搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

限域结构热致变色相变环氧复合绝缘陷阱特性的机理研究

高建 王磊 周恩泽 唐艳霞 隋浩然 武康宁 李建英

引用本文:
Citation:

限域结构热致变色相变环氧复合绝缘陷阱特性的机理研究

高建, 王磊, 周恩泽, 唐艳霞, 隋浩然, 武康宁, 李建英

Research on Trap Characteristic Mechanisms of Thermochromic Phase Change Epoxy Composite With Confined Structure

Gao Jian, Wang Lei, Zhou En-ze, Tang Yan-xia, Sui Hao-ran, Wu Kang-ning, Li Jian-ying
PDF
导出引用
  • 热致变色相变复合绝缘在电热激励下能实现一系列先进功能,已广泛应用于大量智能电气与电子设备中. 然而热致变色相变复合绝缘存在限域结构,无法通过现有的纳米复合界面模型分析其电荷陷阱特性,导致其在电热耦合应力下的介电可靠性提升缺乏科学依据. 本文通过等温表面电位衰减(ISPD)、开尔文探针力显微镜(KPFM)等方法,研究了热致变色相变环氧复合绝缘的电荷陷阱特性与机理. 结果表明:30℃和70℃下限域结构对热致变色相变环氧绝缘陷阱特性的影响趋势相反,可能源于限域相变或限域界面的影响. 理论分析发现,限域相变对陷阱温度特性的影响规律与实验结果不符,并非影响陷阱温度特性的主要原因. 通过KPFM原位表征直接验证了限域界面内存在势垒,且起源于接触起电机制. 限域界面接触起电电荷量随温度的变化会影响限域界面势垒高度,是影响陷阱温度特性的主要原因.
    Thermochromic phase change insulating composite can realize a series of advanced functions under electrothermal stimuli, which has been widely applied in numbers of intelligent electrical and electronic devices. However, due to the confined structure of thermochromic phase change insulating composite, the trap characteristics cannot be analyzed by current interface models of nanodielectrics, inhibiting the scientific improvement of dielectric reliability under the electrothermal stress. In this paper, the trap characteristic and mechanism of thermochromic phase change epoxy composites are studied by the isothermal surface potential decay (ISPD) and the Kelvin probe force microscopy (KPFM). Results show that the variation trends of trap characteristics after introducing confined structures are opposite at 30℃ and 70℃, which could derive from the confined phase change or the confined interface. Theoretical analysis shows that the influence of confined phase change on temperature dependent trap characteristics is inconsistent with experimental results, which could not be the essential reason influencing the trap characteristics. KPFM in-situ characterization directly verifies the existence of potential barriers in the confined interface, which originates from the contact electrification mechanism. The temperature dependent charge quantity variation due to contact electrification at the confined interface could impact the barrier height, which substantially affecting the temperature dependent trap characteristics.
  • [1]

    Jin Y, Lin Y, Kiani A, Joshipura I D, Ge M, Dickey M D 2019 Nat. Commun. 10 4187.

    [2]

    Kim H, Lee H, Ha I, Jung J, Won P, Cho H, Yeo J, Hong S, Han S, Kwon J, Cho K J, Ko S H 2018 Adv. Funct. Mater. 28 1801847.

    [3]

    Kim G, Cho S, Chang K, Kim W S, Kang H, Ryu S P, Myoung J, Park J, Park C, Shim W 2017 Adv. Mater. 29 13

    [4]

    Xiong R G, Lu S Q, Zhang Z X, Cheng H, Li P F, Liao W Q 2020 Angew Chem. Int. Ed. Engl. 59 9574

    [5]

    Berardi U, Garai M, Morselli T 2020 Sol. Energy 209 493

    [6]

    Geiselhart C M, Mutlu H, Kowollik B C 2021 Angew Chem. Int. Ed. Engl. 60 17290

    [7]

    Kim H, Seo M, Kim J W, Kwon D K, Choi S E, Kim J W, Myoung J M 2019 Adv. Funct. Mater. 29 1901061

    [8]

    Won P, Kim K K, Kim H, Park J J, Ha I., Shin J, Jung J, Cho H, Kwon J, Lee H, Ko S H 2021 Adv. Mater. 33 e2002397

    [9]

    Huang X, Han L, Yang X, Huang Z, Hu J, Li Q, He J 2022 iEnergy 1 19–49

    [10]

    Rain P, Nguyen D H, Sylvestre A, Rowe S 2009 J. Phys. D Appl. Phys. 42 235404.

    [11]

    Kao K C 2004 Dielectric Phenomena in Solids (California: Elsevier Academic Press)

    [12]

    Li S, Yin G, Chen G, Li J, Bai S, Zhong L, Zhang Y, Lei Q Q 2010 IEEE Trans. Dielectr. Electr. Insul. 17 1523

    [13]

    Sui H, Wu K, Zhao G, Yang K, Dong J Y, Li J Y 2024 Chem Eng J. 485 149811

    [14]

    Song S F, Min D M, Gao Z W, Wang P X, Hao Y T, Gao J H, Zhong L S 2024 Acta Phys. Sin. 73 027301 (in Chinese) [宋小凡,闵道敏,高梓巍,王泊心,郝予涛,高景晖,钟力生 2024 物理学报 73 027301]

    [15]

    Gao J, Wu K N, Zhang Z L, Li J Y, Li S T 2023 J. Phys. D Appl. Phys. 56 425502

    [16]

    Gao J, Li J Y 2023 Acta Phys. Sin. 72(10):107701 (in Chinese) [高建,李建英 2023 物理学报 72 107701]

    [17]

    Lewis TJ 1994 IEEE Trans. Dielectr. Electr. Insul. 1 812

    [18]

    Tanaka T, Kozako M, Fuse N 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669

    [19]

    Li S T, Yin G L, Bai S N 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1535

    [20]

    Liu P, Xie Z L, Pang X, Xu T L, Zhang S Y, Morshuis P, Li H, Peng Z R 2022 Adv. Electron. Mater. 8 2200259

    [21]

    Li J, Wang Y F, Du B X, Liang H C 2019 Guangdong Electric Power 32 3 (in Chinese) [李进,王雨帆,杜伯学,梁虎成 2019 广东电力,32 3]

    [22]

    Fu Q, Peng L, Li Z, Lin M S, Zhang L, Xie S Y, Hou Y P, Kong X X, Du B X 2024, Guangdong Electric Power 37 69 (in Chinese) [付强,彭磊,李智,林木松,张丽,谢松瑜,侯永平,孔晓晓,杜伯学 2024 广东电力,37 69]

    [23]

    Li G C, L S T 2019 Acta Phys. Sin. 68 239401 [李国倡,李盛涛 2019 物理学报 68 239401]

    [24]

    Zhou J, Li Y, Wu Y, Jia B, Zhu L, Jiang Y, Li Z, Wu K. 2019 Langmuir 35 12053

    [25]

    Gao J, Wu K, Li J, Yin G, Li S 2022 Smart Mater. Struct. 32 015019

    [26]

    Takada T, Hayase Y, Tanaka Y, Tatsuki O 2008 IEEE Trans. Dielectr. Electr. Insul. 15 152

    [27]

    Hwang J G, Zahn M, O’Sullivan F M, Pettersson L A A, Hjortstam O, Liu R 2010 J. Appl. Phys. 107 014310

    [28]

    Sima W, Shi J, Yang Q, Huang S, Cao X 2015 IEEE Trans. Dielectr. Electr. Insul. 22 380

    [29]

    Gao Y, Xu B, Wang X, Jia T 2019 J. Phys. D: Appl. Phys. 52 285302

    [30]

    Borgani R, Pallon L K H, Hedenqvist M S, Gedde U W, Haviland D B 2016 Nano Lett. 16 5934

    [31]

    Gao J, Wu K N, Xie Z L, Li J Y, Li S T 2023 Compos. Sci. Technol. 244 110291

    [32]

    Jalili M A, Khosroshahi Z, Kheirabadi N R, Karimzadeh F, Enayati M H 2021 Nano Energy 90 106581

    [33]

    Jia B, Zhou J, Chen Y, Lv Z, Guo H, Zhang Z, Zhu Z, Yu H, Wang Y, Wu Kai 2022 Nanotechnology, 33 345709

    [34]

    Zhang X, Chen L, Jiang Y, Lim W, Soh S 2019 Chem. Mater. 31 1473

    [35]

    Ko H, Lim Y, Han S, Jeong CK, Cho SB 2021 ACS Energy Lett. 6 2792

    [36]

    Harris I A, Lim M X, Jaeger H M 2019 Phys. Rev. Mater. 3 085603

  • [1] 高建, 李建英. 限域相变对热致变色环氧绝缘材料介电松弛特性的影响. 物理学报, doi: 10.7498/aps.72.20230253
    [2] 温恒迪, 刘跃, 甄良, 李洋, 徐成彦. MoS2/MoTe2垂直异质结的电荷传输及其调制. 物理学报, doi: 10.7498/aps.72.20221768
    [3] 冯婕, 郭强, 舒鹏丽, 温阳, 温焕飞, 马宗敏, 李艳君, 刘俊, 伊戈尔·弗拉基米罗维奇·雅明斯基. 超高真空原子尺度Aux/Si(111)-(7×7)表面吸附的电荷分布测量. 物理学报, doi: 10.7498/aps.72.20230051
    [4] 王慧云, 冯婕, 王旭东, 温阳, 魏久焱, 温焕飞, 石云波, 马宗敏, 李艳君, 刘俊. 室温超高真空环境原子尺度Au/Si(111)-(7×7)不定域吸附的局域接触势能差测量技术. 物理学报, doi: 10.7498/aps.71.20211853
    [5] 温焕飞, 菅原康弘, 李艳君. 二氧化钛亚表面电荷对其表面点缺陷和吸附原子分布的影响. 物理学报, doi: 10.7498/aps.69.20200773
    [6] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, doi: 10.7498/aps.68.20191631
    [7] 李国倡, 李盛涛. 空间电子辐射环境中绝缘介质电荷沉积特性及陷阱参数研究综述. 物理学报, doi: 10.7498/aps.68.20191252
    [8] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, doi: 10.7498/aps.68.20190569
    [9] 罗达玲, 唐强, 郭竞渊, 张纯祥. MSO4:Eu2+(M =Mg, Ca, Sr, Ba)的等电子陷阱与热释光特性. 物理学报, doi: 10.7498/aps.64.087805
    [10] 孙志, 王暄, 韩柏, 宋伟, 张冬, 郭翔宇, 雷清泉. 静电力显微镜研究二相材料及其界面介电特性. 物理学报, doi: 10.7498/aps.62.030703
    [11] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜. 物理学报, doi: 10.7498/aps.62.180704
    [12] 杨海艳, 王振宇, 李英姿, 张维然, 钱建强. 原子力显微镜探针悬臂几何结构变化对高次谐波信息增强的研究. 物理学报, doi: 10.7498/aps.62.200703
    [13] 朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英. 纳米VO2/ZnO复合薄膜的热致变色特性研究. 物理学报, doi: 10.7498/aps.60.098104
    [14] 胡海龙, 张 琨, 王振兴, 王晓平. 自组装硫醇分子膜电输运特性的导电原子力显微镜研究. 物理学报, doi: 10.7498/aps.55.1430
    [15] 王晓平, 刘磊, 胡海龙, 张琨. 原子力显微术轻敲模式中探针样品接触过程及相位衬度研究. 物理学报, doi: 10.7498/aps.53.1008
    [16] 张向军, 孟永钢, 温诗铸. 原子力显微镜探针耦合变形下的微观扫描力研究. 物理学报, doi: 10.7498/aps.53.728
    [17] 孙润广, 齐浩, 张静. 脂质体结构特性的原子力显微镜研究. 物理学报, doi: 10.7498/aps.51.1203
    [18] 亓东平, 刘德丽, 滕树云, 张宁玉, 程传福. 随机散射屏的原子力显微镜形貌分析及其光散射特性. 物理学报, doi: 10.7498/aps.49.1260
    [19] 崔敬忠, 达道安, 姜万顺. VO2热致变色薄膜的结构和光电特性研究. 物理学报, doi: 10.7498/aps.47.454
    [20] 陈开茅, 金泗轩, 邱素娟. 少子陷阱特性和铍硅共注半绝缘GaAs空穴陷阱. 物理学报, doi: 10.7498/aps.43.1352
计量
  • 文章访问数:  25
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-27

/

返回文章
返回