搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石英晶振的储能特性

蔡家欢 李平 文玉梅 鲍宜壮 刘双建

引用本文:
Citation:

石英晶振的储能特性

蔡家欢, 李平, 文玉梅, 鲍宜壮, 刘双建

Characteristics of quartz crystal energy storage

Cai Jia-Huan, Li Ping, Wen Yu-Mei, Bao Yi-Zhuang, Liu Shuang-Jian
PDF
导出引用
  • 针对微弱环境能量难以直接快速存储的问题, 采用石英晶振作为储能元件设计了一种高效储能瞬放电路. 石英晶振的高品质因数特性使其能在较小的输入电压下产生剧烈的机械振动, 从而将微弱的电能转换成机械能存储在石英晶振中. 通过对石英晶振的储能原理与能量释放特性进行理论分析, 推导出石英晶振充放电过程中输出电压与时间的关系式, 以及石英晶振释放能量时最大瞬时输出功率与负载的关系式. 并对石英晶振的储能特性进行了实验验证. 结果表明: 实验与理论相符, 且在输入电压幅值为100 mV, 谐振频率f=1 MHz石英晶振的条件下, 石英晶振的储能效率可以达到77%, 能量释放效率为71.4%.
    As the weak ambient energy is hard to be stored directly and rapidly and unable to drive the electronic load into working properly, a high-efficiency energy storage circuit, with quartz crystal serving as a storage element, is presented. When an alternating electric field is applied to it, the quartz crystal will generate mechanical oscillations of a certain frequency. Since the quartz crystal possesses a high quality factor, in the piezoelectric crystal plate there appears a severe mechanical resonance with a small excitation voltage. In the resonant condition, the external weak electrical energy can be converted into mechanical energy stored in the quartz crystal. The principles of quartz crystal energy storage and instantaneous energy discharge are theoretically analyzed. The relationships between the output voltage and the time and between the maximum instantaneous output power and the load in the processes of quartz crystal charging and discharging are deduced, respectively. The storage characteristics of the quartz crystal are investigated experimentally. The experimental results show a good accordance with the theoretical analysis. A quartz crystal of 1 MHz resonant frequency is adopted in this research. When the input voltage amplitude of the energy storage circuit is 100 mV, the optimal matching load is 820 and the maximum instantaneous output power of quartz crystal discharging circuit is 150 W. The storage efficiency and the release efficiency of the quartz crystal can reach up to 77% and 71.4% respectively. These results provide evidence for quartz crystal energy storage in the condition of weak ambient energy.
      通信作者: 李平, liping@cqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61531008,61374217)资助的课题.
      Corresponding author: Li Ping, liping@cqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61531008, 61374217).
    [1]

    Kousksou T, Bruel P, Jamil A, EI Rhafiki T, Zeraouli Y 2014 Sol. Energ. Mat. Sol. Cells 120 59

    [2]

    Hadjipaschalis I, Poullikkas A, Efthimiou V 2009 Renew. Sust. Energ. Rev. 13 1513

    [3]

    Koohi-Kamali S, Tyagi V V, Rahim N A, Panwar N L, Mokhlis H 2013 Renew. Sust. Energ. Rev. 25 135

    [4]

    Ma L, Huang A Q, Li J 2011 Chin. Phys. B 20 037104

    [5]

    Yan X W, Yu H W, Cao D X, Li M Z, Jiang D B, Jiang X Y, Duan W T, Xu M J 2009 Acta Phys. Sin. 58 4230 (in Chinese) [严雄伟, 於海武, 曹丁象, 李明中, 蒋东镔, 蒋新颖, 段文涛, 徐美健 2009 物理学报 58 4230]

    [6]

    Liu X Y, Wang C Y, Tang Y J, Sun W G, Wu W P 2010 Chin. Phys. B 19 036103

    [7]

    Ruan W, Xie A D, Yu X G, Wu D L 2011 Chin. Phys. B 20 043104

    [8]

    Qin Z K 1980 Piezoelectric Quartz Crystal (Beijing: National Defence Industry Press) p93 (in Chinese) [秦自楷 1980 压电石英晶体(北京: 国防工业出版社) 第93页]

    [9]

    Zhu H B, Wu Z B, Liu G Q, Xi K, Li S S, Dong Y Y 2013 Acta Phys. Sin. 62 014205 (in Chinese) [朱华兵, 吴正斌, 刘国强, 席奎, 李闪闪, 董洋洋 2013 物理学报 62 014205]

    [10]

    Li P, Wen Y M, Liu P G, Li X S, Jia C B 2010 Sensor Actuat. A: Phys. 157 100

    [11]

    Kong N, Cochran T, Ha D S 2010 Applied Power Electronics Conference and Exposition (APEC), 2010 25th Annual IEEE Palm Springs, CA, February 21-25, 2010 p2154

    [12]

    Chang K S, Kang S M, Park K J, Shin S H, Kim H S, Kim H 2012 J. Electr. Eng. Technol. 7 75

    [13]

    Li P, Wen Y M, Yin W J, Wu H Z 2014 IEEE Trans. Ind. Electron. 61 3349

    [14]

    Zhao X, Ketuel T, Baldauf M, Kanoun O 2013 IET Gener. Transm. Dis. 7 101

    [15]

    Pan S Q, Li P, Wen Y M, Zhang Z Q, Lu D, Sun D F 2013 PIERS Proceedings Stockholm, Sweden, August 12-15, 2013 p1744

    [16]

    Tabesh A, Frchette L G 2008 Proceedings of Power MEMS/micro EMS Sendai, Japan, November 9-12, 2008 p289

    [17]

    Mu L Q, Hu Y S, Chen L Q 2015 Chin. Phys. B 24 038202

    [18]

    Zhang K, Hu Z Y, Huang L K, Xu J, Zhang J, Zhu Y J 2015 Acta Phys. Sin. 64 178801 (in Chinese) [张科, 胡子阳, 黄利克, 徐洁, 张京, 诸跃进 2015 物理学报 64 178801]

    [19]

    Zhao S H 2008 Quartz Crystal Oscillator (Beijing: Science Press) p162 (in Chinese) [赵声衡 2008石英晶体振荡器(北京: 科学出版社) 第162页]

  • [1]

    Kousksou T, Bruel P, Jamil A, EI Rhafiki T, Zeraouli Y 2014 Sol. Energ. Mat. Sol. Cells 120 59

    [2]

    Hadjipaschalis I, Poullikkas A, Efthimiou V 2009 Renew. Sust. Energ. Rev. 13 1513

    [3]

    Koohi-Kamali S, Tyagi V V, Rahim N A, Panwar N L, Mokhlis H 2013 Renew. Sust. Energ. Rev. 25 135

    [4]

    Ma L, Huang A Q, Li J 2011 Chin. Phys. B 20 037104

    [5]

    Yan X W, Yu H W, Cao D X, Li M Z, Jiang D B, Jiang X Y, Duan W T, Xu M J 2009 Acta Phys. Sin. 58 4230 (in Chinese) [严雄伟, 於海武, 曹丁象, 李明中, 蒋东镔, 蒋新颖, 段文涛, 徐美健 2009 物理学报 58 4230]

    [6]

    Liu X Y, Wang C Y, Tang Y J, Sun W G, Wu W P 2010 Chin. Phys. B 19 036103

    [7]

    Ruan W, Xie A D, Yu X G, Wu D L 2011 Chin. Phys. B 20 043104

    [8]

    Qin Z K 1980 Piezoelectric Quartz Crystal (Beijing: National Defence Industry Press) p93 (in Chinese) [秦自楷 1980 压电石英晶体(北京: 国防工业出版社) 第93页]

    [9]

    Zhu H B, Wu Z B, Liu G Q, Xi K, Li S S, Dong Y Y 2013 Acta Phys. Sin. 62 014205 (in Chinese) [朱华兵, 吴正斌, 刘国强, 席奎, 李闪闪, 董洋洋 2013 物理学报 62 014205]

    [10]

    Li P, Wen Y M, Liu P G, Li X S, Jia C B 2010 Sensor Actuat. A: Phys. 157 100

    [11]

    Kong N, Cochran T, Ha D S 2010 Applied Power Electronics Conference and Exposition (APEC), 2010 25th Annual IEEE Palm Springs, CA, February 21-25, 2010 p2154

    [12]

    Chang K S, Kang S M, Park K J, Shin S H, Kim H S, Kim H 2012 J. Electr. Eng. Technol. 7 75

    [13]

    Li P, Wen Y M, Yin W J, Wu H Z 2014 IEEE Trans. Ind. Electron. 61 3349

    [14]

    Zhao X, Ketuel T, Baldauf M, Kanoun O 2013 IET Gener. Transm. Dis. 7 101

    [15]

    Pan S Q, Li P, Wen Y M, Zhang Z Q, Lu D, Sun D F 2013 PIERS Proceedings Stockholm, Sweden, August 12-15, 2013 p1744

    [16]

    Tabesh A, Frchette L G 2008 Proceedings of Power MEMS/micro EMS Sendai, Japan, November 9-12, 2008 p289

    [17]

    Mu L Q, Hu Y S, Chen L Q 2015 Chin. Phys. B 24 038202

    [18]

    Zhang K, Hu Z Y, Huang L K, Xu J, Zhang J, Zhu Y J 2015 Acta Phys. Sin. 64 178801 (in Chinese) [张科, 胡子阳, 黄利克, 徐洁, 张京, 诸跃进 2015 物理学报 64 178801]

    [19]

    Zhao S H 2008 Quartz Crystal Oscillator (Beijing: Science Press) p162 (in Chinese) [赵声衡 2008石英晶体振荡器(北京: 科学出版社) 第162页]

  • [1] 张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉. 迈向效率大于30%的钙钛矿/晶硅叠层太阳能电池技术的研究进展. 物理学报, 2023, 72(5): 058801. doi: 10.7498/aps.72.20222019
    [2] 宋建军, 张龙强, 陈雷, 周亮, 孙雷, 兰军峰, 习楚浩, 李家豪. 基于晶向优化和Sn合金化技术的一种2.45 G弱能量微波无线输能用Ge基肖特基二极管. 物理学报, 2021, 70(10): 108401. doi: 10.7498/aps.70.20201674
    [3] 沈忠慧, 江彦达, 李宝文, 张鑫. 高储能密度铁电聚合物纳米复合材料研究进展. 物理学报, 2020, 69(21): 217706. doi: 10.7498/aps.69.20201209
    [4] 何应, 马欲飞, 佟瑶, 彭振芳, 于欣. 光纤倏逝波型石英增强光声光谱技术. 物理学报, 2018, 67(2): 020701. doi: 10.7498/aps.67.20171881
    [5] 韩伟, 冯斌, 郑奎兴, 朱启华, 郑万国, 巩马理. 高功率激光装置熔石英紫外损伤增长研究. 物理学报, 2016, 65(24): 246102. doi: 10.7498/aps.65.246102
    [6] 席发元, 吕会议. 不同 Ep/q 值的离子与氧化铝毛细孔的相互作用. 物理学报, 2013, 62(1): 016104. doi: 10.7498/aps.62.016104
    [7] 余洋, 米增强. 机械弹性储能机组储能过程非线性动力学模型与混沌特性. 物理学报, 2013, 62(3): 038403. doi: 10.7498/aps.62.038403
    [8] 李思佳, 曹祥玉, 高军, 郑秋容, 杨群, 张昭, 张焕梅. 高Q值超薄完美吸波体设计方法研究. 物理学报, 2013, 62(24): 244101. doi: 10.7498/aps.62.244101
    [9] 潘伟, 余和军, 张晓光, 席丽霞. 高Q值二维光子晶体缺三腔的数值模拟与分析. 物理学报, 2012, 61(3): 034209. doi: 10.7498/aps.61.034209
    [10] 江斌, 刘安金, 陈微, 邢名欣, 周文君, 郑婉华. 立体耦合光子晶体薄板微腔的高Q值特性研究. 物理学报, 2010, 59(12): 8548-8553. doi: 10.7498/aps.59.8548
    [11] 史庆藩, 郑俊娟, 王 琪. 微波谐振腔Q值对磁激子振幅不稳定态阈值的影响. 物理学报, 2004, 53(10): 3535-3539. doi: 10.7498/aps.53.3535
    [12] 林秀敏. 二维q变形振子的双波描述. 物理学报, 2000, 49(12): 2315-2319. doi: 10.7498/aps.49.2315
    [13] 韩大星, 王万录, 张 智. 非晶硅电致发光机理及用电致发光谱研究太阳能电池本征层中的缺陷态能量分布. 物理学报, 1999, 48(8): 1484-1490. doi: 10.7498/aps.48.1484
    [14] 杨庆珠, 许伯威. q变形氢原子的能谱. 物理学报, 1994, 43(5): 689-693. doi: 10.7498/aps.43.689
    [15] 潘峰, 许佩军. 三维各向同性振子的q形变及其波函数. 物理学报, 1993, 42(6): 867-873. doi: 10.7498/aps.42.867
    [16] 郝三如. q变形量子振子的Glauber相干态. 物理学报, 1993, 42(7): 1057-1062. doi: 10.7498/aps.42.1057
    [17] 杨光参. q变形振子模型描述的双原子分子的能级数与离解能. 物理学报, 1993, 42(1): 92-94. doi: 10.7498/aps.42.92
    [18] 阎宏, 常哲, 郭汉英. q变形转动振子模型(Ⅰ)——q振子与双原子分子振动谱. 物理学报, 1991, 40(9): 1377-1387. doi: 10.7498/aps.40.1377
    [19] 阎宏. q-畸变振子系统的解和q-振子代数. 物理学报, 1991, 40(11): 1729-1735. doi: 10.7498/aps.40.1729
    [20] 高x值混晶Hg1-xCdxTe光吸收边的压力效应. 物理学报, 1989, 38(11): 1858-1863. doi: 10.7498/aps.38.1858
计量
  • 文章访问数:  6842
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-07
  • 修回日期:  2016-01-27
  • 刊出日期:  2016-05-05

/

返回文章
返回