搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热塑性聚酰亚胺/氧化铝三明治结构柔性电介质薄膜的设计制备及其高温介电储能性能

卓俊添 林铭浩 张齐艳 黄双武

引用本文:
Citation:

热塑性聚酰亚胺/氧化铝三明治结构柔性电介质薄膜的设计制备及其高温介电储能性能

卓俊添, 林铭浩, 张齐艳, 黄双武

Design, fabrication, and high-temperature dielectric energy storage performance of thermoplastic polyimide/aluminum oxide sandwich-structured flexible dielectric films

Zhuo Jun-Tian, Lin Ming-Hao, Zhang Qi-Yan, Huang Shuang-Wu
PDF
HTML
导出引用
  • 介电电容器具有功率密度高、充放电速度快、损耗低及循环稳定性好等优点, 在先进电子和电力系统中发挥了重要的应用. 聚合物电介质凭借其高击穿强度、柔性和易加工等优点, 成为高电压电容器的首选材料. 然而, 其较低的温度稳定性难以满足新能源汽车和光伏发电等新兴领域对高工作温度的需求. 本文利用物理气相沉积技术, 在具有高玻璃化转变温度(Tg)的热塑性聚酰亚胺(TPI)薄膜表面沉积氧化铝(Al2O3)镀层, 制备了有机/无机三明治结构的Al2O3/TPI/Al2O3电介质薄膜. 研究结果显示, 氧化铝镀层不仅与TPI之间具有优异的界面结合性, 还提高了肖特基势垒, 抑制了电极电荷的注入, 从而降低了高温下的漏电流, 并提高了击穿强度. 制备的Al2O3/TPI/Al2O3三明治结构薄膜在高温下获得了优异的放电能量密度(Ud)和充放电效率(η). 例如, 在150和200 ℃高温下, η > 90%时的Ud分别达到4.06和2.72 J/cm³, 相比纯TPI薄膜提升了98.0%和349.4%.
    Dielectric capacitors are essential components in advanced electronic and power systems due to their high power densities, fast charge-discharge rates, low losses, and excellent cycling stabilities. Polymer dielectrics, such as biaxially oriented polypropylene (BOPP), are preferred dielectric materials for high-voltage capacitors because of their high breakdown strength, flexibility, and easy processing. However, their relatively low thermal stability limits their applications in high-temperature environments, such as in electric vehicles and photovoltaic power generation systems. In this study, sandwich-structured dielectric films are prepared by using physical vapor deposition (PVD) to deposit aluminum oxide (Al2O3) layers onto thermoplastic polyimide (TPI) films to achieve high capacitive energy storage at high temperatures. The TPI films are chosen for their high glass transition temperature (Tg), while Al2O3 layers are deposited to enhance the Schottky barrier, thereby suppressing electrode charge injection, reducing leakage current, and improving breakdown strength at high temperatures. Various characterization techniques are employed to assess the microstructure, dielectric properties, and energy storage performance of the prepared Al2O3/TPI/Al2O3 sandwich-structured films. The results demonstrate that the Al2O3 coating exhibits excellent interfacial adhesion with TPI films, successfully inhibiting charge injection and thereby reducing leakage current. For instance, at 150 °C and 250 MV/m, the leakage current density of TPI film is 3.19×10–7 A/cm², whereas for Al2O3/TPI/Al2O3 sandwich-structured film, its leakage current density is 2.77×10–8 A/cm², a decrease of one order of magnitude. The suppression of charge injection and reduction of leakage current contribute to outstanding discharge energy density (Ud) and charge-discharge efficiency (η) at high temperatures. Specifically, at high temperatures of 150 and 200 °C, the Ud reaches 4.06 and 2.72 J/cm³, respectively, with η > 90%, i.e. increasing 98.0% and 349.4% compared with those of pure TPI films. Furthermore, the PVD process used for fabricating these sandwich-structured films is highly compatible with existing methods of producing metal electrodes in capacitors, offering significant advantages in production efficiency and cost control. This study suggests that the Al2O3/TPI/Al2O3 sandwich-structured films, prepared by using the PVD process and exhibiting exceptional high-temperature capacitive energy storage performance, are highly promising for applications in environments with high temperatures and high electric fields.
      通信作者: 张齐艳, zhangqy15@tsinghua.org.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 52203096)和深圳市科技创新计划(批准号: RCBS20221008093110036, ZDSYS20220527171402005)资助的课题.
      Corresponding author: Zhang Qi-Yan, zhangqy15@tsinghua.org.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 52203096) and the Shenzhen Science and Technology Innovation Program, China (Grant Nos. RCBS20221008093110036, ZDSYS20220527171402005).
    [1]

    查俊伟, 查磊军, 郑明胜 2023 物理学报 72 018401Google Scholar

    Zha J W, Zha L J, Zheng M S 2023 Acta Phys. Sin. 72 018401Google Scholar

    [2]

    Zhang M, Lan S, Yang B B, Pan H, Liu Y Q, Zhang Q H, Qi J L, Chen D, Su H, Yi D, Yang Y Y, Wei R, Cai H D, Han H J, Gu L, Nan C W, Lin Y H 2024 Science 384 185Google Scholar

    [3]

    Luo H, Wang F, Guo R, Zhang D, He G H, Chen S, Wang Q 2022 Adv. Sci. 9 2202438Google Scholar

    [4]

    Chen J, Pei Z T, Chai B, Jiang P K, Ma L, Zhu L, Huang X Y 2023 Adv. Mater. 2308670Google Scholar

    [5]

    Ho J, Jow T R 2012 IEEE Trans. Dielect. Electr. Insul. 19 990Google Scholar

    [6]

    Zhang Q, Chen X, Zhang B, Zhang T, Lu W, Chen Z, Liu Z, Kim S H, Donovan B, Warzoha R J, Gomez E D, Bernholc J, Zhang Q M 2021 Matter 4 2448Google Scholar

    [7]

    Li Q, Yao F Z, Liu Y, Zhang G, Wang H, Wang Q 2018 Annu. Rev. Mater. Res. 48 219Google Scholar

    [8]

    Ho J S, Greenbaum S G 2018 ACS Appl. Mater. Interfaces 10 29189Google Scholar

    [9]

    Zhang Q, Chen X, Zhang T, Zhang Q M 2019 Nano Energy 64 103916Google Scholar

    [10]

    Zhang Q, Li D, Zhong Y, Hu Y, Huang S, Dong S, Zhang Q 2024 Energy Environ. Sci. In PressGoogle Scholar

    [11]

    Wang R, Zhu Y, Fu J, Yang M, Ran Z, Li J, Li M, Hu J, He J, Li Q 2023 Nat. Commun. 14 2406Google Scholar

    [12]

    Zhang T, Chen X, Thakur Y, Lu B, Zhang Q, Runt J, Zhang Q M 2020 Sci. Adv. 6 eaax6622Google Scholar

    [13]

    董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏 2020 物理学报 69 217701Google Scholar

    Dong J F, Deng X L, Niu Y J, Pan Z Z, Wang H 2020 Acta Phys. Sin. 69 217701Google Scholar

    [14]

    Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H U, Iagodkine E, Haque A, Chen L Q, Jackson T N, Wang Q 2015 Nature 523 576Google Scholar

    [15]

    Pei J, Yin L, Zhong S, Dang Z 2023 Adv. Mater. 35 2203623Google Scholar

    [16]

    Wu F, Xie A, Jiang L, Mukherjee S, Gao H, Shi J, Wu J, Shang H, Sheng Z, Guo R, Wu L, Liu J, Suss M E, Terzis A, Li W, Zeng H 2023 Adv. Funct. Mater. 33 2212861Google Scholar

    [17]

    Min D, Ji M, Li P, Gao Z, Liu W, Li S, Liu J 2021 IEEE Trans. Dielectr. Electr. Insul. 28 2011Google Scholar

    [18]

    Li H, Ai D, Ren L, Yao B, Han Z, Shen Z, Wang J, Chen L, Wang Q 2019 Adv. Mater. 31 1900875Google Scholar

    [19]

    Li Q, Cheng S 2020 IEEE Electr. Insul. Mag. 36 7Google Scholar

    [20]

    Rui G C, Bernholc J, Zhang S H, Zhang Q M 2024 Adv. Mater. 2311739Google Scholar

    [21]

    Yuan C, Zhou Y, Zhu Y, Liang J, Wang S, Peng S, Li Y, Cheng S, Yang M, Hu J, Zhang B, Zeng R, He J, Li Q 2020 Nat. Commun. 11 3919Google Scholar

    [22]

    Zhou Y, Zhu Y, Xu W, Wang Q 2023 Adv. Energy Mater. 13 2203961Google Scholar

    [23]

    Li Z, Zhang Y, Pan Z, Fan X, Li P, Chen W, Liu J, Li W 2024 ACS Appl. Mater. Interfaces 16 10756Google Scholar

    [24]

    Ai D, Li H, Zhou Y, Ren L, Han Z, Yao B, Zhou W, Zhao L, Xu J, Wang Q 2020 Adv. Energy Mater. 10 1903881Google Scholar

    [25]

    Tan D Q 2020 Adv. Funct. Mater. 30 1808567Google Scholar

    [26]

    Zhang T, Sun H, Yin C, Jung Y H, Min S, Zhang Y, Zhang C, Chen Q, Lee K J, Chi Q 2023 Prog. Mater. Sci. 140 101207Google Scholar

    [27]

    Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar

    [28]

    Li H, Chang B S, Kim H, Xie Z, Lainé A, Ma L, Xu T, Yang C, Kwon J, Shelton S W, Klivansky L M, Altoé V, Gao B, Schwartzberg A M, Peng Z, Ritchie R O, Xu T, Salmeron M, Ruiz R, Sharpless K B, Wu P, Liu Y 2023 Joule 7 95Google Scholar

    [29]

    Cheng S, Zhou Y, Hu J, He J, Li Q 2020 IEEE Trans. Dielectr. Electr. Insul. 27 498Google Scholar

    [30]

    Cheng S, Zhou Y, Li Y S, Yuan C, Yang M C, Fu J, Hu J, He J L 2021 Energy Storage Mater. 42 445Google Scholar

    [31]

    Wu X, Song G, Zhang X, Lin X, Ivry Y, Tan D Q 2022 Chem. Eng. J. 450 137940Google Scholar

    [32]

    Azizi A, Gadinski M R, Li Q, AlSaud M A, Wang J, Wang Y, Wang B, Liu F, Chen L, Alem N, Wang Q 2017 Adv. Mater. 29 1701864Google Scholar

    [33]

    李雨凡, 薛文清, 李玉超, 战艳虎, 谢倩, 李艳凯, 查俊伟 2024 物理学报 73 027702Google Scholar

    Li Y F, Xue W Q, Li Y C, Zhan Y H, Xie Q, Li Y K, Zha J W 2024 Acta Phys. Sin. 73 027702Google Scholar

    [34]

    Pan L, Wang F, He Y, Du G 2022 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE) Chongqing, China , 2022-09-25, 2022 pp1–4

    [35]

    Li J, Ren G K, Chen J, Chen X, Wu W, Liu Y, Chen X, Song J, Lin Y H, Shi Y 2022 JOM 74 3069Google Scholar

    [36]

    Bao Z, Du X, Ding S, Chen J, Dai Z, Liu C, Wang Y, Yin Y, Li X 2022 ACS Appl. Energy Mater. 5 3119Google Scholar

    [37]

    Dissado L, Fothergill J, Wolfe S, Hill R 1984 IEEE Trans. Electr. Insul. EI-19 227Google Scholar

  • 图 1  (a) 三明治结构电介质薄膜的结构示意图; (b) Al2O3/TPI/Al2O3三明治结构薄膜的实物图; (c) TPI沉积氧化铝镀层前后的DSC升温曲线; 不同镀层厚度Al2O3/TPI/Al2O3薄膜的SEM图 (d) 100 nm; (e) 200 nm; (f) 300 nm; (g) Al2O3/TPI/ Al2O3薄膜的表面SEM照片及EDS分析图片; (h) Al2O3/TPI/ Al2O3薄膜表面AFM三维照片; (i) 纯TPI薄膜表面AFM三维照片

    Fig. 1.  (a) Schematic diagram of the sandwich-structured dielectric films; (b) photograph of TPI coated with aluminum oxide layer; (c) DSC heating curves of TPI films before and after Al2O3 deposition; scanning electron microscope (SEM) images of TPI films with Al2O3 coating layers of (d) 100, (e) 200, and (f) 300 nm thickness; (g) SEM images and EDS analysis of the Al2O3/TPI/Al2O3 films; 3D AFM images of the surface of (h) the Al2O3/TPI/Al2O3 films and (i) pristine TPI films.

    图 2  (a) 常温和(b) 200 ℃温度下TPI及其三明治结构薄膜的介电常数与介电损耗随频率的变化; (c) 10 kHz下样品的介电常数和介电损耗随Al2O3镀层厚度的变化; (d) TPI及其三明治结构薄膜在10 kHz下介电常数与介电损耗随温度的变化图

    Fig. 2.  Dielectric constant and dielectric loss of TPI and its sandwich-structured films as a function of frequency at (a) Room temperature and (b) 200 ℃; (c) dielectric constant and dielectric loss at 10 kHz as a function of Al2O3 coating thickness; (d) dielectric constant and dielectric loss of TPI and its sandwich-structured films as a function of temperature at 10 kHz.

    图 3  (a) 150和(b) 200 ℃下TPI薄膜在沉积Al2O3镀层前后漏电流密度随电场强度的变化; (c) 不同温度下TPI薄膜沉积Al2O3前后的电导率对比; (d) 密度泛函理论计算得到的TPI与Al2O3能带示意图; (e) 电极Au与电介质TPI界面处能带结构图; (f) 电极Au与镀层Al2O3界面处能带结构图

    Fig. 3.  Leakage current density of TPI films before and after Al2O3 deposition at (a) 150 and (b) 200 ℃; (c) comparation of electrical conductivity for TPI films before and after Al2O3 deposition at 150 and 200 ℃; (d) energy band diagram of TPI and Al2O3 obtained from density functional theory (DFT) calculations; (e) energy band structure at the interface between the Au electrode and the TPI dielectric; (f) energy band structure at the interface between the Au electrode and the Al2O3 coating.

    图 4  (a) 150和 (b) 200 ℃下TPI和TPI-200 nm Al2O3薄膜的韦伯分布击穿强度; (c) 不同温度下TPI和TPI-200 nm Al2O3薄膜击穿强度的对比

    Fig. 4.  Weibull distribution of breakdown strength for TPI and TPI-200 nm Al2O3 films at (a) 150 and 200 ℃; (c) comparation of the weibull breakdown strength for TPI and TPI-200 nm Al2O3 films at different temperatures.

    图 5  (a) 纯TPI薄膜和(b) TPI-200 nm Al2O3薄膜在温度为150 ℃时的电位移-电场强度(D-E)曲线; (c) 纯TPI薄膜和(d) TPI-200 nm Al2O3薄膜在温度为200 ℃时的D-E曲线

    Fig. 5.  D-E loops of (a) pristine TPI and (b) TPI-200 nm Al2O3 films at 150 ℃; D-E loops of (c) pristine TPI and (d) TPI-200 nm Al2O3 films at 200 ℃.

    图 6  (a) 150 ℃ 和(b) 200 ℃温度下放电能量密度(Ue)和充放电效率随电场强度的变化曲线; (c) 不同温度下TPI-200 nm Al2O3和TPI电介质薄膜在90%效率时的放电能量密度对比; (d) 不同温度下TPI-200 nm Al2O3和TPI电介质薄膜在电场强度350 MV/m下能量密度损失的对比

    Fig. 6.  Discharge energy density (Ue) and charge-discharge efficiency (η) at different electric fields at (a) 150 ℃ and (b) 200 ℃; (c) comparation of the discharge energy density at 90% efficiency for TPI-200 nm Al2O3 and TPI films at 150 and 200 ℃; (d) comparation of energy density loss at 350 MV/m for TPI-200 nm Al2O3 and TPI films at 150 and 200 ℃.

  • [1]

    查俊伟, 查磊军, 郑明胜 2023 物理学报 72 018401Google Scholar

    Zha J W, Zha L J, Zheng M S 2023 Acta Phys. Sin. 72 018401Google Scholar

    [2]

    Zhang M, Lan S, Yang B B, Pan H, Liu Y Q, Zhang Q H, Qi J L, Chen D, Su H, Yi D, Yang Y Y, Wei R, Cai H D, Han H J, Gu L, Nan C W, Lin Y H 2024 Science 384 185Google Scholar

    [3]

    Luo H, Wang F, Guo R, Zhang D, He G H, Chen S, Wang Q 2022 Adv. Sci. 9 2202438Google Scholar

    [4]

    Chen J, Pei Z T, Chai B, Jiang P K, Ma L, Zhu L, Huang X Y 2023 Adv. Mater. 2308670Google Scholar

    [5]

    Ho J, Jow T R 2012 IEEE Trans. Dielect. Electr. Insul. 19 990Google Scholar

    [6]

    Zhang Q, Chen X, Zhang B, Zhang T, Lu W, Chen Z, Liu Z, Kim S H, Donovan B, Warzoha R J, Gomez E D, Bernholc J, Zhang Q M 2021 Matter 4 2448Google Scholar

    [7]

    Li Q, Yao F Z, Liu Y, Zhang G, Wang H, Wang Q 2018 Annu. Rev. Mater. Res. 48 219Google Scholar

    [8]

    Ho J S, Greenbaum S G 2018 ACS Appl. Mater. Interfaces 10 29189Google Scholar

    [9]

    Zhang Q, Chen X, Zhang T, Zhang Q M 2019 Nano Energy 64 103916Google Scholar

    [10]

    Zhang Q, Li D, Zhong Y, Hu Y, Huang S, Dong S, Zhang Q 2024 Energy Environ. Sci. In PressGoogle Scholar

    [11]

    Wang R, Zhu Y, Fu J, Yang M, Ran Z, Li J, Li M, Hu J, He J, Li Q 2023 Nat. Commun. 14 2406Google Scholar

    [12]

    Zhang T, Chen X, Thakur Y, Lu B, Zhang Q, Runt J, Zhang Q M 2020 Sci. Adv. 6 eaax6622Google Scholar

    [13]

    董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏 2020 物理学报 69 217701Google Scholar

    Dong J F, Deng X L, Niu Y J, Pan Z Z, Wang H 2020 Acta Phys. Sin. 69 217701Google Scholar

    [14]

    Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H U, Iagodkine E, Haque A, Chen L Q, Jackson T N, Wang Q 2015 Nature 523 576Google Scholar

    [15]

    Pei J, Yin L, Zhong S, Dang Z 2023 Adv. Mater. 35 2203623Google Scholar

    [16]

    Wu F, Xie A, Jiang L, Mukherjee S, Gao H, Shi J, Wu J, Shang H, Sheng Z, Guo R, Wu L, Liu J, Suss M E, Terzis A, Li W, Zeng H 2023 Adv. Funct. Mater. 33 2212861Google Scholar

    [17]

    Min D, Ji M, Li P, Gao Z, Liu W, Li S, Liu J 2021 IEEE Trans. Dielectr. Electr. Insul. 28 2011Google Scholar

    [18]

    Li H, Ai D, Ren L, Yao B, Han Z, Shen Z, Wang J, Chen L, Wang Q 2019 Adv. Mater. 31 1900875Google Scholar

    [19]

    Li Q, Cheng S 2020 IEEE Electr. Insul. Mag. 36 7Google Scholar

    [20]

    Rui G C, Bernholc J, Zhang S H, Zhang Q M 2024 Adv. Mater. 2311739Google Scholar

    [21]

    Yuan C, Zhou Y, Zhu Y, Liang J, Wang S, Peng S, Li Y, Cheng S, Yang M, Hu J, Zhang B, Zeng R, He J, Li Q 2020 Nat. Commun. 11 3919Google Scholar

    [22]

    Zhou Y, Zhu Y, Xu W, Wang Q 2023 Adv. Energy Mater. 13 2203961Google Scholar

    [23]

    Li Z, Zhang Y, Pan Z, Fan X, Li P, Chen W, Liu J, Li W 2024 ACS Appl. Mater. Interfaces 16 10756Google Scholar

    [24]

    Ai D, Li H, Zhou Y, Ren L, Han Z, Yao B, Zhou W, Zhao L, Xu J, Wang Q 2020 Adv. Energy Mater. 10 1903881Google Scholar

    [25]

    Tan D Q 2020 Adv. Funct. Mater. 30 1808567Google Scholar

    [26]

    Zhang T, Sun H, Yin C, Jung Y H, Min S, Zhang Y, Zhang C, Chen Q, Lee K J, Chi Q 2023 Prog. Mater. Sci. 140 101207Google Scholar

    [27]

    Zhou Y, Li Q, Dang B, Yang Y, Shao T, Li H, Hu J, Zeng R, He J, Wang Q 2018 Adv. Mater. 30 1805672Google Scholar

    [28]

    Li H, Chang B S, Kim H, Xie Z, Lainé A, Ma L, Xu T, Yang C, Kwon J, Shelton S W, Klivansky L M, Altoé V, Gao B, Schwartzberg A M, Peng Z, Ritchie R O, Xu T, Salmeron M, Ruiz R, Sharpless K B, Wu P, Liu Y 2023 Joule 7 95Google Scholar

    [29]

    Cheng S, Zhou Y, Hu J, He J, Li Q 2020 IEEE Trans. Dielectr. Electr. Insul. 27 498Google Scholar

    [30]

    Cheng S, Zhou Y, Li Y S, Yuan C, Yang M C, Fu J, Hu J, He J L 2021 Energy Storage Mater. 42 445Google Scholar

    [31]

    Wu X, Song G, Zhang X, Lin X, Ivry Y, Tan D Q 2022 Chem. Eng. J. 450 137940Google Scholar

    [32]

    Azizi A, Gadinski M R, Li Q, AlSaud M A, Wang J, Wang Y, Wang B, Liu F, Chen L, Alem N, Wang Q 2017 Adv. Mater. 29 1701864Google Scholar

    [33]

    李雨凡, 薛文清, 李玉超, 战艳虎, 谢倩, 李艳凯, 查俊伟 2024 物理学报 73 027702Google Scholar

    Li Y F, Xue W Q, Li Y C, Zhan Y H, Xie Q, Li Y K, Zha J W 2024 Acta Phys. Sin. 73 027702Google Scholar

    [34]

    Pan L, Wang F, He Y, Du G 2022 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE) Chongqing, China , 2022-09-25, 2022 pp1–4

    [35]

    Li J, Ren G K, Chen J, Chen X, Wu W, Liu Y, Chen X, Song J, Lin Y H, Shi Y 2022 JOM 74 3069Google Scholar

    [36]

    Bao Z, Du X, Ding S, Chen J, Dai Z, Liu C, Wang Y, Yin Y, Li X 2022 ACS Appl. Energy Mater. 5 3119Google Scholar

    [37]

    Dissado L, Fothergill J, Wolfe S, Hill R 1984 IEEE Trans. Electr. Insul. EI-19 227Google Scholar

  • [1] 李雨凡, 薛文清, 李玉超, 战艳虎, 谢倩, 李艳凯, 查俊伟. 三明治结构柔性储能电介质材料研究进展. 物理学报, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [2] 余欣秀, 李多生, 叶寅, 朗文昌, 刘俊红, 陈劲松, 于爽爽. 硬质合金表面镍过渡层对碳原子沉积与石墨烯生长影响的分子动力学模拟. 物理学报, 2024, 73(23): 238701. doi: 10.7498/aps.73.20241170
    [3] 陈宇鹏, 史路林, 王瑜玉, 程锐, 杨杰, 陈良文, 范伟丽, 董俊煜. GeV重离子束辐照LiF引起的晶体内部结构改变. 物理学报, 2024, 73(15): 156401. doi: 10.7498/aps.73.20240717
    [4] 汪静丽, 张见哲, 陈鹤鸣. 基于亚波长光栅和三明治结构的偏振无关微环谐振器的设计与仿真. 物理学报, 2021, 70(12): 124201. doi: 10.7498/aps.70.20201965
    [5] 董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏. 面向高温介电储能应用的聚合物基电介质材料研究进展. 物理学报, 2020, 69(21): 217701. doi: 10.7498/aps.69.20201006
    [6] 汪静丽, 陈子玉, 陈鹤鸣. 基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1 × 2多模干涉型解复用器的设计. 物理学报, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [7] 周晓锋, 方浩宇, 唐春梅. 三明治结构graphene-2Li-graphene的储氢性能. 物理学报, 2019, 68(5): 053601. doi: 10.7498/aps.68.20181497
    [8] 朱畦, 袁协涛, 诸翊豪, 张晓华, 杨朝晖. 基于收缩高密度碳纳米管阵列的柔性固态超级电容器. 物理学报, 2018, 67(2): 028201. doi: 10.7498/aps.67.20171855
    [9] 毕学松, 朱亮, 杨富龙. 丝电爆过程的电流导入机理. 物理学报, 2012, 61(7): 078105. doi: 10.7498/aps.61.078105
    [10] 韩玉岩, 曹亮, 徐法强, 陈铁锌, 郑志远, 万力, 刘凌云. 苝四甲酸二酐有机单晶纳米结构的制备及形成机理的研究. 物理学报, 2012, 61(7): 078103. doi: 10.7498/aps.61.078103
    [11] 张彩霞, 郭虹, 杨致, 骆游桦. 三明治结构Tan(B3N3H6)n+1 团簇的磁性和量子输运性质. 物理学报, 2012, 61(19): 193601. doi: 10.7498/aps.61.193601
    [12] 张利伟, 许静平, 赫丽, 乔文涛. 含单负材料三明治结构的电磁隧穿特性. 物理学报, 2010, 59(11): 7863-7868. doi: 10.7498/aps.59.7863
    [13] 付非亚, 陈微, 周文君, 刘安金, 邢名欣, 王宇飞, 郑婉华. 纳米三明治结构光子超材料中电磁场振荡行为研究. 物理学报, 2010, 59(12): 8579-8583. doi: 10.7498/aps.59.8579
    [14] 李盛涛, 成鹏飞, 李建英. Al2O3单晶三明治结构的高温热激发电流. 物理学报, 2008, 57(12): 7783-7788. doi: 10.7498/aps.57.7783
    [15] 朱 利, 杨文革, 徐玲玲, 陈定安, 王 文, 崔一平. 新型有机非线性光学材料L-苹果酸脲薄膜形成机理及性质研究. 物理学报, 2007, 56(1): 569-573. doi: 10.7498/aps.56.569
    [16] 刘江涛, 周云松, 王艾玲, 姜宏伟, 郑 鹉. 三明治结构与同轴电缆结构磁性材料巨磁阻抗效应的理论研究. 物理学报, 2003, 52(11): 2859-2864. doi: 10.7498/aps.52.2859
    [17] 李 玲, 李伯臧. 双动边界一维空腔中的能量密度. 物理学报, 2003, 52(11): 2762-2767. doi: 10.7498/aps.52.2762
    [18] 唐立家, 蔡希洁, 林尊琪. “神光Ⅱ”主放大器中的波形控制. 物理学报, 2001, 50(6): 1075-1079. doi: 10.7498/aps.50.1075
    [19] 李 铁, 沈鸿烈, 沈勤我, 邹世昌. 不同过渡层上Co/Cu/Co三明治结构的巨磁电阻效应研究. 物理学报, 1999, 48(13): 28-34. doi: 10.7498/aps.48.28
    [20] 董正超. 磁三明治结构巨磁阻的量子解析理论. 物理学报, 1997, 46(9): 1801-1807. doi: 10.7498/aps.46.1801
计量
  • 文章访问数:  2090
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-16
  • 修回日期:  2024-07-16
  • 上网日期:  2024-08-08
  • 刊出日期:  2024-09-05

/

返回文章
返回