-
铌酸钠基介电储能材料具有相对密度低、无铅及低成本等优点, 能够满足电子元器件向小型化、无害化、集成化和轻量化方向发展的重大需求. 本文通过在NaNbO3陶瓷中同时引入Bi(Mg0.5Sn0.5)O3和(Bi0.5Na0.5)0.7Sr0.3TiO3组分, 采用传统固相烧结法制备(1–x)[0.93NaNbO3-0.07Bi(Mg0.5Sn0.5)O3]–x(Bi0.5Na0.5)0.7Sr0.3TiO3(简称(1–x)(NN-BMS)–xBNST, 0.00 ≤ x ≤ 0.30)弛豫铁电陶瓷, 并利用X-射线衍射、扫描电子显微镜、紫外光谱和拉曼光谱等技术对陶瓷进行表征, 研究(Bi0.5Na0.5)0.7Sr0.3TiO3掺杂对NaNbO3陶瓷的物相组成、微观形貌, 以及介电和储能等电学性能的影响. 0.75(NN-BMS)-0.25BNST陶瓷具有优良的介电温度稳定性(25—160 ℃, Δε/ε25°C ≤ ±15%)和介电频率稳定性, 满足EIAZ8U标准, 具备在特殊环境下(高温/高频)工作的潜力. 另外, 0.75(NN-BMS)-0.25BNST陶瓷在较高的场强下(390 kV/cm)获得了良好的储能性能: 有效储能密度Wrec = 2.73 J/cm3, 储能效率η = 82.6%, 且性能在20—100 ℃的温度范围内具有高的温度稳定性. 研究表明0.75(NN-BMS)-0.25BNST陶瓷在无铅介电储能电容器中有着广阔的应用前景.Sodium niobate-based dielectric energy storage materials, as key components in capacitors, have the advantages such as low relative density, lead-free, low cost, and excellent energy storage density, and can meet the important requirements of electronic components for miniaturization, harmlessness, integration and light weight. Therefore, they have received extensive attention from the scientific community in recent years. In this work, by introducing both Bi(Mg0.5Sn0.5)O3 and (Bi0.5Na0.5)0.7Sr0.3TiO3 components into NaNbO3 ceramics, a conventional solid-phase sintering method is used to prepare (1–x)[0.93NaNbO3-0.07Bi(Mg0.5Sn0.5)O3]–x(Bi0.5Na0.5)0.7Sr0.3TiO3 (Abbreviated as (1–x)(NN-BMS)–xBNST, 0.00 ≤ x ≤ 0.3) relaxation ferroelectric ceramics, and the ceramics are characterized by using X-ray diffraction, scanning electron microscopy, UV spectroscopy and Raman spectroscopy so as to study the effects of (Bi0.5Na0.5)0.7Sr0.3TiO3 doping on the physical phase composition, microstructure, and electrical properties of NaNbO3 ceramics, such as dielectric and energy storage. The (1–x)(NN-BMS)–xBNST ceramics exhibit a single perovskite structure, with cell volume a first increasing and then decreasing. The coexistence of Pbma and Pnma phases (1–x)(NN-BMS)–xBNST ceramics exhibits a dense microstructure and clear grain boundaries at an optimal sintering temperature. The average grain size first increases to 4.73 μm, then decreases to 2.17 μm, and finally increases to 3.06 μm. A smaller grain size and a larger bandgap width are beneficial for improving the breakdown strength. The 0.75(NN-BMS)-0.25BNST ceramic shows the excellent dielectric temperature stability (25–160 ℃, Δε/ε25°C ≤ ±15%) and dielectric frequency stability, which can meet the EIAZ8U standard and hence work in a special environment (high temperature and high frequency). Meanwhile, 0.75(NN-BMS)-0.25BNST ceramic exhibits excellent energy storage performance at high field strength (390 kV/cm): recoverable energy density Wrec = 2.73 J/cm3, energy storage efficiency η = 82.6%, and high temperature stability in a temperature range of 20–100 ℃. The research results indicate that 0.75(NN-BMS)-0.25BNST ceramics have broad prospects of applications in lead-free dielectric energy storage capacitors.
-
Keywords:
- sodium niobate /
- relaxor ferroelectric /
- lead-free energy storage ceramics /
- energy storage properties
-
图 2 (a) (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30)陶瓷在最佳烧结温度下的XRD图; (b) (100)衍射峰峰位放大图; (c) (110)衍射峰峰位放大图; (d) (200)衍射峰峰位放大图
Fig. 2. (a) XRD patterns of (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30) ceramics at optimal sintering temperature; (b) enlarged image of (100) diffraction peak; (c) enlarged image of (110) diffraction peak; (d) enlarged image of (200) diffraction peak
图 3 (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30)陶瓷的XRD图谱的Rietveld精修结果 (a) x = 0.00; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20; (e) x = 0.25; (f) x = 0.30
Fig. 3. Rietveld refinement results of XRD patterns of (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30) ceramics: (a) x = 0.00; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20; (e) x = 0.25; (f) x = 0.30.
图 4 (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.3)陶瓷在最佳烧结温度下的SEM图 (a) x = 0.00; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20; (e) x = 0.25; (f) x = 0.30; (g) (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30)陶瓷的平均晶粒尺寸
Fig. 4. SEM images of (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30) ceramics at optimal sintering temperature: (a) x = 0.00; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20; (e) x = 0.25; (f) x = 0.30; (g) average grain size of (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30) ceramics.
图 8 (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.3)陶瓷的介电温谱图 (a) x = 0.00; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20; (e) x = 0.25; (f) x = 0.30; (g) 0.75(NN-BMS)-0.25BNST陶瓷在不同频率下与温度相关的介电常数变化率
Fig. 8. Dielectric temperature spectra of (1-x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30) ceramics: (a) x = 0.00; (b) x = 0.10; (c) x = 0.15; (d) x = 0.20; (e) x = 0.25; (f) x = 0.30; (g) temperature dependent dielectric constant change rate of 0.75(NN-BMS)-0.25BNST ceramic at different frequencies.
图 10 (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30)陶瓷 (a) 不同组分下的单极P-E环; (b) 不同组分下的 Pmax, Pr 及 ΔP; (c) 不同组分下的电场强度; (d) 不同组分下的储能性能
Fig. 10. (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30) ceramics: (a) Unipolar P-E circuits under different components; (b) Pmax, Pr and ΔP under different components; (c) electric field strength under different components; (d) energy storage properties under different components.
表 1 (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30)陶瓷的Rietveld精修结构参数
Table 1. Rietveld refined structural parameters of (1–x)(NN-BMS)–xBNST (0.00 ≤ x ≤ 0.30) ceramics.
x Phase Volume fraction/% Lattice parameters/Å V /Å3 Rwp/% Rp/% χ2 a b c 0.00 Pnma 99.84 7.82(8) 7.82(8) 7.82(8) 479.73(5) 7.64 5.65 7.42 Pbma 0.16 5.56(8) 15.74(7) 5.54(7) 486.44(1) 0.10 Pnma 67.2 7.82(3) 7.82(9) 7.83(4) 479.87(3) 5.47 4.18 3.71 Pbma 32.8 5.54(5) 15.60(9) 5.52(1) 478.00(0) 0.15 Pnma 63.3 7.82(3) 7.82(9) 7.83(5) 479.89(9) 5.59 4.43 3.85 Pbma 36.7 5.55(0) 15.62(9) 5.52(9) 479.66(5) 0.20 Pnma 53.1 7.82(0) 7.82(6) 7.83(5) 479.59(3) 5.04 3.82 2.89 Pbma 46.9 5.54(5) 15.63(5) 5.53(9) 480.26(4) 0.25 Pnma 57.1 7.82(1) 7.82(8) 7.83(5) 479.77(9) 5.39 4.21 3.27 Pbma 42.9 5.42(1) 15.66(4) 5.53(2) 480.28(9) 0.30 Pnma 65.65 7.82(1) 7.82(7) 7.83(5) 479.70(5) 5.04 3.92 2.41 Pbma 34.35 5.53(8) 15.60(1) 5.52(4) 477.28(3) -
[1] 杨敏铮, 江建勇, 沈洋 2021 硅酸盐学报 49 1250
Yang M Z, Jiang J Y, Shen Y 2021 J. Chin. Ceram. Soc. 49 1249
[2] Yang F, Pan Z B, Ling Z Q, Hu D, Ding J, Li P, Liu J J, Zhai J W 2021 J. Eur. Ceram. Soc. 41 254
[3] Li S, Nie H C, Wang G S, Xu C H, Liu N T, Zhou M X, Cao F, Dong X L 2019 J. Mater. Chem. C 7 1551Google Scholar
[4] Zou K L, Dan Y, Xu H J, Zhang Q F, Lu Y M, Huang H T, He Y B 2019 Mater. Res. Bull. 113 190Google Scholar
[5] 沈忠慧, 江彦达, 李宝文, 张鑫 2020 物理学报 69 217706Google Scholar
Shen Z H, Jiang Y D, Li B W, Zhang X 2020 Acta Phys. Sin. 69 217706Google Scholar
[6] Zhou M X, Liang R H, Zhou Z Y, Yan S G, Dong X L 2018 ACS Sustain. Chem. Eng. 6 12755Google Scholar
[7] Zhang S, Xia R, Shrout T R 2007 J. Electroceram. 19 251Google Scholar
[8] Shrout T R, Zhang S J 2007 J. Electroceram. 19 113Google Scholar
[9] 张天富, 司洋洋, 黎意杰, 陈祖煌 2023 物理学报 72 097704Google Scholar
Zhang T F, Si Y Y, Li Y J, Chen Z H 2023 Acta Phys. Sin. 72 097704Google Scholar
[10] Yu Z L, Liu Y F, Shen M Y, Qian H, Li F F, Lü Y N 2017 Ceram. Int. 43 7653Google Scholar
[11] Yao F Z, Yuan Q, Wang Q, Wang H 2020 Nanoscale 12 17165Google Scholar
[12] Li D X, Zeng X J, Li Z P, Shen Z Y, Hao H, Luo W Q, Wang X C, Song F S, Wang Z M, Li Y M 2021 J. Adv. Ceram. 10 675Google Scholar
[13] Yang Z T, Du H L, Jin L, Poelman D 2021 J. Mater. Chem. A 9 18026.Google Scholar
[14] 郑明, 杨健, 张怡笑, 关朋飞, 程奥, 范贺良 2023 物理学报 72 177801Google Scholar
Zheng M, Yang J, Zhang Y X, Guan P F, Cheng A, Fan H L 2023 Acta Phys. Sin. 72 177801Google Scholar
[15] Liang C, Wang C Y, Zhao H Y, Cao W J, Li F, Wang C C 2023 J. Alloys Compd. 961 170962Google Scholar
[16] Ye J M, Wang G S, Chen X F, Dong X L 2021 J. Mater. 7 339
[17] Chen J, Qi H, Zuo R Z 2020 ACS Appl. Mater. Inter. 12 32871Google Scholar
[18] Wada T, Tsuji K, Saito T, Matsuo Y 2003 Jpn. J. Appl. Phys. 42 6110Google Scholar
[19] Zhou M X, Liang R H, Zhou Z Y, Yan S G, Dong X L 2018 ACS Sustain. Chem. Eng. 6 12755Google Scholar
[20] Qi H, Zuo R Z 2019 J. Mater. Chem. A. 7 3971Google Scholar
[21] Pang F H, Chen X L, Sun C C, Shi J P, Li X, Chen H Y, Dong X Y, Zhou H F 2020 ACS Sustain. Chem. Eng. 8 14985Google Scholar
[22] Xu Z Q, Liu Z, Dai K, Lu T, Lü Z Q, Hu Z G, Liu Y, Wang G S 2022 J. Mater. Chem. A. 10 13907Google Scholar
[23] 郭云凤, 王俊贤, 王泽星, 李家茂, 刘畅 2024 化学学报 82 511Google Scholar
Guo Y F, Wang J X, Wang Z X, Li J M, Liu C 2024 Acta Chim. Sinica. 82 511Google Scholar
[24] Pang F H, Chen X L, Shi J P, Sun C C, Chen H Y, Dong X Y, Zhou H F 2021 ACS Sustain. Chem. Eng. 9 4863Google Scholar
[25] Shannon R D 1979 Acta Cryst. A 32 751
[26] Zhang S Y, Li W H, Zhang Y S, Tang X G, Jiang Y P, Guo X B 2023 Results Phys. 44 106194Google Scholar
[27] Chen H Y, Wang X, Dong X Y, Pan Y, Wang J M, Deng L, Dong Q P, Zhang H L, Zhou H F, Chen X L 2022 ACS Appl. Mater. Inter. 14 25609Google Scholar
[28] Dong X Y, Li X, Chen X L, Tan Z, Wu J G, Zhu J G, Zhou H F 2022 Nano Energy 101 107577Google Scholar
[29] Chen X L, Li X, Sun J, Sun C C, Shi J P, Pang F H, Zhou H F 2020 Ceram. Int. 46 2764Google Scholar
[30] Han K, Luo N N, Chen Z P, Ma L, Chen X L, Feng Q, Hu C Z, Zhou H F, Wei Y Z, Toyohisa F 2020 J. Eur. Ceram. Soc. 40 3562Google Scholar
[31] Yan F, Bai H R, Shi Y J, Ge G L, Zhou X F, Lin J F, Shen B, Zhai J W 2021 Chem. Eng. J. 425 130669Google Scholar
[32] Shi J P, Chen X L, Li X, Sun J, Sun C C, Pang F H, Zhou H F 2020 J. Mater. Chem. C 8 3784Google Scholar
[33] Cao W J, Lin R J, Chen P F, Li F, Ge B H, Song D S, Zhang J, Cheng Z X, Wang C C 2022 ACS Appl. Mater. Inter. 14 54051Google Scholar
[34] Sun N N, Li Y, Zhang Q W, Hao X H 2018 J. Mater. Chem. C. 6 10693Google Scholar
[35] Shen Y H, Wu L K, Zhao J H, Liu J J, Tang L M, Chen X Q, Li H H, Su Z, Zhang Y, Zhai J W, Pan Z B 2022 Chem. Eng. J. 439 135762Google Scholar
[36] Nie X R, He Y, Shi Q Q, Liang Y Q, Wei L L, Liang P F, Chao X L, Hu G X, Yang Z P 2023 J. Adv. Dielect. 13 2242005Google Scholar
[37] 杜金花, 李雍, 孙宁宁, 赵烨, 郝喜红 2020 物理学报 69 127703
Du J H, Li Y, Sun N N, Zhao Y, Hao X H 2020 Acta Phys. Sin. 69 127703
[38] Wei K, Duan J H, Zhou X F, Li G S, Zhang D, Li H 2023 ACS Appl. Mater. Inter. 15 48354Google Scholar
计量
- 文章访问数: 118
- PDF下载量: 5
- 被引次数: 0