搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

限域结构热致变色相变环氧复合绝缘陷阱特性的机理

高建 王磊 周恩泽 唐艳霞 隋浩然 武康宁 李建英

引用本文:
Citation:

限域结构热致变色相变环氧复合绝缘陷阱特性的机理

高建, 王磊, 周恩泽, 唐艳霞, 隋浩然, 武康宁, 李建英
cstr: 32037.14.aps.74.20241447

Research on trap characteristic mechanisms of thermochromic phase change epoxy composite with confined structure

GAO Jian, WANG Lei, ZHOU Enze, TANG Yanxia, SUI Haoran, WU Kangning, LI Jianying
cstr: 32037.14.aps.74.20241447
PDF
HTML
导出引用
  • 热致变色相变复合绝缘在电热激励下能实现一系列先进功能, 已广泛应用于大量智能电气与电子设备中. 然而热致变色相变复合绝缘存在限域结构, 无法通过现有的纳米复合界面模型分析其电荷陷阱特性, 导致其在电热耦合应力下的介电可靠性提升缺乏科学依据. 本文通过等温表面电位衰减(ISPD)、开尔文探针力显微镜(KPFM)等方法, 研究了热致变色相变环氧复合绝缘的电荷陷阱特性与机理. 结果表明: 30 ℃和70 ℃下限域结构对热致变色相变环氧绝缘陷阱特性的影响趋势相反, 可能源于限域相变或限域界面的影响. 理论分析发现, 限域相变对陷阱温度特性的影响规律与实验结果不符, 并非影响陷阱温度特性的主要原因. 通过KPFM原位表征直接验证了限域界面内存在势垒, 且起源于接触起电机制. 限域界面接触起电电荷量随温度的变化会影响限域界面势垒高度, 是影响陷阱温度特性的主要原因.
    Thermochromic phase change insulating composite can possess a series of advanced functions under electrothermal stimuli, which has been widely applied in a great number of intelligent electrical and electronic devices. However, due to the confined structure of thermochromic phase change insulating composite, the trap characteristics cannot be analyzed by existing interface models of nanodielectrics, which inhibits the scientific improvement of dielectric reliability under the electrothermal stress. In this paper, the trap characteristic and mechanism of thermochromic phase change epoxy composites are studied by the isothermal surface potential decay (ISPD) and the Kelvin probe force microscopy (KPFM). The results show that the variation trends of trap characteristics after introducing confined structures at 30 ℃ and 70 ℃ are opposite, which could derive from the confined phase change or the confined interface. Theoretical analysis shows that the influence of confined phase change on temperature dependent trap characteristics is inconsistent with experimental results, which cannot be the essential reason for affecting the trap characteristics. KPFM in-situ characterization directly verifies the existence of potential barriers in the confined interface, which originates from the contact electrification mechanism. The variation of temperature dependent charge quantity due to contact electrification at the confined interface can affect the barrier height, which can substantially affect the temperature dependent trap characteristics.
      通信作者: 高建, Gaojian266414@163.com
    • 基金项目: 国家自然科学基金(批准号: 52107028)和中央高校基本科研业务费(批准号: xzy012024013)资助的课题.
      Corresponding author: GAO Jian, Gaojian266414@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52107028) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. xzy012024013).
    [1]

    Jin Y, Lin Y, Kiani A, Joshipura I D, Ge M, Dickey M D 2019 Nat. Commun. 10 4187Google Scholar

    [2]

    Kim H, Lee H, Ha I, Jung J, Won P, Cho H, Yeo J, Hong S, Han S, Kwon J, Cho K J, Ko S H 2018 Adv. Funct. Mater. 28 1801847Google Scholar

    [3]

    Kim G, Cho S, Chang K, Kim W S, Kang H, Ryu S P, Myoung J, Park J, Park C, Shim W 2017 Adv. Mater. 29 13Google Scholar

    [4]

    Xiong R G, Lu S Q, Zhang Z X, Cheng H, Li P F, Liao W Q 2020 Angew. Chem. Int. Ed. 59 9574Google Scholar

    [5]

    Berardi U, Garai M, Morselli T 2020 Sol. Energy 209 493Google Scholar

    [6]

    Geiselhart C M, Mutlu H, Kowollik B C 2021 Angew. Chem. Int. Ed. 60 17290Google Scholar

    [7]

    Kim H, Seo M, Kim J W, Kwon D K, Choi S E, Kim J W, Myoung J M 2019 Adv. Funct. Mater. 29 1901061Google Scholar

    [8]

    Won P, Kim K K, Kim H, Park J J, Ha I., Shin J, Jung J, Cho H, Kwon J, Lee H, Ko S H 2021 Adv. Mater. 33 e2002397Google Scholar

    [9]

    Huang X, Han L, Yang X, Huang Z, Hu J, Li Q, He J 2022 iEnergy 1 19Google Scholar

    [10]

    Rain P, Nguyen D H, Sylvestre A, Rowe S 2009 J. Phys. D: Appl. Phys. 42 235404.Google Scholar

    [11]

    Kao K C 2004 Dielectric Phenomena in Solids (California: Elsevier Academic Press

    [12]

    Li S, Yin G, Chen G, Li J, Bai S, Zhong L, Zhang Y, Lei Q Q 2010 IEEE Trans. Dielectr. Electr. Insul. 17 1523Google Scholar

    [13]

    Sui H, Wu K, Zhao G, Yang K, Dong J Y, Li J Y 2024 Chem. Eng. J. 485 149811Google Scholar

    [14]

    宋小凡, 闵道敏, 高梓巍, 王泊心, 郝予涛, 高景晖, 钟力生 2024 物理学报 73 027301Google Scholar

    Song X F, Min D M, Gao Z W, Wang P X, Hao Y T, Gao J H, Zhong L S 2024 Acta Phys. Sin. 73 027301Google Scholar

    [15]

    Gao J, Wu K N, Zhang Z L, Li J Y, Li S T 2023 J. Phys. D: Appl. Phys. 56 425502Google Scholar

    [16]

    高建, 李建英 2023 物理学报 72 107701Google Scholar

    Gao J, Li J Y 2023 Acta Phys. Sin. 72 107701Google Scholar

    [17]

    Lewis T J 1994 IEEE Trans. Dielectr. Electr. Insul. 1 812Google Scholar

    [18]

    Tanaka T, Kozako M, Fuse N 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669Google Scholar

    [19]

    Li S T, Yin G L, Bai S N 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1535Google Scholar

    [20]

    Liu P, Xie Z L, Pang X, Xu T L, Zhang S Y, Morshuis P, Li H, Peng Z R 2022 Adv. Electron. Mater. 8 2200259Google Scholar

    [21]

    李进, 王雨帆, 杜伯学, 梁虎成 2019 广东电力 32 3Google Scholar

    Li J, Wang Y F, Du B X, Liang H C 2019 Guangdong Electric Power 32 3Google Scholar

    [22]

    付强, 彭磊, 李智, 林木松, 张丽, 谢松瑜, 侯永平, 孔晓晓, 杜伯学 2024 广东电力 37 69Google Scholar

    Fu Q, Peng L, Li Z, Lin M S, Zhang L, Xie S Y, Hou Y P, Kong X X, Du B X 2024 Guangdong Electric Power 37 69Google Scholar

    [23]

    李国倡, 李盛涛 2019 物理学报 68 239401Google Scholar

    Li G C, Li S T 2019 Acta Phys. Sin. 68 239401Google Scholar

    [24]

    Zhou J, Li Y, Wu Y, Jia B, Zhu L, Jiang Y, Li Z, Wu K 2019 Langmuir 35 12053Google Scholar

    [25]

    Gao J, Wu K, Li J, Yin G, Li S 2022 Smart Mater. Struct. 32 015019Google Scholar

    [26]

    Takada T, Hayase Y, Tanaka Y, Tatsuki O 2008 IEEE Trans. Dielectr. Electr. Insul. 15 152Google Scholar

    [27]

    Hwang J G, Zahn M, O’Sullivan F M, Pettersson L A A, Hjortstam O, Liu R 2010 J. Appl. Phys. 107 014310Google Scholar

    [28]

    Sima W, Shi J, Yang Q, Huang S, Cao X 2015 IEEE Trans. Dielectr. Electr. Insul. 22 380Google Scholar

    [29]

    Gao Y, Xu B, Wang X, Jia T 2019 J. Phys. D: Appl. Phys. 52 285302Google Scholar

    [30]

    Borgani R, Pallon L K H, Hedenqvist M S, Gedde U W, Haviland D B 2016 Nano Lett. 16 5934Google Scholar

    [31]

    Gao J, Wu K N, Xie Z L, Li J Y, Li S T 2023 Compos. Sci. Technol. 244 110291Google Scholar

    [32]

    Jalili M A, Khosroshahi Z, Kheirabadi N R, Karimzadeh F, Enayati M H 2021 Nano Energy 90 106581Google Scholar

    [33]

    Jia B, Zhou J, Chen Y, Lü Z, Guo H, Zhang Z, Zhu Z, Yu H, Wang Y, Wu K 2022 Nanotechnology 33 345709Google Scholar

    [34]

    Zhang X, Chen L, Jiang Y, Lim W, Soh S 2019 Chem. Mater. 31 1473Google Scholar

    [35]

    Ko H, Lim Y, Han S, Jeong C K, Cho S B 2021 ACS Energy Lett. 6 2792Google Scholar

    [36]

    Harris I A, Lim M X, Jaeger H M 2019 Phys. Rev. Mater. 3 085603Google Scholar

  • 图 1  (a)热致变色特性; (b)微观形貌及微胶囊粒径分布; (c)限域相变过程; (d)限域结构特征

    Fig. 1.  (a) Thermochromic characteristics; (b) micromorphology and of microcapsule size distribution; (c) confined phase change process; (d) confined structure characteristics.

    图 2  不同温度下热致变色相变环氧绝缘的陷阱特性 (a) 30 ℃; (b) 70 ℃

    Fig. 2.  Trap characteristics of thermochromic phase change epoxy insulation under different temperatures: (a) 30 ℃; (b) 70 ℃.

    图 3  (a)热致变色相变环氧复合绝缘介电常数特性; (b)微胶囊介电常数温度特性

    Fig. 3.  (a) Dielectric constant characteristics of thermochromic phase change epoxy insulation; (b) temperature dependence of microcapsule dielectric constant.

    图 4  限域相变诱导偶极矩形成的界面势阱分布特性近似计算结果

    Fig. 4.  Approximate calculation results of the distribution characteristics of interface potential wells formed by confined phase transition-induced dipole moment.

    图 5  试样电子迁移率随微胶囊含量和温度的变化

    Fig. 5.  Variation of electron mobility with microcapsule content and temperature in specimens.

    图 6  KPFM实验结果 (a)试样表面形貌; (b)限域界面区域形貌高度轮廓; (c)—(e) 0 V, –5 V, –10 V偏压下限域界面内电势分布

    Fig. 6.  Experiment results of KPFM: (a) Surface morphology of specimen; (b) height profile of morphology in the confined interface region; (c)–(e) potential distribution in the confined interface region under 0 V, –5 V and –10 V bias voltage.

    图 7  KPFM获得的试样表面无限域结构凹坑处的表面形貌(a)和电势分布(b)

    Fig. 7.  Surface morphology (a) and potential distribution (b) of the pit on the specimen surface without confined structure obtained by KPFM.

    图 8  (a)微胶囊囊壁的分子结构; (b)限域界面势垒示意图

    Fig. 8.  (a) Molecular structure of microcapsule shell; (b) schematic of the potential barrier in the confined interface.

    图 9  限域界面势垒对电荷输运行为的影响机制示意图

    Fig. 9.  Schematic of the influence mechanism of confined interface potential barrier on the charge transport behavior.

  • [1]

    Jin Y, Lin Y, Kiani A, Joshipura I D, Ge M, Dickey M D 2019 Nat. Commun. 10 4187Google Scholar

    [2]

    Kim H, Lee H, Ha I, Jung J, Won P, Cho H, Yeo J, Hong S, Han S, Kwon J, Cho K J, Ko S H 2018 Adv. Funct. Mater. 28 1801847Google Scholar

    [3]

    Kim G, Cho S, Chang K, Kim W S, Kang H, Ryu S P, Myoung J, Park J, Park C, Shim W 2017 Adv. Mater. 29 13Google Scholar

    [4]

    Xiong R G, Lu S Q, Zhang Z X, Cheng H, Li P F, Liao W Q 2020 Angew. Chem. Int. Ed. 59 9574Google Scholar

    [5]

    Berardi U, Garai M, Morselli T 2020 Sol. Energy 209 493Google Scholar

    [6]

    Geiselhart C M, Mutlu H, Kowollik B C 2021 Angew. Chem. Int. Ed. 60 17290Google Scholar

    [7]

    Kim H, Seo M, Kim J W, Kwon D K, Choi S E, Kim J W, Myoung J M 2019 Adv. Funct. Mater. 29 1901061Google Scholar

    [8]

    Won P, Kim K K, Kim H, Park J J, Ha I., Shin J, Jung J, Cho H, Kwon J, Lee H, Ko S H 2021 Adv. Mater. 33 e2002397Google Scholar

    [9]

    Huang X, Han L, Yang X, Huang Z, Hu J, Li Q, He J 2022 iEnergy 1 19Google Scholar

    [10]

    Rain P, Nguyen D H, Sylvestre A, Rowe S 2009 J. Phys. D: Appl. Phys. 42 235404.Google Scholar

    [11]

    Kao K C 2004 Dielectric Phenomena in Solids (California: Elsevier Academic Press

    [12]

    Li S, Yin G, Chen G, Li J, Bai S, Zhong L, Zhang Y, Lei Q Q 2010 IEEE Trans. Dielectr. Electr. Insul. 17 1523Google Scholar

    [13]

    Sui H, Wu K, Zhao G, Yang K, Dong J Y, Li J Y 2024 Chem. Eng. J. 485 149811Google Scholar

    [14]

    宋小凡, 闵道敏, 高梓巍, 王泊心, 郝予涛, 高景晖, 钟力生 2024 物理学报 73 027301Google Scholar

    Song X F, Min D M, Gao Z W, Wang P X, Hao Y T, Gao J H, Zhong L S 2024 Acta Phys. Sin. 73 027301Google Scholar

    [15]

    Gao J, Wu K N, Zhang Z L, Li J Y, Li S T 2023 J. Phys. D: Appl. Phys. 56 425502Google Scholar

    [16]

    高建, 李建英 2023 物理学报 72 107701Google Scholar

    Gao J, Li J Y 2023 Acta Phys. Sin. 72 107701Google Scholar

    [17]

    Lewis T J 1994 IEEE Trans. Dielectr. Electr. Insul. 1 812Google Scholar

    [18]

    Tanaka T, Kozako M, Fuse N 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669Google Scholar

    [19]

    Li S T, Yin G L, Bai S N 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1535Google Scholar

    [20]

    Liu P, Xie Z L, Pang X, Xu T L, Zhang S Y, Morshuis P, Li H, Peng Z R 2022 Adv. Electron. Mater. 8 2200259Google Scholar

    [21]

    李进, 王雨帆, 杜伯学, 梁虎成 2019 广东电力 32 3Google Scholar

    Li J, Wang Y F, Du B X, Liang H C 2019 Guangdong Electric Power 32 3Google Scholar

    [22]

    付强, 彭磊, 李智, 林木松, 张丽, 谢松瑜, 侯永平, 孔晓晓, 杜伯学 2024 广东电力 37 69Google Scholar

    Fu Q, Peng L, Li Z, Lin M S, Zhang L, Xie S Y, Hou Y P, Kong X X, Du B X 2024 Guangdong Electric Power 37 69Google Scholar

    [23]

    李国倡, 李盛涛 2019 物理学报 68 239401Google Scholar

    Li G C, Li S T 2019 Acta Phys. Sin. 68 239401Google Scholar

    [24]

    Zhou J, Li Y, Wu Y, Jia B, Zhu L, Jiang Y, Li Z, Wu K 2019 Langmuir 35 12053Google Scholar

    [25]

    Gao J, Wu K, Li J, Yin G, Li S 2022 Smart Mater. Struct. 32 015019Google Scholar

    [26]

    Takada T, Hayase Y, Tanaka Y, Tatsuki O 2008 IEEE Trans. Dielectr. Electr. Insul. 15 152Google Scholar

    [27]

    Hwang J G, Zahn M, O’Sullivan F M, Pettersson L A A, Hjortstam O, Liu R 2010 J. Appl. Phys. 107 014310Google Scholar

    [28]

    Sima W, Shi J, Yang Q, Huang S, Cao X 2015 IEEE Trans. Dielectr. Electr. Insul. 22 380Google Scholar

    [29]

    Gao Y, Xu B, Wang X, Jia T 2019 J. Phys. D: Appl. Phys. 52 285302Google Scholar

    [30]

    Borgani R, Pallon L K H, Hedenqvist M S, Gedde U W, Haviland D B 2016 Nano Lett. 16 5934Google Scholar

    [31]

    Gao J, Wu K N, Xie Z L, Li J Y, Li S T 2023 Compos. Sci. Technol. 244 110291Google Scholar

    [32]

    Jalili M A, Khosroshahi Z, Kheirabadi N R, Karimzadeh F, Enayati M H 2021 Nano Energy 90 106581Google Scholar

    [33]

    Jia B, Zhou J, Chen Y, Lü Z, Guo H, Zhang Z, Zhu Z, Yu H, Wang Y, Wu K 2022 Nanotechnology 33 345709Google Scholar

    [34]

    Zhang X, Chen L, Jiang Y, Lim W, Soh S 2019 Chem. Mater. 31 1473Google Scholar

    [35]

    Ko H, Lim Y, Han S, Jeong C K, Cho S B 2021 ACS Energy Lett. 6 2792Google Scholar

    [36]

    Harris I A, Lim M X, Jaeger H M 2019 Phys. Rev. Mater. 3 085603Google Scholar

  • [1] 高建, 李建英. 限域相变对热致变色环氧绝缘材料介电松弛特性的影响. 物理学报, 2023, 72(10): 107701. doi: 10.7498/aps.72.20230253
    [2] 温恒迪, 刘跃, 甄良, 李洋, 徐成彦. MoS2/MoTe2垂直异质结的电荷传输及其调制. 物理学报, 2023, 72(3): 036102. doi: 10.7498/aps.72.20221768
    [3] 冯婕, 郭强, 舒鹏丽, 温阳, 温焕飞, 马宗敏, 李艳君, 刘俊, 伊戈尔·弗拉基米罗维奇·雅明斯基. 超高真空原子尺度Aux/Si(111)-(7×7)表面吸附的电荷分布测量. 物理学报, 2023, 72(11): 110701. doi: 10.7498/aps.72.20230051
    [4] 王慧云, 冯婕, 王旭东, 温阳, 魏久焱, 温焕飞, 石云波, 马宗敏, 李艳君, 刘俊. 室温超高真空环境原子尺度Au/Si(111)-(7×7)不定域吸附的局域接触势能差测量技术. 物理学报, 2022, 71(6): 060702. doi: 10.7498/aps.71.20211853
    [5] 温焕飞, 菅原康弘, 李艳君. 二氧化钛亚表面电荷对其表面点缺陷和吸附原子分布的影响. 物理学报, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [6] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [7] 李国倡, 李盛涛. 空间电子辐射环境中绝缘介质电荷沉积特性及陷阱参数研究综述. 物理学报, 2019, 68(23): 239401. doi: 10.7498/aps.68.20191252
    [8] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [9] 罗达玲, 唐强, 郭竞渊, 张纯祥. MSO4:Eu2+(M =Mg, Ca, Sr, Ba)的等电子陷阱与热释光特性. 物理学报, 2015, 64(8): 087805. doi: 10.7498/aps.64.087805
    [10] 孙志, 王暄, 韩柏, 宋伟, 张冬, 郭翔宇, 雷清泉. 静电力显微镜研究二相材料及其界面介电特性. 物理学报, 2013, 62(3): 030703. doi: 10.7498/aps.62.030703
    [11] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜. 物理学报, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [12] 杨海艳, 王振宇, 李英姿, 张维然, 钱建强. 原子力显微镜探针悬臂几何结构变化对高次谐波信息增强的研究. 物理学报, 2013, 62(20): 200703. doi: 10.7498/aps.62.200703
    [13] 朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英. 纳米VO2/ZnO复合薄膜的热致变色特性研究. 物理学报, 2011, 60(9): 098104. doi: 10.7498/aps.60.098104
    [14] 胡海龙, 张 琨, 王振兴, 王晓平. 自组装硫醇分子膜电输运特性的导电原子力显微镜研究. 物理学报, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [15] 王晓平, 刘磊, 胡海龙, 张琨. 原子力显微术轻敲模式中探针样品接触过程及相位衬度研究. 物理学报, 2004, 53(4): 1008-1014. doi: 10.7498/aps.53.1008
    [16] 张向军, 孟永钢, 温诗铸. 原子力显微镜探针耦合变形下的微观扫描力研究. 物理学报, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [17] 孙润广, 齐浩, 张静. 脂质体结构特性的原子力显微镜研究. 物理学报, 2002, 51(6): 1203-1207. doi: 10.7498/aps.51.1203
    [18] 亓东平, 刘德丽, 滕树云, 张宁玉, 程传福. 随机散射屏的原子力显微镜形貌分析及其光散射特性. 物理学报, 2000, 49(7): 1260-1266. doi: 10.7498/aps.49.1260
    [19] 崔敬忠, 达道安, 姜万顺. VO2热致变色薄膜的结构和光电特性研究. 物理学报, 1998, 47(3): 454-460. doi: 10.7498/aps.47.454
    [20] 陈开茅, 金泗轩, 邱素娟. 少子陷阱特性和铍硅共注半绝缘GaAs空穴陷阱. 物理学报, 1994, 43(8): 1352-1359. doi: 10.7498/aps.43.1352
计量
  • 文章访问数:  278
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-16
  • 修回日期:  2024-11-11
  • 上网日期:  2024-11-27
  • 刊出日期:  2025-01-05

/

返回文章
返回