
[16] Baba E M, Montero J, Moldarev D, Moro M V, Wolff M, Primetzhofer D, Sartori S, Zayim E, Karazhanov S Z 2020 Molecules 25 3181Google Scholar
[17] Moldarev D, Moro M V, You C C, Elbruz M B, Karazhanov S Z 2018 Phys. Rev. Mater. 2 115203Google Scholar
[18] Chai J, Shao Z, Wang H, Ming C, Oh W, Ye T, Zhang Y, Cao X, Ping Jin, Sun Y 2020 Sci. China Mater. 63 1579Google Scholar
[19] Colombi G, Cornelius S, Longo A 2020 J. Phys. Chem. C 124 13541Google Scholar
[20] Pishtshev A, Strougovshchikov E, Karazhanov S 2019 Cryst. Growth Des. 19 2574Google Scholar
[21] Chaykin D, Nafezarefi F, Colombi G, Cornelius S, Lars J 2022 J. Phys. Chem. C 126 2276Google Scholar
[22] Montero J, Martinsen F A, Lelis M, Karazhanov S Z, Hauback B C, Marstein E S 2018 Sol. Energy Mater. Sol. Cells 177 106
[23] Pishtshev A, Karazhanov S Z 2014 Solid State Commun. 194 39Google Scholar
[24] You C C, Moldarev D, Mongstada T, Primetzhofer D, Wolffb M, Marsteina E S, Karazhanov S Z 2017 Sol. Energy Mater. Sol. Cells. 166 185Google Scholar
[25] You C C, Mongstad T, Marstein E S, Karazhanov S Z 2019 Materialia 6 100307Google Scholar
[26] Kantre K, Moro M V, Moldarev D 2020 Scr. Mater. 186 352Google Scholar
[27] Mongstad T, Subrahmanyam A, Karazhanov S 2014 Sol. Energy Mater. Sol. Cells 128 270Google Scholar
[28] Komatsu Y, Sato R, Wilde M, Nishio K, Katase T, Matsumura D, Saitoh H, Miyauchi M, Adelman J R, McFadden R M L, MacFarlane W A, Sugiyama J, Komatsu T H Y 2022 Chem. Mater. 34 3616Google Scholar
[29] Montero J, Galeckas A, Karazhanov S Z 2018 Phys. Status Solidi B 255 1800139Google Scholar
[30] You C C, Karazhanov S Z 2020 J. Appl. Phys. 128 013106Google Scholar
[31] Shao Z, Cao X, Zhang Q, Long S, Chang T, Xu F, Jin P. 2019 Sol. Energy Mater. Sol. Cells 200 110044Google Scholar
[32] Moro M V 2019 Sol. Energy Mater. Sol. Cells 201 110119Google Scholar
[33] Baba E M, Weiser P M, Karazhanov S 2021 Phys. Status Solidi RRL Rapid Res. Lett. 15 2000459Google Scholar
[34] Zhang Q, Xie L, Zhu Y, Tao Y, Li R, Xua J, Bao S, Jin P 2019 Sol. Energy Mater. Sol. Cells 20 109930
[35] Dam B, Remhof A, Heijna M C R, Rector J H, Borsa D, Kerssemakers J W J 2003 J. Alloys Compd. 356–357 526Google Scholar
[36] 田民波, 李正操 2011 薄膜技术与薄膜材料 (北京: 清华大学出版社) 第251页
Tian M B, Li Z C 2011 Thin Film Technology and Thin-Film Materials (Beijing: Tsinghua University Press) p251 (in Chinese)
[37] Maehlen J P, Mongstad T T, You C C, Karazhanov S 2013 J. Alloys Compd. 580 119Google Scholar
[38] Plokkera M P, Eijta S W H, Nazirisa F, Schutb H, Nafezarefic F, Schreudersc H, Corneliusc S, Dam B 2018 Sol. Energy Mater. Sol. Cells 177 97Google Scholar
[39] Eijta S W H, Kroma T W H, Chaykinab D, Schuta H, Colombib G, Eggerc W, Dickmannc M, Hugenschmidtd C, Dam B 2020 Acta Phys. Pol. A 137 205Google Scholar
[40] Montero J, Martinsen F A, García-Tecedor M, Karazhanov S Z, Maestre D, Hauback B, Marstein E S 2017 Phys. Rev. B 95 201301Google Scholar
[41] Baba E M, Montero J, Strugovshchikov E, Zayim E, Karazhanov S 2020 Phys. Rev. Mater. 4 025201Google Scholar
[42] Moldarev D, Stolz L, Marcos V 2021 Phys. Status Solidi RRL Rapid Res. Lett. 15 2000608Google Scholar
[43] Moldarev D, Stolz L, Moro M V, Aðalsteinsson S M, Chioar I A, Karazhanov S Z, Primetzhofer D, Wolff M 2021 J. Appl. Phys. 129 153101Google Scholar
[44] Hans M, Tran T T, Aðalsteinsson S M, Moldarev D, Moro M V, Wolff M, Primetzhofer D 2020 Adv. Opt. Mater. 8 2000822Google Scholar
[45] Chandran C V, Schreuders H, Dam B, Janssen J W G, Bart J, Kentgens A P M 2014 J. Phys. Chem. C 118 22935Google Scholar
[46] Nafezarefi F, Cornelius S, Dam B 2019 Sol. Energy Mater. Sol. Cells 200 109923Google Scholar
[47] Moldarev D, Wolff M, Baba E M, Moro M V, You C C, Primetzhofer D, Karazhanov S Z 2020 Materialia 11 100706Google Scholar
[48] Mayer M, Eckstein W, Langhuth H, Schiettekatte F, Toussaint U 2011 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 269 3006Google Scholar
[49] 陈赟斐, 魏峰, 王赫, 赵未昀, 邓元 2021 物理学报 70 207303Google Scholar
Chen Y F, Wei F, Wang H, Zhao W H, Deng Y 2021 Acta Phys. Sin. 70 207303Google Scholar
[50] Chen J K, Mao W, Ge B, Wang J, Ke X Y, Wang V, Wang Y P, Döbeli M, Geng W T, Matsuzaki H, Shi J, Jiang Y 2019 Nat. Commun. 10 694Google Scholar
[51] 白刚, 韩宇航, 高存法 2022 物理学报 71 097701Google Scholar
Bai G, Han Y H, Gao C F 2022 Acta Phys. Sin. 71 097701Google Scholar
[52] You C C, Mongstad T, Maehlen J P 2015 Sol. Energy Mater. Sol. Cells 143 623Google Scholar
[53] You C C, Mongstad T, Maehlen J P, Karazhanov S 2014 Appl. Phys. Lett. 105 031910Google Scholar
[54] Moldarev D, Primetzhofer D, You C C, Karazhanov S Z, Montero J, Martinsen F, Mongstad T, Marstein E S, Wolff M 2018 Sol. Energy Mater. Sol. Cells 177 66Google Scholar
[55] Strugovshchikov E, Pishtshev A, Karazhanov S 2021 Phys. Status Solidi B 258 2100179Google Scholar
[56] 拉毛, 包山虎, 莎仁 2018 化学学报 77 90Google Scholar
La M, Bao S H, Sha R 2018 Acta Chim. Sin. 77 90Google Scholar
-
图 3 氧浓度对薄膜带隙的影响 (a)梯度氧含量制备样品; (b)横向尺度上O/Y化学计量比; (c)横向尺度上带隙变化[24]
Fig. 3. Effect of oxygen concentration on the band gap of thin films: (a) Samples prepared with gradient oxygen content; (b) the O/Y stoichiometric ratio in the horizontal direction; (c) the band gap variation in the horizontal direction[24].
图 4 YHxOy薄膜光学性能和电学性能 (a)光照前后样品透过率、反射率和光学密度的变化[13]; (b) Tauc-plot法计算样品直接带隙与间接带隙[29]; (c)光照前后样品的电阻变化[28]
Fig. 4. Optical and electrical properties of YHxOy films: (a) The changes in transmission, reflection, and optical density of YHxOy films before and after light exposure[13]; (b) the direct and indirect bandgap of YHxOy films[29]; (c) the changes in resistivity of YHxOy films under light induction[28].
图 6 (a)同步X射线原位表征光照下样品晶格变化[37]; (b)光照之后拉曼光谱中出现金属相峰位[40]; (c)不同气氛下样品光照后的褪色速度[41]; (d)光致变色前后薄膜成分变化[32]
Fig. 6. (a) Simultaneous X-ray in situ characterization of sample lattice changes under illumination[37]; (b) appearance of metal phase peaks in Raman spectra after illumination[40]; (c) recovery rate of samples under different atmospheres after illumination[41]; (d) the change in film composition before and after photochromic[32].
图 9 (a)不同衬底样品的光致变色响应[52]; (b) 不同厚度样品的光致变色响应[47]; (c)不同稀土元素样品的光致变色响应[14]; 不同溅射压力样品(d) YHxOy薄膜和(e) GdHxOy薄膜的光致变色响应[15], 以及(f)光致变色性能与化学组分之间的关系[15]
Fig. 9. (a) Photochromic response of samples with different substrates[52]; (b) photochromic response of samples with different thicknesses[47]; (c) photochromic response of different rare earth element samples[14]. The photochromic response of different sputtering pressure samples: (d) YHxOy film; (e) GdHxOy film[15]; (f) relationship between photochromic properties and chemical components[15].
Type of the material Name of material Photochromism principle Method of bleaching Color change Organic Diarylethenes Photocyclization reaction Expose to visible light Colorless → red Fulgide Photochemical conrotatory Expose to visible light Pale yellow → red Spriopyran Hetetolytic cleavage/photocyclization Expose to visible light/heating Colorless → purple Naphthopyarn Hetetolytic cleavage/photocyclization Removing UV Colorless → gray Inorganic TMOs WO3 Photon prompted redox reaction Removing UV Colorless → blue TiO2 Photon prompted redox reaction Removing UV and
exposing to airFaint yellow → black MoO3 Intercalation-deintercalation of univalent cations Removing UV White → blue Metal halides Lead chloride [Pb3Cl6(CV)]H2O]n Light-triggered electron transfer Removing UV/
anneal in airPale yellow → blue AgCl Light-triggered reversible decomposition Removing UV Transparent → brown -
[1] Ke Y, Chen J, Lin G, Wang S, Zhou Y, Yin J, Pooi S L, Long Y 2019 Adv. Energy Mater. 9 1902066Google Scholar
[2] Ma Y, Yu Y, She P, Lu J, Liu S, Huang W, Zhao Q 2020 Sci. Adv. 6 2386Google Scholar
[3] Barachevsky V A, Strokach Y P, Krayushkin M M 2007 J. Phys. Org. Chem. 20 1007Google Scholar
[4] Qin M, Huang Y, Li F, Song Y 2015 J. Mater. Chem. C 3 9265Google Scholar
[5] Gavrilyuk A I 2013 Appl. Surf. Sci. 273 735Google Scholar
[6] Eglitis R, Zukuls A, Viter R 2020 Photochem. Photobiol. Sci. 19 1072Google Scholar
[7] Zhu Y, Yao Y, Chen, Zhang Z, Zhang P, Cheng Z, Gao Y 2022 Sol. Energy Mater. Sol. Cells 239 111664Google Scholar
[8] Tang W 2022 Chem. Eng. J. 435 134670Google Scholar
[9] Huiberts J N, Griessen R, Rector J H, Wijngaarden R J, Dekker J P 1996 Nature 380 231Google Scholar
[10] Hoekstra A F T, Roy A S, Rosenbaum T F, Griessen R 2001 Phys. Rev. Lett. 86 5349Google Scholar
[11] Ngene P, Longo A, Moojj L 2017 Nat. Commun. 8 1846Google Scholar
[12] Ohumura A, Machida A, Watanuki T 2007 Appl. Phys. Lett. 91 151904Google Scholar
[13] Mongstad T, Platzer-Bjorkman C, Maehlen J, Lennard P A M, Yevheniy P, Dam B, Marstein E, Karazhanov S Z 2011 Sol. Energy Mater. Sol. Cells 95 3596Google Scholar
[14] Nafezarefi F, Schreuders H, Dam B 2017 Appl. Phys. Lett. 111 103903Google Scholar
[15] Colombi G, Dekrom T, Chaykina D 2021 ACS Photonics 8 709Google Scholar
[16] Baba E M, Montero J, Moldarev D, Moro M V, Wolff M, Primetzhofer D, Sartori S, Zayim E, Karazhanov S Z 2020 Molecules 25 3181Google Scholar
[17] Moldarev D, Moro M V, You C C, Elbruz M B, Karazhanov S Z 2018 Phys. Rev. Mater. 2 115203Google Scholar
[18] Chai J, Shao Z, Wang H, Ming C, Oh W, Ye T, Zhang Y, Cao X, Ping Jin, Sun Y 2020 Sci. China Mater. 63 1579Google Scholar
[19] Colombi G, Cornelius S, Longo A 2020 J. Phys. Chem. C 124 13541Google Scholar
[20] Pishtshev A, Strougovshchikov E, Karazhanov S 2019 Cryst. Growth Des. 19 2574Google Scholar
[21] Chaykin D, Nafezarefi F, Colombi G, Cornelius S, Lars J 2022 J. Phys. Chem. C 126 2276Google Scholar
[22] Montero J, Martinsen F A, Lelis M, Karazhanov S Z, Hauback B C, Marstein E S 2018 Sol. Energy Mater. Sol. Cells 177 106
[23] Pishtshev A, Karazhanov S Z 2014 Solid State Commun. 194 39Google Scholar
[24] You C C, Moldarev D, Mongstada T, Primetzhofer D, Wolffb M, Marsteina E S, Karazhanov S Z 2017 Sol. Energy Mater. Sol. Cells. 166 185Google Scholar
[25] You C C, Mongstad T, Marstein E S, Karazhanov S Z 2019 Materialia 6 100307Google Scholar
[26] Kantre K, Moro M V, Moldarev D 2020 Scr. Mater. 186 352Google Scholar
[27] Mongstad T, Subrahmanyam A, Karazhanov S 2014 Sol. Energy Mater. Sol. Cells 128 270Google Scholar
[28] Komatsu Y, Sato R, Wilde M, Nishio K, Katase T, Matsumura D, Saitoh H, Miyauchi M, Adelman J R, McFadden R M L, MacFarlane W A, Sugiyama J, Komatsu T H Y 2022 Chem. Mater. 34 3616Google Scholar
[29] Montero J, Galeckas A, Karazhanov S Z 2018 Phys. Status Solidi B 255 1800139Google Scholar
[30] You C C, Karazhanov S Z 2020 J. Appl. Phys. 128 013106Google Scholar
[31] Shao Z, Cao X, Zhang Q, Long S, Chang T, Xu F, Jin P. 2019 Sol. Energy Mater. Sol. Cells 200 110044Google Scholar
[32] Moro M V 2019 Sol. Energy Mater. Sol. Cells 201 110119Google Scholar
[33] Baba E M, Weiser P M, Karazhanov S 2021 Phys. Status Solidi RRL Rapid Res. Lett. 15 2000459Google Scholar
[34] Zhang Q, Xie L, Zhu Y, Tao Y, Li R, Xua J, Bao S, Jin P 2019 Sol. Energy Mater. Sol. Cells 20 109930
[35] Dam B, Remhof A, Heijna M C R, Rector J H, Borsa D, Kerssemakers J W J 2003 J. Alloys Compd. 356–357 526Google Scholar
[36] 田民波, 李正操 2011 薄膜技术与薄膜材料 (北京: 清华大学出版社) 第251页
Tian M B, Li Z C 2011 Thin Film Technology and Thin-Film Materials (Beijing: Tsinghua University Press) p251 (in Chinese)
[37] Maehlen J P, Mongstad T T, You C C, Karazhanov S 2013 J. Alloys Compd. 580 119Google Scholar
[38] Plokkera M P, Eijta S W H, Nazirisa F, Schutb H, Nafezarefic F, Schreudersc H, Corneliusc S, Dam B 2018 Sol. Energy Mater. Sol. Cells 177 97Google Scholar
[39] Eijta S W H, Kroma T W H, Chaykinab D, Schuta H, Colombib G, Eggerc W, Dickmannc M, Hugenschmidtd C, Dam B 2020 Acta Phys. Pol. A 137 205Google Scholar
[40] Montero J, Martinsen F A, García-Tecedor M, Karazhanov S Z, Maestre D, Hauback B, Marstein E S 2017 Phys. Rev. B 95 201301Google Scholar
[41] Baba E M, Montero J, Strugovshchikov E, Zayim E, Karazhanov S 2020 Phys. Rev. Mater. 4 025201Google Scholar
[42] Moldarev D, Stolz L, Marcos V 2021 Phys. Status Solidi RRL Rapid Res. Lett. 15 2000608Google Scholar
[43] Moldarev D, Stolz L, Moro M V, Aðalsteinsson S M, Chioar I A, Karazhanov S Z, Primetzhofer D, Wolff M 2021 J. Appl. Phys. 129 153101Google Scholar
[44] Hans M, Tran T T, Aðalsteinsson S M, Moldarev D, Moro M V, Wolff M, Primetzhofer D 2020 Adv. Opt. Mater. 8 2000822Google Scholar
[45] Chandran C V, Schreuders H, Dam B, Janssen J W G, Bart J, Kentgens A P M 2014 J. Phys. Chem. C 118 22935Google Scholar
[46] Nafezarefi F, Cornelius S, Dam B 2019 Sol. Energy Mater. Sol. Cells 200 109923Google Scholar
[47] Moldarev D, Wolff M, Baba E M, Moro M V, You C C, Primetzhofer D, Karazhanov S Z 2020 Materialia 11 100706Google Scholar
[48] Mayer M, Eckstein W, Langhuth H, Schiettekatte F, Toussaint U 2011 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 269 3006Google Scholar
[49] 陈赟斐, 魏峰, 王赫, 赵未昀, 邓元 2021 物理学报 70 207303Google Scholar
Chen Y F, Wei F, Wang H, Zhao W H, Deng Y 2021 Acta Phys. Sin. 70 207303Google Scholar
[50] Chen J K, Mao W, Ge B, Wang J, Ke X Y, Wang V, Wang Y P, Döbeli M, Geng W T, Matsuzaki H, Shi J, Jiang Y 2019 Nat. Commun. 10 694Google Scholar
[51] 白刚, 韩宇航, 高存法 2022 物理学报 71 097701Google Scholar
Bai G, Han Y H, Gao C F 2022 Acta Phys. Sin. 71 097701Google Scholar
[52] You C C, Mongstad T, Maehlen J P 2015 Sol. Energy Mater. Sol. Cells 143 623Google Scholar
[53] You C C, Mongstad T, Maehlen J P, Karazhanov S 2014 Appl. Phys. Lett. 105 031910Google Scholar
[54] Moldarev D, Primetzhofer D, You C C, Karazhanov S Z, Montero J, Martinsen F, Mongstad T, Marstein E S, Wolff M 2018 Sol. Energy Mater. Sol. Cells 177 66Google Scholar
[55] Strugovshchikov E, Pishtshev A, Karazhanov S 2021 Phys. Status Solidi B 258 2100179Google Scholar
[56] 拉毛, 包山虎, 莎仁 2018 化学学报 77 90Google Scholar
La M, Bao S H, Sha R 2018 Acta Chim. Sin. 77 90Google Scholar
计量
- 文章访问数: 6038
- PDF下载量: 78
- 被引次数: 0