搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti4+掺杂对Ca3Co2O6磁性和磁-介电性能的影响

王明豪 龚高尚 张会均 何诗悦 刘若水 王利晨 杨淑娴

引用本文:
Citation:

Ti4+掺杂对Ca3Co2O6磁性和磁-介电性能的影响

王明豪, 龚高尚, 张会均, 何诗悦, 刘若水, 王利晨, 杨淑娴

Effect of Ti4+ doping on magnetism and magnetodielectric properties of Ca3Co2O6

Wang Ming-Hao, Gong Gao-Shang, Zhang Hui-Jun, He Shi-Yue, Liu Ruo-Shui, Wang Li-Chen, Yang Shu-Xian
PDF
HTML
导出引用
  • 本文采用溶胶-凝胶法制备了一系列Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06)多晶样品, 并对他们的磁性、介电和磁介电性能进行了研究. X射线衍射结果显示少量的Ti4+并未改变Ca3Co2O6的晶体结构. 虽然非磁性的Ti4+离子破坏了Ca3Co2O6的长程铁磁链并抑制了部分铁磁相互作用, 使得掺杂样品的磁化强度有所降低. 但磁性测量结果拟合得到的居里-外斯温度和交换常数均为正值, 说明在Ti4+掺杂的Ca3Co2–xTixO6样品中铁磁相互作用依旧是占据主导地位的. 由于Ti4+离子的引入, Ca3Co2O6的自旋阻挫得到一定程度释放, 抑制了Ca3Co2O6磁化台阶的形成. Ca3Co2O6作为一种典型的磁介电耦合材料, Ti4+离子掺杂对体系自旋阻挫的释放和精细磁结构的调控也使得样品的磁介电耦合效应受到了一定程度的抑制.
    As a quasi-one-dimensional spin frustrated material, Ca3Co2O6 has a series of interesting physical properties such as low-temperature spin freezing and multiple magnetized steps due to its unique structure. The magnetic properties of Ca3Co2O6 mainly come from Co ions, and the doping of different elements at the Co site has a great effect on the magnetic structure of Ca3Co2O6. At present, the magnetic research of Ca3Co2O6 and its related compounds mainly focuses on exploring the influence of other elements replacing Co sites. For example, non-magnetic Sc3+ can dilute the intrachain ferromagnetic exchange, while the doping of magnetic ions Mn4+, Fe3+ or Cr3+ can inhibit the intrachain ferromagnetic interaction and enhance the antiferromagnetic interchain interaction. Doping Ti4+ ions, which are high-valence non-magnetic ions, not only dilutes the magnetic interaction of Ca3Co2O6, but also changes the valence state of cobalt ions. i.e. it can convert part of Co3+ ions into Co2+ ions. Therefore, comparing with other doped ions, their introduction may have a more significant effect on the magnetoelectric properties of Ca3Co2O6. In this study, a series of Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) polycrystalline samples is prepared by sol-gel method. Their magnetic, dielectric and magnetodielectric properties are measured. The XRD patterns show that a small number of Ti4+ ions do not change the crystal structure of Ca3Co2O6. Due to the destruction of the long-range ferromagnetic correlation of Ca3Co2O6 by non-magnetic Ti4+ ions, the ferromagnetic interaction is inhibited to some extent. Because Ti4+ ions are non-magnetic ions, they cannot form antiferromagnetic coupling with Co ions, resulting in the decrease of the Curie-Weiss temperature(θ). The positive θ value and exchange constant still indicate that the ferromagnetic interaction is dominant in Ti4+ doped Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) samples. The substitution of non-magnetic ions Ti4+ for Co3+ ions also makes the effective magnetic moment of Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) monotonically decrease from μeff = 5.42μB for x = 0 to μeff = 5.18μB for x = 0.06. Accompanying the introduction of Ti4+ ions, the spin frustration of Ca3Co2O6 is released partly, thus gradually fading the magnetization steps of Ca3Co2O6. As the Ca3Co2O6 is a typical magnetodielectric material, the released spin frustration in Ti4+ doped samples and the variation of the subtle magnetic structure exert a large influence on the magnetodielectric coupling effect of Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) compounds.
      通信作者: 杨淑娴, sxyang_job@163.com
    • 基金项目: 河南省科技攻关项目 (批准号: 242102231072)资助的课题.
      Corresponding author: Yang Shu-Xian, sxyang_job@163.com
    • Funds: Project supported by the Science and Technology Research Program of Henan Province, China (Grant No. 242102231072).
    [1]

    Gong G S, Guo J J, Ma Y M, Zhang YP, Wang YQ, Su Y L 2019 J. Magn. Magn. Mater. 482 323Google Scholar

    [2]

    Kudasov Y B, Korshunov A S, Pavlov V N, Maslov D A 2010 J. Low. Temp. Phys. 159 76Google Scholar

    [3]

    Gong G S, Wang M H, Li Z, Duan Y R, Zuo Y Y, Zhou J, Wang Y Q, Su Y L 2024 J. Magn. Magn. Mater. 590 171653Google Scholar

    [4]

    Gong G S, Xu L M, Bai Y M, Wang Y Q, Yuan S L, Liu Y, Tian Z M 2021 Phys. Rev. Mater. 5 034405Google Scholar

    [5]

    Zhou J, Gong G S, Duan Y R, Wang L C, Zuo Y Y, Wang Y Q, Su Y L 2023 J. Solid State Chem. 323 124021Google Scholar

    [6]

    Xu L M, Gong G S, Zhao C W, Song X X, Yuan S L, Tian Z M 2020 J. Phys. Chem. C 124 22656Google Scholar

    [7]

    Ashtar M, Guo J J, Wan Z T, Wang Y Q, Gong G S, Liu Y, Su Y L, Tian Z M 2020 Inorg. Chem. 59 5368Google Scholar

    [8]

    Maignan A, Michel C, Masset A C, Martin C, Raveau B 2000 Eur. Phys. J. B 15 657Google Scholar

    [9]

    Fjellvåg H, Gulbrandsen E, Aasland S, Olsen A, Hauback B C 1996 J. Solid. State. Chem. 124 190Google Scholar

    [10]

    Bellido N, Simon C, Maignan A 2008 Phys. Rev. B 77 054430Google Scholar

    [11]

    Kudasov Y B, Korshunov A S, Pavlov V N, Maslov D A 2011 Phys. Rev. B 83 092404Google Scholar

    [12]

    Takubo K, Mizokawa T, Hirata S, Son J, Fujimori A, Topwal D, Sarma D D, Rayaprol S, Sampathkumaran E 2005 Phys. Rev. B 71 073406Google Scholar

    [13]

    Shimizu Y, Horibe M, Nanba H, Takami T, Itoh M 2010 Phys. Rev. B 82 094430Google Scholar

    [14]

    Allodi G, Santini P, Carretta S, Agrestini S, Mazzoli C, Bombardi A, Lees M R, Renzi R D 2014 Phys. Rev. B 89 104401Google Scholar

    [15]

    Allodi G, Renzi R D, Agrestini S, Mazzoli C, Lees M R 2011 Phys. Rev. B 83 104408Google Scholar

    [16]

    Hardy V, Lambert S, Lees M R, Paul D M 2003 Phys. Rev. B 68 014424Google Scholar

    [17]

    Hardy V, Flahaut D, Lees M, Petrenko O 2004 Phys. Rev. B 70 214439Google Scholar

    [18]

    Burnus T, Hu Z, Haverkort M W, Cezar J C, Flahaut D, Hardy V, Maignan A, Brookes N B, Tanaka A, Hsieh H H, Lin H, Chen C T, Tjeng L H 2006 Phys. Rev. B 74 245111Google Scholar

    [19]

    Agrestini S, Mazzoli C, Bombardi A, Lees M R 2008 Phys. Rev. B 77 140403Google Scholar

    [20]

    Bisht G S, Pal D 2022 J. Phys-Condens. Mat. 34 285803Google Scholar

    [21]

    Agrestini S, Chapon L C, Daoud-Aladine A, Schefer J, Gukasov A, Mazzoli C, Lees M R, Petrenko O A 2008 Phys. Rev. L 101 097207Google Scholar

    [22]

    Kamiya Y, Batista C D 2012 Phys. Rev. L 109 067204Google Scholar

    [23]

    Flahaut D, Maignan A, Hébert S, Martin C, Retoux R, Hardy V 2004 Phys. Rev. B 70 094418Google Scholar

    [24]

    Hervoches C H, Fredenborg V M, Kjekshus A, Fjellvåg H, Hauback B C 2007 J. Solid. State. Chem. 180 834Google Scholar

    [25]

    Das R, Dang N T, Kalappattil V, Madhogaria R P, Kozlenko D P, Kichanov S E, Lukin E V, A Rutkaukas V, Nguyen T P T, Thao L T P, Bingham N S, Srikanth H, Phan M H 2021 J. Alloys. Compd. 851 156897Google Scholar

    [26]

    Gong G S, Shi C F, Zerihun G, Guo J J, Wang Y Q, Qiu Y, Su Y L 2020 Mater. Res. Bull. 130 110934Google Scholar

    [27]

    Kim J W, Mun E D, Ding X, Hansen A, Jaime M, Harrison N, Yi H T, Chai Y, Sun Y, Cheong S W, Zapf V S 2018 Phys. Rev. B 98 024407Google Scholar

    [28]

    Duan Y R, Gong G S, Wang M H, Zhou J, Li Z, Zuo Y Y, Wang L C, Wang Y Q, Su Y L, Zhang H J 2023 Physics B 671 415429Google Scholar

    [29]

    Gong G S, Wang Y Q, Su Y L, Liu D W, Zerihun G, Qiu Y 2018 Mater. Res. Bull. 99 419Google Scholar

  • 图 1  室温下Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) 的XRD衍射图谱

    Fig. 1.  XRD patterns of Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) at room temperature.

    图 2  Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06)在H = 1000 Oe磁场条件下的ZFC和FC曲线

    Fig. 2.  The zero-field cooling (ZFC) and field cooling (FC) magnetization curves for Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) in H = 1000 Oe.

    图 3  Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06)磁化曲线的居里-外斯拟合结果

    Fig. 3.  Temperature dependence of the inverse susceptibility for Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06), the solid lines represent the Curie-Weiss fitting.

    图 4  Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06)摩尔磁化率与温度的乘积随温度的变化曲线

    Fig. 4.  The temperature dependent $\chi$T curves for Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06).

    图 5  Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) 样品(a)在2 K下的磁化曲线和(b)一阶导数dM/dH曲线, 虚线表示的是磁化台阶的位置

    Fig. 5.  (a) The M-H curves of Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) at 2 K and (b) the differential of the magnetization to the magnetic field (dM/dH).

    图 6  Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) 样品(a)在10 K下的起始磁化曲线和(b)一阶导数dM/dH曲线, 虚线表示磁化台阶的位置

    Fig. 6.  (a) The M-H curves of Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) at 10 K and (b) the differential of the magnetization to the magnetic field (dM/dH).

    图 7  Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06)的介电常数在不同频率下随温度的变化

    Fig. 7.  Temperature dependence of permittivity for Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) under different frequencies.

    图 8  不同频率下Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06)介电损耗随温度的变化

    Fig. 8.  Temperature dependence of loss factor for Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) samples.

    图 9  Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06)在(a) T = 5 K和(b) T =10 K条件下相对介电常数随磁场的变化

    Fig. 9.  The dielectric constant as function of the magnetic field for Ca3Co2–xTixO6 (x = 0, 0.02, 0.04, 0.06) measured at (a) T = 5 K and (b) T =10 K.

  • [1]

    Gong G S, Guo J J, Ma Y M, Zhang YP, Wang YQ, Su Y L 2019 J. Magn. Magn. Mater. 482 323Google Scholar

    [2]

    Kudasov Y B, Korshunov A S, Pavlov V N, Maslov D A 2010 J. Low. Temp. Phys. 159 76Google Scholar

    [3]

    Gong G S, Wang M H, Li Z, Duan Y R, Zuo Y Y, Zhou J, Wang Y Q, Su Y L 2024 J. Magn. Magn. Mater. 590 171653Google Scholar

    [4]

    Gong G S, Xu L M, Bai Y M, Wang Y Q, Yuan S L, Liu Y, Tian Z M 2021 Phys. Rev. Mater. 5 034405Google Scholar

    [5]

    Zhou J, Gong G S, Duan Y R, Wang L C, Zuo Y Y, Wang Y Q, Su Y L 2023 J. Solid State Chem. 323 124021Google Scholar

    [6]

    Xu L M, Gong G S, Zhao C W, Song X X, Yuan S L, Tian Z M 2020 J. Phys. Chem. C 124 22656Google Scholar

    [7]

    Ashtar M, Guo J J, Wan Z T, Wang Y Q, Gong G S, Liu Y, Su Y L, Tian Z M 2020 Inorg. Chem. 59 5368Google Scholar

    [8]

    Maignan A, Michel C, Masset A C, Martin C, Raveau B 2000 Eur. Phys. J. B 15 657Google Scholar

    [9]

    Fjellvåg H, Gulbrandsen E, Aasland S, Olsen A, Hauback B C 1996 J. Solid. State. Chem. 124 190Google Scholar

    [10]

    Bellido N, Simon C, Maignan A 2008 Phys. Rev. B 77 054430Google Scholar

    [11]

    Kudasov Y B, Korshunov A S, Pavlov V N, Maslov D A 2011 Phys. Rev. B 83 092404Google Scholar

    [12]

    Takubo K, Mizokawa T, Hirata S, Son J, Fujimori A, Topwal D, Sarma D D, Rayaprol S, Sampathkumaran E 2005 Phys. Rev. B 71 073406Google Scholar

    [13]

    Shimizu Y, Horibe M, Nanba H, Takami T, Itoh M 2010 Phys. Rev. B 82 094430Google Scholar

    [14]

    Allodi G, Santini P, Carretta S, Agrestini S, Mazzoli C, Bombardi A, Lees M R, Renzi R D 2014 Phys. Rev. B 89 104401Google Scholar

    [15]

    Allodi G, Renzi R D, Agrestini S, Mazzoli C, Lees M R 2011 Phys. Rev. B 83 104408Google Scholar

    [16]

    Hardy V, Lambert S, Lees M R, Paul D M 2003 Phys. Rev. B 68 014424Google Scholar

    [17]

    Hardy V, Flahaut D, Lees M, Petrenko O 2004 Phys. Rev. B 70 214439Google Scholar

    [18]

    Burnus T, Hu Z, Haverkort M W, Cezar J C, Flahaut D, Hardy V, Maignan A, Brookes N B, Tanaka A, Hsieh H H, Lin H, Chen C T, Tjeng L H 2006 Phys. Rev. B 74 245111Google Scholar

    [19]

    Agrestini S, Mazzoli C, Bombardi A, Lees M R 2008 Phys. Rev. B 77 140403Google Scholar

    [20]

    Bisht G S, Pal D 2022 J. Phys-Condens. Mat. 34 285803Google Scholar

    [21]

    Agrestini S, Chapon L C, Daoud-Aladine A, Schefer J, Gukasov A, Mazzoli C, Lees M R, Petrenko O A 2008 Phys. Rev. L 101 097207Google Scholar

    [22]

    Kamiya Y, Batista C D 2012 Phys. Rev. L 109 067204Google Scholar

    [23]

    Flahaut D, Maignan A, Hébert S, Martin C, Retoux R, Hardy V 2004 Phys. Rev. B 70 094418Google Scholar

    [24]

    Hervoches C H, Fredenborg V M, Kjekshus A, Fjellvåg H, Hauback B C 2007 J. Solid. State. Chem. 180 834Google Scholar

    [25]

    Das R, Dang N T, Kalappattil V, Madhogaria R P, Kozlenko D P, Kichanov S E, Lukin E V, A Rutkaukas V, Nguyen T P T, Thao L T P, Bingham N S, Srikanth H, Phan M H 2021 J. Alloys. Compd. 851 156897Google Scholar

    [26]

    Gong G S, Shi C F, Zerihun G, Guo J J, Wang Y Q, Qiu Y, Su Y L 2020 Mater. Res. Bull. 130 110934Google Scholar

    [27]

    Kim J W, Mun E D, Ding X, Hansen A, Jaime M, Harrison N, Yi H T, Chai Y, Sun Y, Cheong S W, Zapf V S 2018 Phys. Rev. B 98 024407Google Scholar

    [28]

    Duan Y R, Gong G S, Wang M H, Zhou J, Li Z, Zuo Y Y, Wang L C, Wang Y Q, Su Y L, Zhang H J 2023 Physics B 671 415429Google Scholar

    [29]

    Gong G S, Wang Y Q, Su Y L, Liu D W, Zerihun G, Qiu Y 2018 Mater. Res. Bull. 99 419Google Scholar

  • [1] 李柱柏, 魏磊, 张震, 段东伟, 赵倩. 磁振子宏观效应以及热扰动场对反磁化的影响. 物理学报, 2022, 71(12): 127502. doi: 10.7498/aps.71.20220168
    [2] 王宏章, 李宇龙, 徐铁权, 朱子青, 马平, 王越, 甘子钊. MgO衬底上YBa2Cu3O7–$_{ \delta}$台阶边沿型约瑟夫森结的制备及特性. 物理学报, 2021, 70(3): 037401. doi: 10.7498/aps.70.20201291
    [3] 罗旭, 朱海燕, 丁雅萍. 基于力磁耦合效应的铁磁材料修正磁化模型. 物理学报, 2019, 68(18): 187501. doi: 10.7498/aps.68.20190765
    [4] 郝志红, 王海英, 张荃, 莫兆军. Eu0.9M0.1TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应. 物理学报, 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [5] 张典承, 张颍, 李晓康, 贾凤东, 李若虹, 钟志萍. 铥原子收敛于4f13(2F7/2o)6s(7/2,1/2)4o和4f13(2F7/2o)6s(7/2,1/2)3o偶宇称里德伯系列能级的电子关联效应. 物理学报, 2018, 67(18): 183102. doi: 10.7498/aps.67.20180797
    [6] 张歆, 章晓中, 谭新玉, 于奕, 万蔡华. Al2O3增强的Co2-C98/Al2O3/Si异质结的光伏效应. 物理学报, 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [7] 董浩, 任敏, 张磊, 邓宁, 陈培毅. 电流驱动磁化翻转中的热效应. 物理学报, 2009, 58(10): 7176-7182. doi: 10.7498/aps.58.7176
    [8] 唐振坤, 王玲玲, 唐黎明, 游开明, 邹炳锁. 磁台阶势垒结构中二维电子气的自旋极化输运. 物理学报, 2008, 57(9): 5899-5905. doi: 10.7498/aps.57.5899
    [9] 任 敏, 张 磊, 胡九宁, 邓 宁, 陈培毅. 基于磁动力学方程的电流感应磁化翻转效应的宏观模型. 物理学报, 2007, 56(5): 2863-2867. doi: 10.7498/aps.56.2863
    [10] 李 琦, 贺 青, 王杭栋, 杨金虎, 杜建华, 方明虎. Sr2Fe1-xCoxMoO6体系中Co的元素替代效应. 物理学报, 2006, 55(11): 6113-6117. doi: 10.7498/aps.55.6113
    [11] 王志宏, 蔡建旺, 沈保根, 赵见高, 詹文山. 自旋玻璃锰氧化物La0.67Ca0.33(Mn,Fe)O3中的分步磁化和超大磁电阻. 物理学报, 1999, 48(4): 757-762. doi: 10.7498/aps.48.757
    [12] 张宏伟, 张文勇, 阎阿儒, 沈保根. 快淬Nd3.6Pr5.4Fe83Co3B5薄带的反磁化行为和磁黏滞性. 物理学报, 1999, 48(13): 211-216. doi: 10.7498/aps.48.211
    [13] 徐明祥, 焦正宽. In替代(La2/3Ca1/3)(Mn(3-2x)/3In2x/3)O3体系巨磁电阻效应的研究. 物理学报, 1998, 47(6): 1006-1011. doi: 10.7498/aps.47.1006
    [14] 覃孟军, 吉和林, 施智祥, 金新, 姚希贤, 樊占国, 单玉桥. 区域熔炼法制备YBa_2Cu_3O_(6+x)的非对数磁弛豫. 物理学报, 1995, 44(2): 328-336. doi: 10.7498/aps.44.328
    [15] 王强华, 王炜, 姚希贤. 环形Josephson结中的回波效应与第一零场台阶的下限偏置电流. 物理学报, 1992, 41(1): 115-122. doi: 10.7498/aps.41.115
    [16] 丁世英, 史可信, 曾朝阳, 余正, 施智祥, 邱里. Tl2Ba2Ca2Cu3Oy超导体磁通钉扎能的分布. 物理学报, 1991, 40(6): 985-989. doi: 10.7498/aps.40.985
    [17] 都有为, 邱子强, 唐焕, J. C. WALKER. 用穆斯堡尔效应研究YBa2Cu3O7-δ中的磁有序. 物理学报, 1990, 39(3): 472-478. doi: 10.7498/aps.39.472
    [18] 何振辉, 陈祖耀, 张酣, 张其瑞. Co,Zn元素对YBa2Cu3O7-δ的不同的掺杂效应. 物理学报, 1989, 38(1): 60-67. doi: 10.7498/aps.38.60
    [19] 罗河烈, 文亦汀, 孙克, 冯远冰, 黄锡成. 表面效应对γ-Fe2O3微粉饱和磁化强度的影响. 物理学报, 1983, 32(6): 812-818. doi: 10.7498/aps.32.812
    [20] 李士, 章佩群, 计桂泉, 罗河烈, 孙克. 包钴铁氧体型γ-Fe2O3磁粉穆斯堡尔效应的研究. 物理学报, 1981, 30(1): 120-123. doi: 10.7498/aps.30.120
计量
  • 文章访问数:  1171
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 修回日期:  2024-07-16
  • 上网日期:  2024-07-31
  • 刊出日期:  2024-09-05

/

返回文章
返回