-
热致变色相变复合绝缘在电热激励下能实现一系列先进功能,已广泛应用于大量智能电气与电子设备中. 然而热致变色相变复合绝缘存在限域结构,无法通过现有的纳米复合界面模型分析其电荷陷阱特性,导致其在电热耦合应力下的介电可靠性提升缺乏科学依据. 本文通过等温表面电位衰减(ISPD)、开尔文探针力显微镜(KPFM)等方法,研究了热致变色相变环氧复合绝缘的电荷陷阱特性与机理. 结果表明:30℃和70℃下限域结构对热致变色相变环氧绝缘陷阱特性的影响趋势相反,可能源于限域相变或限域界面的影响. 理论分析发现,限域相变对陷阱温度特性的影响规律与实验结果不符,并非影响陷阱温度特性的主要原因. 通过KPFM原位表征直接验证了限域界面内存在势垒,且起源于接触起电机制. 限域界面接触起电电荷量随温度的变化会影响限域界面势垒高度,是影响陷阱温度特性的主要原因.
-
关键词:
- 热致变色相变复合绝缘 /
- 陷阱特性 /
- 开尔文探针力显微镜 /
- 接触起电
Thermochromic phase change insulating composite can realize a series of advanced functions under electrothermal stimuli, which has been widely applied in numbers of intelligent electrical and electronic devices. However, due to the confined structure of thermochromic phase change insulating composite, the trap characteristics cannot be analyzed by current interface models of nanodielectrics, inhibiting the scientific improvement of dielectric reliability under the electrothermal stress. In this paper, the trap characteristic and mechanism of thermochromic phase change epoxy composites are studied by the isothermal surface potential decay (ISPD) and the Kelvin probe force microscopy (KPFM). Results show that the variation trends of trap characteristics after introducing confined structures are opposite at 30℃ and 70℃, which could derive from the confined phase change or the confined interface. Theoretical analysis shows that the influence of confined phase change on temperature dependent trap characteristics is inconsistent with experimental results, which could not be the essential reason influencing the trap characteristics. KPFM in-situ characterization directly verifies the existence of potential barriers in the confined interface, which originates from the contact electrification mechanism. The temperature dependent charge quantity variation due to contact electrification at the confined interface could impact the barrier height, which substantially affecting the temperature dependent trap characteristics.-
Keywords:
- thermochromic phase change insulating composite /
- trap characteristic /
- Kelvin probe force microscopy /
- contact electrification
-
[1] Jin Y, Lin Y, Kiani A, Joshipura I D, Ge M, Dickey M D 2019 Nat. Commun. 10 4187.
[2] Kim H, Lee H, Ha I, Jung J, Won P, Cho H, Yeo J, Hong S, Han S, Kwon J, Cho K J, Ko S H 2018 Adv. Funct. Mater. 28 1801847.
[3] Kim G, Cho S, Chang K, Kim W S, Kang H, Ryu S P, Myoung J, Park J, Park C, Shim W 2017 Adv. Mater. 29 13
[4] Xiong R G, Lu S Q, Zhang Z X, Cheng H, Li P F, Liao W Q 2020 Angew Chem. Int. Ed. Engl. 59 9574
[5] Berardi U, Garai M, Morselli T 2020 Sol. Energy 209 493
[6] Geiselhart C M, Mutlu H, Kowollik B C 2021 Angew Chem. Int. Ed. Engl. 60 17290
[7] Kim H, Seo M, Kim J W, Kwon D K, Choi S E, Kim J W, Myoung J M 2019 Adv. Funct. Mater. 29 1901061
[8] Won P, Kim K K, Kim H, Park J J, Ha I., Shin J, Jung J, Cho H, Kwon J, Lee H, Ko S H 2021 Adv. Mater. 33 e2002397
[9] Huang X, Han L, Yang X, Huang Z, Hu J, Li Q, He J 2022 iEnergy 1 19–49
[10] Rain P, Nguyen D H, Sylvestre A, Rowe S 2009 J. Phys. D Appl. Phys. 42 235404.
[11] Kao K C 2004 Dielectric Phenomena in Solids (California: Elsevier Academic Press)
[12] Li S, Yin G, Chen G, Li J, Bai S, Zhong L, Zhang Y, Lei Q Q 2010 IEEE Trans. Dielectr. Electr. Insul. 17 1523
[13] Sui H, Wu K, Zhao G, Yang K, Dong J Y, Li J Y 2024 Chem Eng J. 485 149811
[14] Song S F, Min D M, Gao Z W, Wang P X, Hao Y T, Gao J H, Zhong L S 2024 Acta Phys. Sin. 73 027301 (in Chinese) [宋小凡,闵道敏,高梓巍,王泊心,郝予涛,高景晖,钟力生 2024 物理学报 73 027301]
[15] Gao J, Wu K N, Zhang Z L, Li J Y, Li S T 2023 J. Phys. D Appl. Phys. 56 425502
[16] Gao J, Li J Y 2023 Acta Phys. Sin. 72(10):107701 (in Chinese) [高建,李建英 2023 物理学报 72 107701]
[17] Lewis TJ 1994 IEEE Trans. Dielectr. Electr. Insul. 1 812
[18] Tanaka T, Kozako M, Fuse N 2005 IEEE Trans. Dielectr. Electr. Insul. 12 669
[19] Li S T, Yin G L, Bai S N 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1535
[20] Liu P, Xie Z L, Pang X, Xu T L, Zhang S Y, Morshuis P, Li H, Peng Z R 2022 Adv. Electron. Mater. 8 2200259
[21] Li J, Wang Y F, Du B X, Liang H C 2019 Guangdong Electric Power 32 3 (in Chinese) [李进,王雨帆,杜伯学,梁虎成 2019 广东电力,32 3]
[22] Fu Q, Peng L, Li Z, Lin M S, Zhang L, Xie S Y, Hou Y P, Kong X X, Du B X 2024, Guangdong Electric Power 37 69 (in Chinese) [付强,彭磊,李智,林木松,张丽,谢松瑜,侯永平,孔晓晓,杜伯学 2024 广东电力,37 69]
[23] Li G C, L S T 2019 Acta Phys. Sin. 68 239401 [李国倡,李盛涛 2019 物理学报 68 239401]
[24] Zhou J, Li Y, Wu Y, Jia B, Zhu L, Jiang Y, Li Z, Wu K. 2019 Langmuir 35 12053
[25] Gao J, Wu K, Li J, Yin G, Li S 2022 Smart Mater. Struct. 32 015019
[26] Takada T, Hayase Y, Tanaka Y, Tatsuki O 2008 IEEE Trans. Dielectr. Electr. Insul. 15 152
[27] Hwang J G, Zahn M, O’Sullivan F M, Pettersson L A A, Hjortstam O, Liu R 2010 J. Appl. Phys. 107 014310
[28] Sima W, Shi J, Yang Q, Huang S, Cao X 2015 IEEE Trans. Dielectr. Electr. Insul. 22 380
[29] Gao Y, Xu B, Wang X, Jia T 2019 J. Phys. D: Appl. Phys. 52 285302
[30] Borgani R, Pallon L K H, Hedenqvist M S, Gedde U W, Haviland D B 2016 Nano Lett. 16 5934
[31] Gao J, Wu K N, Xie Z L, Li J Y, Li S T 2023 Compos. Sci. Technol. 244 110291
[32] Jalili M A, Khosroshahi Z, Kheirabadi N R, Karimzadeh F, Enayati M H 2021 Nano Energy 90 106581
[33] Jia B, Zhou J, Chen Y, Lv Z, Guo H, Zhang Z, Zhu Z, Yu H, Wang Y, Wu Kai 2022 Nanotechnology, 33 345709
[34] Zhang X, Chen L, Jiang Y, Lim W, Soh S 2019 Chem. Mater. 31 1473
[35] Ko H, Lim Y, Han S, Jeong CK, Cho SB 2021 ACS Energy Lett. 6 2792
[36] Harris I A, Lim M X, Jaeger H M 2019 Phys. Rev. Mater. 3 085603
计量
- 文章访问数: 25
- PDF下载量: 0
- 被引次数: 0