-
针对微弱环境能量难以直接快速存储的问题, 采用石英晶振作为储能元件设计了一种高效储能瞬放电路. 石英晶振的高品质因数特性使其能在较小的输入电压下产生剧烈的机械振动, 从而将微弱的电能转换成机械能存储在石英晶振中. 通过对石英晶振的储能原理与能量释放特性进行理论分析, 推导出石英晶振充放电过程中输出电压与时间的关系式, 以及石英晶振释放能量时最大瞬时输出功率与负载的关系式. 并对石英晶振的储能特性进行了实验验证. 结果表明: 实验与理论相符, 且在输入电压幅值为100 mV, 谐振频率f=1 MHz石英晶振的条件下, 石英晶振的储能效率可以达到77%, 能量释放效率为71.4%.As the weak ambient energy is hard to be stored directly and rapidly and unable to drive the electronic load into working properly, a high-efficiency energy storage circuit, with quartz crystal serving as a storage element, is presented. When an alternating electric field is applied to it, the quartz crystal will generate mechanical oscillations of a certain frequency. Since the quartz crystal possesses a high quality factor, in the piezoelectric crystal plate there appears a severe mechanical resonance with a small excitation voltage. In the resonant condition, the external weak electrical energy can be converted into mechanical energy stored in the quartz crystal. The principles of quartz crystal energy storage and instantaneous energy discharge are theoretically analyzed. The relationships between the output voltage and the time and between the maximum instantaneous output power and the load in the processes of quartz crystal charging and discharging are deduced, respectively. The storage characteristics of the quartz crystal are investigated experimentally. The experimental results show a good accordance with the theoretical analysis. A quartz crystal of 1 MHz resonant frequency is adopted in this research. When the input voltage amplitude of the energy storage circuit is 100 mV, the optimal matching load is 820 and the maximum instantaneous output power of quartz crystal discharging circuit is 150 W. The storage efficiency and the release efficiency of the quartz crystal can reach up to 77% and 71.4% respectively. These results provide evidence for quartz crystal energy storage in the condition of weak ambient energy.
-
Keywords:
- quartz crystal /
- energy storage technologies /
- storing energy circuit /
- high Q value
[1] Kousksou T, Bruel P, Jamil A, EI Rhafiki T, Zeraouli Y 2014 Sol. Energ. Mat. Sol. Cells 120 59
[2] Hadjipaschalis I, Poullikkas A, Efthimiou V 2009 Renew. Sust. Energ. Rev. 13 1513
[3] Koohi-Kamali S, Tyagi V V, Rahim N A, Panwar N L, Mokhlis H 2013 Renew. Sust. Energ. Rev. 25 135
[4] Ma L, Huang A Q, Li J 2011 Chin. Phys. B 20 037104
[5] Yan X W, Yu H W, Cao D X, Li M Z, Jiang D B, Jiang X Y, Duan W T, Xu M J 2009 Acta Phys. Sin. 58 4230 (in Chinese) [严雄伟, 於海武, 曹丁象, 李明中, 蒋东镔, 蒋新颖, 段文涛, 徐美健 2009 物理学报 58 4230]
[6] Liu X Y, Wang C Y, Tang Y J, Sun W G, Wu W P 2010 Chin. Phys. B 19 036103
[7] Ruan W, Xie A D, Yu X G, Wu D L 2011 Chin. Phys. B 20 043104
[8] Qin Z K 1980 Piezoelectric Quartz Crystal (Beijing: National Defence Industry Press) p93 (in Chinese) [秦自楷 1980 压电石英晶体(北京: 国防工业出版社) 第93页]
[9] Zhu H B, Wu Z B, Liu G Q, Xi K, Li S S, Dong Y Y 2013 Acta Phys. Sin. 62 014205 (in Chinese) [朱华兵, 吴正斌, 刘国强, 席奎, 李闪闪, 董洋洋 2013 物理学报 62 014205]
[10] Li P, Wen Y M, Liu P G, Li X S, Jia C B 2010 Sensor Actuat. A: Phys. 157 100
[11] Kong N, Cochran T, Ha D S 2010 Applied Power Electronics Conference and Exposition (APEC), 2010 25th Annual IEEE Palm Springs, CA, February 21-25, 2010 p2154
[12] Chang K S, Kang S M, Park K J, Shin S H, Kim H S, Kim H 2012 J. Electr. Eng. Technol. 7 75
[13] Li P, Wen Y M, Yin W J, Wu H Z 2014 IEEE Trans. Ind. Electron. 61 3349
[14] Zhao X, Ketuel T, Baldauf M, Kanoun O 2013 IET Gener. Transm. Dis. 7 101
[15] Pan S Q, Li P, Wen Y M, Zhang Z Q, Lu D, Sun D F 2013 PIERS Proceedings Stockholm, Sweden, August 12-15, 2013 p1744
[16] Tabesh A, Frchette L G 2008 Proceedings of Power MEMS/micro EMS Sendai, Japan, November 9-12, 2008 p289
[17] Mu L Q, Hu Y S, Chen L Q 2015 Chin. Phys. B 24 038202
[18] Zhang K, Hu Z Y, Huang L K, Xu J, Zhang J, Zhu Y J 2015 Acta Phys. Sin. 64 178801 (in Chinese) [张科, 胡子阳, 黄利克, 徐洁, 张京, 诸跃进 2015 物理学报 64 178801]
[19] Zhao S H 2008 Quartz Crystal Oscillator (Beijing: Science Press) p162 (in Chinese) [赵声衡 2008石英晶体振荡器(北京: 科学出版社) 第162页]
-
[1] Kousksou T, Bruel P, Jamil A, EI Rhafiki T, Zeraouli Y 2014 Sol. Energ. Mat. Sol. Cells 120 59
[2] Hadjipaschalis I, Poullikkas A, Efthimiou V 2009 Renew. Sust. Energ. Rev. 13 1513
[3] Koohi-Kamali S, Tyagi V V, Rahim N A, Panwar N L, Mokhlis H 2013 Renew. Sust. Energ. Rev. 25 135
[4] Ma L, Huang A Q, Li J 2011 Chin. Phys. B 20 037104
[5] Yan X W, Yu H W, Cao D X, Li M Z, Jiang D B, Jiang X Y, Duan W T, Xu M J 2009 Acta Phys. Sin. 58 4230 (in Chinese) [严雄伟, 於海武, 曹丁象, 李明中, 蒋东镔, 蒋新颖, 段文涛, 徐美健 2009 物理学报 58 4230]
[6] Liu X Y, Wang C Y, Tang Y J, Sun W G, Wu W P 2010 Chin. Phys. B 19 036103
[7] Ruan W, Xie A D, Yu X G, Wu D L 2011 Chin. Phys. B 20 043104
[8] Qin Z K 1980 Piezoelectric Quartz Crystal (Beijing: National Defence Industry Press) p93 (in Chinese) [秦自楷 1980 压电石英晶体(北京: 国防工业出版社) 第93页]
[9] Zhu H B, Wu Z B, Liu G Q, Xi K, Li S S, Dong Y Y 2013 Acta Phys. Sin. 62 014205 (in Chinese) [朱华兵, 吴正斌, 刘国强, 席奎, 李闪闪, 董洋洋 2013 物理学报 62 014205]
[10] Li P, Wen Y M, Liu P G, Li X S, Jia C B 2010 Sensor Actuat. A: Phys. 157 100
[11] Kong N, Cochran T, Ha D S 2010 Applied Power Electronics Conference and Exposition (APEC), 2010 25th Annual IEEE Palm Springs, CA, February 21-25, 2010 p2154
[12] Chang K S, Kang S M, Park K J, Shin S H, Kim H S, Kim H 2012 J. Electr. Eng. Technol. 7 75
[13] Li P, Wen Y M, Yin W J, Wu H Z 2014 IEEE Trans. Ind. Electron. 61 3349
[14] Zhao X, Ketuel T, Baldauf M, Kanoun O 2013 IET Gener. Transm. Dis. 7 101
[15] Pan S Q, Li P, Wen Y M, Zhang Z Q, Lu D, Sun D F 2013 PIERS Proceedings Stockholm, Sweden, August 12-15, 2013 p1744
[16] Tabesh A, Frchette L G 2008 Proceedings of Power MEMS/micro EMS Sendai, Japan, November 9-12, 2008 p289
[17] Mu L Q, Hu Y S, Chen L Q 2015 Chin. Phys. B 24 038202
[18] Zhang K, Hu Z Y, Huang L K, Xu J, Zhang J, Zhu Y J 2015 Acta Phys. Sin. 64 178801 (in Chinese) [张科, 胡子阳, 黄利克, 徐洁, 张京, 诸跃进 2015 物理学报 64 178801]
[19] Zhao S H 2008 Quartz Crystal Oscillator (Beijing: Science Press) p162 (in Chinese) [赵声衡 2008石英晶体振荡器(北京: 科学出版社) 第162页]
计量
- 文章访问数: 6842
- PDF下载量: 220
- 被引次数: 0