搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al2O3增强的Co2-C98/Al2O3/Si异质结的光伏效应

张歆 章晓中 谭新玉 于奕 万蔡华

引用本文:
Citation:

Al2O3增强的Co2-C98/Al2O3/Si异质结的光伏效应

张歆, 章晓中, 谭新玉, 于奕, 万蔡华

Enhancing photovoltaic effect of Co2-C98/Al2O3/Si heterostructures by Al2O3

Zhang Xin, Zhang Xiao-Zhong, Tan Xin-Yu, Yu Yi, Wan Cai-Hua
PDF
导出引用
  • 随着能源危机的加剧,太阳能电池作为开发和利用太阳能的一种普遍形式, 日益受到世界各国的重视.随着太阳能电池向着高效率、薄膜化、无毒性和原材料丰富的方向发展, 单纯的硅系太阳能电池已经无法达到这样的要求,因此新的材料和工艺的开发利用迫在眉睫. 本文研究了碳材料在硅异质节上实现光伏效应的改善及其可能在太阳能电池上的应用. 采用脉冲激光沉积方法制备的Co2-C98/Al2O3/Si异质结构在标准日光照射 (AM1.5, 100 mW/cm2)条件下,可获得0.447 V的开路电压和18.75 mA/cm2的电流密度, 转换效率可达3.27%.通过电容电压特性和暗条件下的电输运性能测量, 证明了氧化铝层的引入不但对单晶硅的表面起到了物理钝化作用,减小了反向漏电流, 使异质结界面缺陷、界面能级和复合中心减少,还起到了场效应钝化作用, 增加了异质结界面的势垒高度,增加了开路电压,使异质结的光伏效应显著增强.
    As energy crisis is aggravated, solar cell, as a common form of the development and utilization of solar energy, has attracted more and more attention all over the world. With solar cells developing towards the direction of high efficiency, thin film, non-toxic and rich raw materials, the pure silicon solar cell could not meet these requirements, so the new material and process are imminently required. This paper deals with the photovoltaic effect of the carbon material based on the silicon heterostructure, and its possible application to solar cells. Co2-C98/Al2O3/Si heterostructure with a 4 nm-thick Al2O3 layer shows the best photovoltaic effect performance with a short-current density of 18.75 mA/cm2, an open-circuit voltage of 0.447 V and a power conversion efficiency of 3.27% with AM1.5 illumination, which is much better than Co2-C98/Si heterostructure without the Al2O3 layer. The effect of Al2O3 layer is attributed to the reduction of the interface defects, the suppression of the surface recombination and the enhancement of barrier height, which are proved by the capacitance-voltage and current-voltage measurements under dark condition. This work may shed light on the carbon/silicon based solar cells.
    • 基金项目: 国家自然科学基金委-广东联合基金重点项目(批准号: U0734001)、 国家自然科学基金(批准号: 50772054)和国家重点基础研究发展计划 (批准号: 2009CB929202)资助的课题.
    • Funds: Project supported by the Key Program of Jointed Funds of National Natural Science Foundation of China-Guangdong Province, China (Grant No. U0734001), the National Natural Science Foundation of China (Grant No. 50772054), and the National Basic Research Program of China (Grant No. 2009CB929202).
    [1]

    Goetzberger A, Hebling C 2000 Sol. Energy Mater. Sol. Cells 62 1

    [2]

    Goetzberger A, Hebling C, Schock H W 2003 Mat. Sci. Eng. R 40 1

    [3]

    Wenham S R, Green M A, Watt M E, Corkish R 2007 Applied Photovoltaics (2nd Ed.) (London: Earthscan Publications Ltd.)

    [4]

    Zhu H W, Wei J Q, Wang K L, Wu D H 2009 Sol. Energy Mater. Sol. Cells 93 1461

    [5]

    Hao H Y, Kong G L, Zeng X B, Xu Y, Diao H W, Liao X B 2005 Acta Phys. Sin. 54 3327 (in Chinese) [郝会颖, 孔光临, 曾湘波, 许颖, 刁宏伟, 廖显伯 2005 物理学报 54 3327]

    [6]

    Li Y J, Zheng J G, Feng L H, Li B, Zeng G G, Cai Y P, Zhang J Q, Li W, Lei Z, Wu L L, Cai W 2010 Acta Phys. Sin. 59 625 (in Chinese) [李愿杰, 郑家贵, 冯良桓, 黎兵, 曾广根, 蔡亚平, 张静全, 李卫, 雷智, 武莉莉, 蔡伟 2010 物理学报 59 625]

    [7]

    Zhang W Y, Wu X P, Sun L J, Lin B X, Fu Z X 2008 Acta Phys. Sin. 57 4471 (in Chinese) [张伟英, 邬小鹏, 孙利杰, 林碧霞, 傅竹西 2008 物理学报 57 4471]

    [8]

    Li Z R, Saini V, Dervishi E, Xu Y, Mahmood M, Biris A R, Biris A S 2009 Nanotech. Confer. Expo. 1 53

    [9]

    Ma Z H, Cao Q, Zuo Y H, Zheng J, Xue C L, Cheng B W, Wang Q M 2010 Chin. Phys. B 20 106104

    [10]

    Lu Z L, Wang C Q, Jia Y, Zhang B L, Yao N 2007 Chin. Phys. 16 843

    [11]

    Yu W, Wang C S, Lu W B, He J, Han X X, Fu G S 2007 Chin. Phys. 16 2310

    [12]

    Freitag M, Martin Y, Misewich J A 2003 Nano Lett. 3 1067

    [13]

    Balasubramanian K, Fan Y W, Burghard M 2004 Appl. Phys. Lett. 84 2400

    [14]

    Lee J U 2005 Appl. Phys. Lett. 87 073101

    [15]

    Gabor M, Zhong Z H, Bosnick K, Park J W, McEuen P L 2009 Science 325 1367

    [16]

    Kymakis E, Amaratunga G A J 2002 Appl. Phys. Lett. 80 112

    [17]

    Kymakis E, Alexandrou I, Amaratunga G A J 2003 J. Appl. Phys. 93 1764

    [18]

    Wang N N, Yu J S, Zang Y, Jiang Y D 2010 Chin. Phys. B 19 038602

    [19]

    Jin Y, Curry R J, Sloan J, Hatton R A, Chong L C, Blanchard N, Stolojan V, Kroto H W, Silva S R P 2006 J. Mater. Chem. 16 3715

    [20]

    Somani P R, Somani S P, Umeno M 2008 Carbon Sci. Technol. 1 1

    [21]

    Wang X, Zhi L J, Mullen K 2008 Nano Lett. 8 323

    [22]

    Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nature Mater. 6 770

    [23]

    Yu H A, Kaneko Y, Yoshimura S, Otani S, Yoshimura 1996 Appl. Phys. Lett. 68 547

    [24]

    Ma M, Xue Q Z, Chen H J, Zhou X Y, Xia D, Lü C, Xie J 2010 Appl. Phys. Lett. 97 061902

    [25]

    Krishna K M, Umeno M, Nukaya Y, Soga T, Jimbo T 2000 Appl. Phys. Lett. 77 1472

    [26]

    Rusop M, Mominuzzaman S M, Soga T, Jimboa T, Umeno M 2006 Sol. Energy Mater. Sol. Cells 90 3205

    [27]

    Yap S S, Tou T Y 2008 Vacuum 82 1449

    [28]

    Hu Z H, Liao X B, Liu Z M, Xia C F, Chen T J 2003 Chin. Phys. 12 112

    [29]

    Liu Z F, Miyauchi M, Uemura Y, Cui Y, Hara K, Zhao Z G, Sunahara K, Furube A 2010 Appl. Phys. Lett. 96 233107

    [30]

    Gielis J J H, Hoex B, van de Sanden M C M, Kessels W M M 2008 J. Appl. Phys. 104 073701

    [31]

    Hoex B, Gielis J J H, van de Sanden M C M, Kessels W M M 2008 J. Appl. Phys. 104 113703

    [32]

    Li G H, Li G C, Bicelli L P 1998 Acta Energiae Solaris Sinica 19 172 (in Chinese) [李果华, 李国昌, Bicelli L P 1998 太阳能学报 19 172]

    [33]

    McPherson M 2002 Nucl. Instrum. Methods Phys. Res. A 488 100

  • [1]

    Goetzberger A, Hebling C 2000 Sol. Energy Mater. Sol. Cells 62 1

    [2]

    Goetzberger A, Hebling C, Schock H W 2003 Mat. Sci. Eng. R 40 1

    [3]

    Wenham S R, Green M A, Watt M E, Corkish R 2007 Applied Photovoltaics (2nd Ed.) (London: Earthscan Publications Ltd.)

    [4]

    Zhu H W, Wei J Q, Wang K L, Wu D H 2009 Sol. Energy Mater. Sol. Cells 93 1461

    [5]

    Hao H Y, Kong G L, Zeng X B, Xu Y, Diao H W, Liao X B 2005 Acta Phys. Sin. 54 3327 (in Chinese) [郝会颖, 孔光临, 曾湘波, 许颖, 刁宏伟, 廖显伯 2005 物理学报 54 3327]

    [6]

    Li Y J, Zheng J G, Feng L H, Li B, Zeng G G, Cai Y P, Zhang J Q, Li W, Lei Z, Wu L L, Cai W 2010 Acta Phys. Sin. 59 625 (in Chinese) [李愿杰, 郑家贵, 冯良桓, 黎兵, 曾广根, 蔡亚平, 张静全, 李卫, 雷智, 武莉莉, 蔡伟 2010 物理学报 59 625]

    [7]

    Zhang W Y, Wu X P, Sun L J, Lin B X, Fu Z X 2008 Acta Phys. Sin. 57 4471 (in Chinese) [张伟英, 邬小鹏, 孙利杰, 林碧霞, 傅竹西 2008 物理学报 57 4471]

    [8]

    Li Z R, Saini V, Dervishi E, Xu Y, Mahmood M, Biris A R, Biris A S 2009 Nanotech. Confer. Expo. 1 53

    [9]

    Ma Z H, Cao Q, Zuo Y H, Zheng J, Xue C L, Cheng B W, Wang Q M 2010 Chin. Phys. B 20 106104

    [10]

    Lu Z L, Wang C Q, Jia Y, Zhang B L, Yao N 2007 Chin. Phys. 16 843

    [11]

    Yu W, Wang C S, Lu W B, He J, Han X X, Fu G S 2007 Chin. Phys. 16 2310

    [12]

    Freitag M, Martin Y, Misewich J A 2003 Nano Lett. 3 1067

    [13]

    Balasubramanian K, Fan Y W, Burghard M 2004 Appl. Phys. Lett. 84 2400

    [14]

    Lee J U 2005 Appl. Phys. Lett. 87 073101

    [15]

    Gabor M, Zhong Z H, Bosnick K, Park J W, McEuen P L 2009 Science 325 1367

    [16]

    Kymakis E, Amaratunga G A J 2002 Appl. Phys. Lett. 80 112

    [17]

    Kymakis E, Alexandrou I, Amaratunga G A J 2003 J. Appl. Phys. 93 1764

    [18]

    Wang N N, Yu J S, Zang Y, Jiang Y D 2010 Chin. Phys. B 19 038602

    [19]

    Jin Y, Curry R J, Sloan J, Hatton R A, Chong L C, Blanchard N, Stolojan V, Kroto H W, Silva S R P 2006 J. Mater. Chem. 16 3715

    [20]

    Somani P R, Somani S P, Umeno M 2008 Carbon Sci. Technol. 1 1

    [21]

    Wang X, Zhi L J, Mullen K 2008 Nano Lett. 8 323

    [22]

    Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nature Mater. 6 770

    [23]

    Yu H A, Kaneko Y, Yoshimura S, Otani S, Yoshimura 1996 Appl. Phys. Lett. 68 547

    [24]

    Ma M, Xue Q Z, Chen H J, Zhou X Y, Xia D, Lü C, Xie J 2010 Appl. Phys. Lett. 97 061902

    [25]

    Krishna K M, Umeno M, Nukaya Y, Soga T, Jimbo T 2000 Appl. Phys. Lett. 77 1472

    [26]

    Rusop M, Mominuzzaman S M, Soga T, Jimboa T, Umeno M 2006 Sol. Energy Mater. Sol. Cells 90 3205

    [27]

    Yap S S, Tou T Y 2008 Vacuum 82 1449

    [28]

    Hu Z H, Liao X B, Liu Z M, Xia C F, Chen T J 2003 Chin. Phys. 12 112

    [29]

    Liu Z F, Miyauchi M, Uemura Y, Cui Y, Hara K, Zhao Z G, Sunahara K, Furube A 2010 Appl. Phys. Lett. 96 233107

    [30]

    Gielis J J H, Hoex B, van de Sanden M C M, Kessels W M M 2008 J. Appl. Phys. 104 073701

    [31]

    Hoex B, Gielis J J H, van de Sanden M C M, Kessels W M M 2008 J. Appl. Phys. 104 113703

    [32]

    Li G H, Li G C, Bicelli L P 1998 Acta Energiae Solaris Sinica 19 172 (in Chinese) [李果华, 李国昌, Bicelli L P 1998 太阳能学报 19 172]

    [33]

    McPherson M 2002 Nucl. Instrum. Methods Phys. Res. A 488 100

  • [1] 谈松林, 庄永起, 易健宏. 溶胶-喷雾法制备多壁碳纳米管增强氧化铝基复合材料及性能研究. 物理学报, 2022, 71(1): 018801. doi: 10.7498/aps.71.20211043
    [2] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [3] 刘川川, 郝飞翔, 殷月伟, 李晓光. Pt/BiFeO3/Nb:SrTiO3异质结的光伏效应和光调控整流特性. 物理学报, 2020, 69(12): 127301. doi: 10.7498/aps.69.20200280
    [4] 王文静, 李冲, 张毛毛, 高琨. 共轭聚合物内非均匀场驱动的超快激子输运的动力学研究. 物理学报, 2019, 68(17): 177201. doi: 10.7498/aps.68.20190432
    [5] 蔡田怡, 雎胜. 铁电体的光伏效应. 物理学报, 2018, 67(15): 157801. doi: 10.7498/aps.67.20180979
    [6] 陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹. Cu2O/ZnO氧化物异质结太阳电池的研究进展. 物理学报, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [7] 左依凡, 李培丽, 栾开智, 王磊. 基于自准直效应的光子晶体异质结偏振分束器. 物理学报, 2018, 67(3): 034204. doi: 10.7498/aps.67.20171815
    [8] 张强, 王建元, 罗炳成, 邢辉, 金克新, 陈长乐. La1.3Sr1.7Mn2O7/SrTiO3-Nb异质结的整流和光伏特性. 物理学报, 2016, 65(10): 107301. doi: 10.7498/aps.65.107301
    [9] 熊瑛, 文岐业, 田伟, 毛淇, 陈智, 杨青慧, 荆玉兰. 硅基二氧化钒相变薄膜电学特性研究. 物理学报, 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [10] 魏纪周, 张铭, 邓浩亮, 楚上杰, 杜敏永, 严辉. Bi0.8Ba0.2FeO3/La0.7Sr0.3MnO3异质结制备及其交换偏置效应研究. 物理学报, 2015, 64(8): 088101. doi: 10.7498/aps.64.088101
    [11] 薛源, 郜超军, 谷锦华, 冯亚阳, 杨仕娥, 卢景霄, 黄强, 冯志强. 薄膜硅/晶体硅异质结电池中本征硅薄膜钝化层的性质及光发射谱研究. 物理学报, 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [12] 何悦, 窦亚楠, 马晓光, 陈绍斌, 褚君浩. 热原子层沉积氧化铝对硅的钝化性能及热稳定性. 物理学报, 2012, 61(24): 248102. doi: 10.7498/aps.61.248102
    [13] 赵赓, 程晓曼, 田海军, 杜博群, 梁晓宇, 吴峰. V2O5电极修饰对C60/Pentacene双层异质结场效应晶体管性能的影响. 物理学报, 2012, 61(21): 218502. doi: 10.7498/aps.61.218502
    [14] 陈鹏, 金克新, 陈长乐, 谭兴毅. La0.88 Te0.12 MnO3/Si异质结的整流和光伏特性研究. 物理学报, 2011, 60(6): 067303. doi: 10.7498/aps.60.067303
    [15] 吴利华, 章晓中, 于奕, 万蔡华, 谭新玉. a-C: Fe/AlOx/Si基异质结的光伏效应. 物理学报, 2011, 60(3): 037807. doi: 10.7498/aps.60.037807
    [16] 李晓溪, 贾天卿, 冯东海, 徐至展. 超短脉冲激光照射下氧化铝的烧蚀机理. 物理学报, 2004, 53(7): 2154-2158. doi: 10.7498/aps.53.2154
    [17] 刘 红, 陈将伟. 纳米碳管异质结的结构及其电学性质. 物理学报, 2003, 52(3): 664-667. doi: 10.7498/aps.52.664
    [18] 汪大云, 刘思敏, 陈晓虎, 赵红娥, 郭 儒, 杨立森, 高垣梅, 黄春福, 陆 猗. 非相干辐照对LiNbO3:Fe晶体光折变非线性的影响与控制作用. 物理学报, 2003, 52(2): 395-400. doi: 10.7498/aps.52.395
    [19] 侯春风, 李师群, 李斌, 孙秀冬. 有外加电场的光伏光折变晶体中的非相干耦合亮-暗屏蔽光伏孤子对. 物理学报, 2001, 50(9): 1709-1712. doi: 10.7498/aps.50.1709
    [20] 侯春风, 袁保红, 孙秀冬, 许克彬. 非相干耦合屏蔽光伏孤子对. 物理学报, 2000, 49(10): 1969-1972. doi: 10.7498/aps.49.1969
计量
  • 文章访问数:  4517
  • PDF下载量:  447
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-10
  • 修回日期:  2011-12-22
  • 刊出日期:  2012-07-05

Al2O3增强的Co2-C98/Al2O3/Si异质结的光伏效应

  • 1. 先进材料教育部重点实验室,清华大学材料科学与工程系, 北京 100084;
  • 2. 北京电子显微镜中心, 北京 100084;
  • 3. 中国电池工业协会, 北京 100740
    基金项目: 国家自然科学基金委-广东联合基金重点项目(批准号: U0734001)、 国家自然科学基金(批准号: 50772054)和国家重点基础研究发展计划 (批准号: 2009CB929202)资助的课题.

摘要: 随着能源危机的加剧,太阳能电池作为开发和利用太阳能的一种普遍形式, 日益受到世界各国的重视.随着太阳能电池向着高效率、薄膜化、无毒性和原材料丰富的方向发展, 单纯的硅系太阳能电池已经无法达到这样的要求,因此新的材料和工艺的开发利用迫在眉睫. 本文研究了碳材料在硅异质节上实现光伏效应的改善及其可能在太阳能电池上的应用. 采用脉冲激光沉积方法制备的Co2-C98/Al2O3/Si异质结构在标准日光照射 (AM1.5, 100 mW/cm2)条件下,可获得0.447 V的开路电压和18.75 mA/cm2的电流密度, 转换效率可达3.27%.通过电容电压特性和暗条件下的电输运性能测量, 证明了氧化铝层的引入不但对单晶硅的表面起到了物理钝化作用,减小了反向漏电流, 使异质结界面缺陷、界面能级和复合中心减少,还起到了场效应钝化作用, 增加了异质结界面的势垒高度,增加了开路电压,使异质结的光伏效应显著增强.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回