搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(Bi0.5Na0.5)0.7Sr0.3TiO3掺杂对[0.93NaNbO3-0.07Bi(Mg0.5Sn0.5)O3]陶瓷的结构与电学性能的影响

郭云凤 王俊贤 王泽星 李家茂 陈立明

引用本文:
Citation:

(Bi0.5Na0.5)0.7Sr0.3TiO3掺杂对[0.93NaNbO3-0.07Bi(Mg0.5Sn0.5)O3]陶瓷的结构与电学性能的影响

郭云凤, 王俊贤, 王泽星, 李家茂, 陈立明

Influence of (Bi0.5Na0.5)0.7Sr0.3TiO3 doping on structure and electrical properties of [0.93NaNbO3-0.07Bi(Mg0.5Sn0.5)O3] ceramics

Guo Yun-Feng, Wang Jun-Xian, Wang Ze-Xing, Li Jia-Mao, Chen Li-Ming
PDF
HTML
导出引用
  • 铌酸钠基介电储能材料具有相对密度低、无铅及低成本等优点, 能够满足电子元器件向小型化、无害化、集成化和轻量化方向发展的重大需求. 本文通过在NaNbO3陶瓷中同时引入Bi(Mg0.5Sn0.5)O3和(Bi0.5Na0.5)0.7Sr0.3TiO3组分, 采用传统固相烧结法制备(1–x)[0.93NaNbO3-0.07Bi(Mg0.5Sn0.5)O3]–x(Bi0.5Na0.5)0.7Sr0.3TiO3(简称(1–x)(NN-BMS)–xBNST, 0.00 ≤ x ≤ 0.30)弛豫铁电陶瓷, 并利用X-射线衍射、扫描电子显微镜、紫外光谱和拉曼光谱等技术对陶瓷进行表征, 研究(Bi0.5Na0.5)0.7Sr0.3TiO3掺杂对NaNbO3陶瓷的物相组成、微观形貌, 以及介电和储能等电学性能的影响. 0.75(NN-BMS)-0.25BNST陶瓷具有优良的介电温度稳定性(25—160 ℃, Δε/ε25°C ≤ ±15%)和介电频率稳定性, 满足EIAZ8U标准, 具备在特殊环境下(高温/高频)工作的潜力. 另外, 0.75(NN-BMS)-0.25BNST陶瓷在较高的场强下(390 kV/cm)获得了良好的储能性能: 有效储能密度Wrec = 2.73 J/cm3, 储能效率η = 82.6%, 且性能在20—100 ℃的温度范围内具有高的温度稳定性. 研究表明0.75(NN-BMS)-0.25BNST陶瓷在无铅介电储能电容器中有着广阔的应用前景.
    Sodium niobate-based dielectric energy storage materials, as key components in capacitors, have the advantages such as low relative density, lead-free, low cost, and excellent energy storage density, and can meet the important requirements of electronic components for miniaturization, harmlessness, integration and light weight. Therefore, they have received extensive attention from the scientific community in recent years. In this work, by introducing both Bi(Mg0.5Sn0.5)O3 and (Bi0.5Na0.5)0.7Sr0.3TiO3 components into NaNbO3 ceramics, a conventional solid-phase sintering method is used to prepare (1–x)[0.93NaNbO3-0.07Bi(Mg0.5Sn0.5)O3]–x(Bi0.5Na0.5)0.7Sr0.3TiO3 (Abbreviated as (1–x)(NN-BMS)–xBNST, 0.00 ≤ x ≤ 0.3) relaxation ferroelectric ceramics, and the ceramics are characterized by using X-ray diffraction, scanning electron microscopy, UV spectroscopy and Raman spectroscopy so as to study the effects of (Bi0.5Na0.5)0.7Sr0.3TiO3 doping on the physical phase composition, microstructure, and electrical properties of NaNbO3 ceramics, such as dielectric and energy storage. The (1–x)(NN-BMS)–xBNST ceramics exhibit a single perovskite structure, with cell volume a first increasing and then decreasing. The coexistence of Pbma and Pnma phases (1–x)(NN-BMS)–xBNST ceramics exhibits a dense microstructure and clear grain boundaries at an optimal sintering temperature. The average grain size first increases to 4.73 μm, then decreases to 2.17 μm, and finally increases to 3.06 μm. A smaller grain size and a larger bandgap width are beneficial for improving the breakdown strength. The 0.75(NN-BMS)-0.25BNST ceramic shows the excellent dielectric temperature stability (25–160 ℃, Δε/ε25°C ≤ ±15%) and dielectric frequency stability, which can meet the EIAZ8U standard and hence work in a special environment (high temperature and high frequency). Meanwhile, 0.75(NN-BMS)-0.25BNST ceramic exhibits excellent energy storage performance at high field strength (390 kV/cm): recoverable energy density Wrec = 2.73 J/cm3, energy storage efficiency η = 82.6%, and high temperature stability in a temperature range of 20–100 ℃. The research results indicate that 0.75(NN-BMS)-0.25BNST ceramics have broad prospects of applications in lead-free dielectric energy storage capacitors.
  • 图 1  (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30)陶瓷实物样品图

    Fig. 1.  Physical photo of (1–x) (NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30) ceramics.

    图 2  (a) (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30)陶瓷在最佳烧结温度下的XRD图; (b) (100)衍射峰峰位放大图; (c) (110)衍射峰峰位放大图; (d) (200)衍射峰峰位放大图

    Fig. 2.  (a) XRD patterns of (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30) ceramics at optimal sintering temperature; (b) enlarged image of (100) diffraction peak; (c) enlarged image of (110) diffraction peak; (d) enlarged image of (200) diffraction peak

    图 3  (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30)陶瓷的XRD图谱的Rietveld精修结果 (a) x = 0.00; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20; (e) x = 0.25; (f) x = 0.30

    Fig. 3.  Rietveld refinement results of XRD patterns of (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30) ceramics: (a) x = 0.00; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20; (e) x = 0.25; (f) x = 0.30.

    图 4  (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.3)陶瓷在最佳烧结温度下的SEM图 (a) x = 0.00; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20; (e) x = 0.25; (f) x = 0.30; (g) (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30)陶瓷的平均晶粒尺寸

    Fig. 4.  SEM images of (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30) ceramics at optimal sintering temperature: (a) x = 0.00; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20; (e) x = 0.25; (f) x = 0.30; (g) average grain size of (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30) ceramics.

    图 5  (a) 0.75(NN-BMS)-0.25BNST陶瓷的EDS能谱图, 插图为SEM图; (b)—(i) EDS元素面扫描图

    Fig. 5.  (a) EDS spectrum of 0.75(NN-BMS)-0.25BNST ceramic, the illustration shows SEM image; (b)Ó(i) EDS element surface scanning image.

    图 6  (a) 0.75(NN-BMS)-0.25BNST陶瓷的紫外吸收光谱; (b) 相应的Tauc Plot图

    Fig. 6.  (a) UV absorption spectra of 0.75(NN-BMS)-0.25BNST ceramic; (b) corresponding Tauc plot.

    图 7  (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30)陶瓷的拉曼光谱图

    Fig. 7.  Raman spectroscopy of (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30) ceramics.

    图 8  (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.3)陶瓷的介电温谱图 (a) x = 0.00; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20; (e) x = 0.25; (f) x = 0.30; (g) 0.75(NN-BMS)-0.25BNST陶瓷在不同频率下与温度相关的介电常数变化率

    Fig. 8.  Dielectric temperature spectra of (1-x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30) ceramics: (a) x = 0.00; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20; (e) x = 0.25; (f) x = 0.30; (g) temperature dependent dielectric constant change rate of 0.75(NN-BMS)-0.25BNST ceramic at different frequencies.

    图 9  (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30)陶瓷的介电频谱图

    Fig. 9.  Dielectric frequency spectra of (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30) ceramics.

    图 10  (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30)陶瓷 (a) 不同组分下的单极P-E环; (b) 不同组分下的 Pmax, Pr 及 ΔP; (c) 不同组分下的电场强度; (d) 不同组分下的储能性能

    Fig. 10.  (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30) ceramics: (a) Unipolar P-E circuits under different components; (b) Pmax, Pr and ΔP under different components; (c) electric field strength under different components; (d) energy storage properties under different components.

    图 11  0.75(NN-BMS)-0.25BNST陶瓷 (a) 不同场强下的P-E环; (b) 不同场强下的Pmax, Pr及ΔP; (c) 电场和储能性能的关系

    Fig. 11.  0.75(NN-BMS)-0.25BNST ceramic: (a) P-E circuits under different field strengths; (b) Pmax, Pr and ΔP under different field strengths; (c) relationship between electric field and energy storage performance.

    图 12  0.75(NN-BMS)-0.25BNST陶瓷 (a) 不同温度下的P-E环; (b) 不同温度下的Wrecη

    Fig. 12.  0.75(NN-BMS)-0.25BNST ceramic: (a) P-E circuits at different temperatures; (b) Wrec and η at different temperatures.

    表 1  (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30)陶瓷的Rietveld精修结构参数

    Table 1.  Rietveld refined structural parameters of (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30) ceramics.

    x Phase Volume fraction/% Lattice parameters/Å V3 Rwp/% Rp/% χ2
    a b c
    0.00 Pnma 99.84 7.82(8) 7.82(8) 7.82(8) 479.73(5) 7.64 5.65 7.42
    Pbma 0.16 5.56(8) 15.74(7) 5.54(7) 486.44(1)
    0.10 Pnma 67.2 7.82(3) 7.82(9) 7.83(4) 479.87(3) 5.47 4.18 3.71
    Pbma 32.8 5.54(5) 15.60(9) 5.52(1) 478.00(0)
    0.15 Pnma 63.3 7.82(3) 7.82(9) 7.83(5) 479.89(9) 5.59 4.43 3.85
    Pbma 36.7 5.55(0) 15.62(9) 5.52(9) 479.66(5)
    0.20 Pnma 53.1 7.82(0) 7.82(6) 7.83(5) 479.59(3) 5.04 3.82 2.89
    Pbma 46.9 5.54(5) 15.63(5) 5.53(9) 480.26(4)
    0.25 Pnma 57.1 7.82(1) 7.82(8) 7.83(5) 479.77(9) 5.39 4.21 3.27
    Pbma 42.9 5.42(1) 15.66(4) 5.53(2) 480.28(9)
    0.30 Pnma 65.65 7.82(1) 7.82(7) 7.83(5) 479.70(5) 5.04 3.92 2.41
    Pbma 34.35 5.53(8) 15.60(1) 5.52(4) 477.28(3)
    下载: 导出CSV
  • [1]

    杨敏铮, 江建勇, 沈洋 2021 硅酸盐学报 49 1250

    Yang M Z, Jiang J Y, Shen Y 2021 J. Chin. Ceram. Soc. 49 1249

    [2]

    Yang F, Pan Z B, Ling Z Q, Hu D, Ding J, Li P, Liu J J, Zhai J W 2021 J. Eur. Ceram. Soc. 41 254

    [3]

    Li S, Nie H C, Wang G S, Xu C H, Liu N T, Zhou M X, Cao F, Dong X L 2019 J. Mater. Chem. C 7 1551Google Scholar

    [4]

    Zou K L, Dan Y, Xu H J, Zhang Q F, Lu Y M, Huang H T, He Y B 2019 Mater. Res. Bull. 113 190Google Scholar

    [5]

    沈忠慧, 江彦达, 李宝文, 张鑫 2020 物理学报 69 217706Google Scholar

    Shen Z H, Jiang Y D, Li B W, Zhang X 2020 Acta Phys. Sin. 69 217706Google Scholar

    [6]

    Zhou M X, Liang R H, Zhou Z Y, Yan S G, Dong X L 2018 ACS Sustain. Chem. Eng. 6 12755Google Scholar

    [7]

    Zhang S, Xia R, Shrout T R 2007 J. Electroceram. 19 251Google Scholar

    [8]

    Shrout T R, Zhang S J 2007 J. Electroceram. 19 113Google Scholar

    [9]

    张天富, 司洋洋, 黎意杰, 陈祖煌 2023 物理学报 72 097704Google Scholar

    Zhang T F, Si Y Y, Li Y J, Chen Z H 2023 Acta Phys. Sin. 72 097704Google Scholar

    [10]

    Yu Z L, Liu Y F, Shen M Y, Qian H, Li F F, Lü Y N 2017 Ceram. Int. 43 7653Google Scholar

    [11]

    Yao F Z, Yuan Q, Wang Q, Wang H 2020 Nanoscale 12 17165Google Scholar

    [12]

    Li D X, Zeng X J, Li Z P, Shen Z Y, Hao H, Luo W Q, Wang X C, Song F S, Wang Z M, Li Y M 2021 J. Adv. Ceram. 10 675Google Scholar

    [13]

    Yang Z T, Du H L, Jin L, Poelman D 2021 J. Mater. Chem. A 9 18026.Google Scholar

    [14]

    郑明, 杨健, 张怡笑, 关朋飞, 程奥, 范贺良 2023 物理学报 72 177801Google Scholar

    Zheng M, Yang J, Zhang Y X, Guan P F, Cheng A, Fan H L 2023 Acta Phys. Sin. 72 177801Google Scholar

    [15]

    Liang C, Wang C Y, Zhao H Y, Cao W J, Li F, Wang C C 2023 J. Alloys Compd. 961 170962Google Scholar

    [16]

    Ye J M, Wang G S, Chen X F, Dong X L 2021 J. Mater. 7 339

    [17]

    Chen J, Qi H, Zuo R Z 2020 ACS Appl. Mater. Inter. 12 32871Google Scholar

    [18]

    Wada T, Tsuji K, Saito T, Matsuo Y 2003 Jpn. J. Appl. Phys. 42 6110Google Scholar

    [19]

    Zhou M X, Liang R H, Zhou Z Y, Yan S G, Dong X L 2018 ACS Sustain. Chem. Eng. 6 12755Google Scholar

    [20]

    Qi H, Zuo R Z 2019 J. Mater. Chem. A. 7 3971Google Scholar

    [21]

    Pang F H, Chen X L, Sun C C, Shi J P, Li X, Chen H Y, Dong X Y, Zhou H F 2020 ACS Sustain. Chem. Eng. 8 14985Google Scholar

    [22]

    Xu Z Q, Liu Z, Dai K, Lu T, Lü Z Q, Hu Z G, Liu Y, Wang G S 2022 J. Mater. Chem. A. 10 13907Google Scholar

    [23]

    郭云凤, 王俊贤, 王泽星, 李家茂, 刘畅 2024 化学学报 82 511Google Scholar

    Guo Y F, Wang J X, Wang Z X, Li J M, Liu C 2024 Acta Chim. Sinica. 82 511Google Scholar

    [24]

    Pang F H, Chen X L, Shi J P, Sun C C, Chen H Y, Dong X Y, Zhou H F 2021 ACS Sustain. Chem. Eng. 9 4863Google Scholar

    [25]

    Shannon R D 1979 Acta Cryst. A 32 751

    [26]

    Zhang S Y, Li W H, Zhang Y S, Tang X G, Jiang Y P, Guo X B 2023 Results Phys. 44 106194Google Scholar

    [27]

    Chen H Y, Wang X, Dong X Y, Pan Y, Wang J M, Deng L, Dong Q P, Zhang H L, Zhou H F, Chen X L 2022 ACS Appl. Mater. Inter. 14 25609Google Scholar

    [28]

    Dong X Y, Li X, Chen X L, Tan Z, Wu J G, Zhu J G, Zhou H F 2022 Nano Energy 101 107577Google Scholar

    [29]

    Chen X L, Li X, Sun J, Sun C C, Shi J P, Pang F H, Zhou H F 2020 Ceram. Int. 46 2764Google Scholar

    [30]

    Han K, Luo N N, Chen Z P, Ma L, Chen X L, Feng Q, Hu C Z, Zhou H F, Wei Y Z, Toyohisa F 2020 J. Eur. Ceram. Soc. 40 3562Google Scholar

    [31]

    Yan F, Bai H R, Shi Y J, Ge G L, Zhou X F, Lin J F, Shen B, Zhai J W 2021 Chem. Eng. J. 425 130669Google Scholar

    [32]

    Shi J P, Chen X L, Li X, Sun J, Sun C C, Pang F H, Zhou H F 2020 J. Mater. Chem. C 8 3784Google Scholar

    [33]

    Cao W J, Lin R J, Chen P F, Li F, Ge B H, Song D S, Zhang J, Cheng Z X, Wang C C 2022 ACS Appl. Mater. Inter. 14 54051Google Scholar

    [34]

    Sun N N, Li Y, Zhang Q W, Hao X H 2018 J. Mater. Chem. C. 6 10693Google Scholar

    [35]

    Shen Y H, Wu L K, Zhao J H, Liu J J, Tang L M, Chen X Q, Li H H, Su Z, Zhang Y, Zhai J W, Pan Z B 2022 Chem. Eng. J. 439 135762Google Scholar

    [36]

    Nie X R, He Y, Shi Q Q, Liang Y Q, Wei L L, Liang P F, Chao X L, Hu G X, Yang Z P 2023 J. Adv. Dielect. 13 2242005Google Scholar

    [37]

    杜金花, 李雍, 孙宁宁, 赵烨, 郝喜红 2020 物理学报 69 127703

    Du J H, Li Y, Sun N N, Zhao Y, Hao X H 2020 Acta Phys. Sin. 69 127703

    [38]

    Wei K, Duan J H, Zhou X F, Li G S, Zhang D, Li H 2023 ACS Appl. Mater. Inter. 15 48354Google Scholar

  • [1] 卓俊添, 林铭浩, 张齐艳, 黄双武. 热塑性聚酰亚胺/氧化铝三明治结构柔性电介质薄膜的设计制备及其高温介电储能性能. 物理学报, doi: 10.7498/aps.73.20240838
    [2] 宋小凡, 闵道敏, 高梓巍, 王泊心, 郝予涛, 高景晖, 钟力生. 聚醚酰亚胺纳米复合电介质中指数分布陷阱电荷跳跃输运对储能性能的影响. 物理学报, doi: 10.7498/aps.73.20230556
    [3] 黄建邦, 南虎, 张锋, 张佳乐, 刘来君, 王大威. 弛豫铁电体弥散相变与热滞效应的伊辛模型. 物理学报, doi: 10.7498/aps.70.20202019
    [4] 邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国. 铌酸钾钠基无铅压电陶瓷的高压电活性研究进展. 物理学报, doi: 10.7498/aps.69.20200288
    [5] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能. 物理学报, doi: 10.7498/aps.69.20201031
    [6] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能. 物理学报, doi: 10.7498/aps.69.20200540
    [7] 王娇, 刘少辉, 周梦, 郝好山, 翟继卫. 钛酸锶纳米纤维表面羟基化处理对聚偏氟乙烯复合材料介电性能和储能性能的影响. 物理学报, doi: 10.7498/aps.69.20200592
    [8] 杜金花, 李雍, 孙宁宁, 赵烨, 郝喜红. (1–x)K0.5Na0.5NbO3-xBi(Mg0.5Ti0.5)O3无铅弛豫铁电陶瓷的介电、铁电和高储能行为. 物理学报, doi: 10.7498/aps.69.20200213
    [9] 陈璐, 李烨飞, 郑巧玲, 刘庆坤, 高义民, 李博, 周长猛. B2-和B19'-NiTi表面原子弛豫、表面能、电子结构及性能的理论研究. 物理学报, doi: 10.7498/aps.68.20181944
    [10] 汤卉, 唐新桂, 蒋艳平, 刘秋香, 李文华. 铌酸锶钡陶瓷中氧空位对离子电导率和弛豫现象的影响. 物理学报, doi: 10.7498/aps.68.20190562
    [11] 蔡家欢, 李平, 文玉梅, 鲍宜壮, 刘双建. 石英晶振的储能特性. 物理学报, doi: 10.7498/aps.65.104205
    [12] 屈少华, 曹万强. 球形无规键无规场模型研究弛豫铁电体极化效应. 物理学报, doi: 10.7498/aps.63.047701
    [13] 曹万强, 舒明飞. 弛豫铁电体的键能与配位数模型. 物理学报, doi: 10.7498/aps.62.017701
    [14] 余洋, 米增强. 机械弹性储能机组储能过程非线性动力学模型与混沌特性. 物理学报, doi: 10.7498/aps.62.038403
    [15] 陈威, 曹万强. 弛豫铁电体弥散相变的玻璃化特性研究. 物理学报, doi: 10.7498/aps.61.097701
    [16] 王斌科, 田晓霞, 徐卓, 屈绍波, 李振荣. 铌酸钾钠基无铅透明陶瓷制备及性能. 物理学报, doi: 10.7498/aps.61.197703
    [17] 尚勋忠, 陈威, 曹万强. 弛豫铁电体介电可调性的研究. 物理学报, doi: 10.7498/aps.61.217701
    [18] 宋学平, 张永光, 罗晓婧, 徐玲芳, 曹万强, 杨昌平. (1-x)(K0.5Na0.5)NbO3-xSrTiO3陶瓷的弛豫铁电性能. 物理学报, doi: 10.7498/aps.58.4980
    [19] 明保全, 王矜奉, 臧国忠, 王春明, 盖志刚, 杜 鹃, 郑立梅. 铌酸钾钠基无铅压电陶瓷的X射线衍射与相变分析. 物理学报, doi: 10.7498/aps.57.5962
    [20] 程忠阳, 姚熹, 张良莹. 弛豫型铁电体铌镁酸铅陶瓷的玻璃化行为研究. 物理学报, doi: 10.7498/aps.45.1026
计量
  • 文章访问数:  118
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-14
  • 修回日期:  2024-11-26
  • 上网日期:  2024-11-29

/

返回文章
返回