搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双吸收层钙钛矿异质结策略提升全钙钛矿叠层太阳电池的光伏性能

袁翔 张子发 王明吉 何丹敏 鹿颖申 洪峰 蒋最敏 徐闰 王应民 马忠权 宋宏伟 徐飞

引用本文:
Citation:

双吸收层钙钛矿异质结策略提升全钙钛矿叠层太阳电池的光伏性能

袁翔, 张子发, 王明吉, 何丹敏, 鹿颖申, 洪峰, 蒋最敏, 徐闰, 王应民, 马忠权, 宋宏伟, 徐飞

Dual-absorption-layer Heterojunction Strategy for enhancing the photovoltaic performance of all-perovskite tandem solar cell

Yuan Xiang, Zhang Zifa, Wang Mingji, He Danmin, Lu Yingshen, Hong Feng, Jiang Zuimin, Xu Run, Wang Yingmin, Ma Zhongquan, Song Hongwei, Xu Fei
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文提出一种双吸收层钙钛矿异质结(Dual-absorption-layer Perovskite Heterojunction, DPHJ)策略,即通过将能带交错的II型钙钛矿异质结(p-pCsPbI2Br-CsPbIBr2)应用到全钙钛矿叠层太阳电池作为顶电池的双层结构的吸收层。电池模拟结果表明,与顶电池为单一吸收层CsPbI2Br的全钙钛矿叠层太阳电池相比,DPHJ的引入使得叠层太阳电池的开路电压显著增强(从2.16 V到2.25 V)、短路电流密度进一步提升(从15.96 mA·cm-2到16.76 mA·cm-2)。这主要归因于顶电池的双层结构的吸收层在CsPbI2Br/CsPbIBr2界面处形成能带弯曲,诱导产生增强的内建电场,促进载流子输运,抑制了吸收层体内的非辐射复合。由此基于DPHJ策略的叠层太阳电池可达到高的理论能量转换效率(32.47%)。进一步实验结果表明,相比于单层CsPbI2Br(激子结合能E2=101.9 meV、电子-声子耦合强度(γac=1.2×10-2γLO=6.9×103),双吸收层薄膜展现出更高的激子结合能(E2=110.7 meV)和更低的电子-声子耦合强度(γac=1.1×10-2γLO=6.3×103),表现出更强的光、热稳定性,这有利于制备长效稳定的全钙钛矿叠层太阳电池。
    Organic cations in hybrid organic-inorganic perovskite solar cells are susceptible to decomposition under high temperatures and ultraviolet light, leading to a decline in power conversion efficiency (PCE). All-inorganic perovskite solar cells exhibit both high PCE and superior photothermal stability, making them promising candidates for single-junction and tandem photovoltaic applications. The mixed-halide perovskite CsPbI2Br has garnered significant attention as a top cell in semi-transparent and tandem solar cells owing to its excellent thermal stability and suitable bandgap (1.90 eV). Although the PCE of CsPbI2Br-based solar cells is nearing its theoretical limit, the non-radiative recombination-induced energy losses remaining a major barrier to further performance enhancement. This non-radiative recombination is primarily caused by inadequate band alignment between the absorption layer and the transport layer, resulting in open-circuit voltage (VOC) losses and reduced short-circuit current density (JSC). Two-dimensional perovskite passivation formed via solution processing could mitigate interfacial recombination, but it also could impede efficient charge transport. Constructing three-dimensional perovskite structures not only provides an effective solution to these limitations but also enhances sunlight absorption and facilitates carrier transport. In this study, we propose a Dual-absorption-layer Perovskite Heterojunction (DPHJ) strategy, which involves integrating a staggered type-II perovskite heterojunction (p-pCsPbI2Br-CsPbIBr2) into the absorption layer of the top cell in an all-perovskite tandem solar cell. The result of simulation indicates that stacking a 100 nm-thick CsPbIBr2 layer atop a 300 nm-thick CsPbI2Br layer significantly enhances the PCE of the single-junction device from 19.46% to 22.29%. This improvement is primarily attributed to band bending at the CsPbI2Br/CsPbIBr2 interface, which enhances the built-in electric field, facilitates carrier transport, and suppresses non-radiative recombination within the absorption layer. Compared with the tandem solar cell utilizing a single-absorption-layer CsPbI2Br top cell, the DPHJ-based tandem solar cell significantly increases the VOC (from 2.16 V to 2.25 V) and enhances the JSC (from 15.96 mA×cm-2 to 16.76 mA×cm-2). As a result, the DPHJ-based tandem solar cell achieves a high theoretical PCE of 32.47%. In addition, the DPHJ-based tandem solar cell exhibits a significantly enhanced external quantum efficiency in the 500-580 nm wavelength range, which could be attributed to the band-edge absorption of CsPbIBr2. This enhanced absorption generates more photogenerated carriers, thereby significantly improving the JSC. The results of this study surpass the experimentally reported VOC and PCE values of current CsPbI2Br single-junction and all-perovskite tandem solar cells. Further experimental results show that compared with the single-layer CsPbI2Br (E2= 101.9 meV, electron-phonon coupling strength γac=1.2×10-2γLO=6.9×103), the double-absorption-layer film exhibits a higher exciton binding energy (E2= 110.7 meV) and reduced electron-phonon coupling strength (γac=1.1×10-2γLO=6.3×103), which helps suppress phase segregation and enhances both optical and thermal stability—favorable for fabricating long-term stable all-perovskite tandem solar cells. By focusing on absorption layer design, this work provides new insights and theoretical guidance for enhancing the efficiency and stability of all-perovskite tandem solar cells. It presents a versatile design concept for optimizing absorption layers in all-perovskite multijunction cells and is expected to drive further advancements in this field.
  • [1]

    Jiang Q, Zhu K 2024 Nat. Rev. Mater. 6 399

    [2]

    Zhang Z, Wang X, Yan Q, Yuan X, Lu Y, Cao H, He D, Jiang Z, Xu R, Chen T, Ma Z, Song H, Hong F, Xu F 2024 Sol. RRL 8 2400216

    [3]

    Jiang B, Chen S, Cui X, Hu Z, Li Y, Zhang X, Wu K, Wang W, Jiang Z, Hong F, Ma Z, Zhao L, Xu F, Xu R, Zhan Y 2019 Acta Phys. Sin. 68 246801(蒋泵, 陈思良, 崔晓磊, 胡紫婷, 李跃, 张笑铮, 吴康敬, 王文贞, 蒋最敏, 洪峰, 马忠权, 赵磊, 徐飞, 徐闰, 詹义强 2019 物理学报 68 246801)

    [4]

    Khan F, Rezgui B D, Khan M T, Al-Sulaiman F 2022 Renew. Sustain. Energy Rev. 165 112553

    [5]

    Kim J, Lee H, Lee Y, Kim J 2024 ChemSusChem 17 e202400945

    [6]

    Bai Y, Tian R, Sun K, Liu C, Lang X, Yang M, Meng Y, Xiao C, Wang Y, Lu X, Wang J, Pan H, Song Z, Zhou S, Ge Z 2024 Energy Environ. Sci. 17 8557

    [7]

    Xie G, Li H, Wang X, Fang J, Lin D, Wang D, Li S, He S, Qiu L 2023 Adv. Funct. Mater. 33 2308794

    [8]

    Liu Z, Lin R, Wei M, Yin M, Wu P, Li M, Li L, Wang Y, Chen G, Carnevali V, Agosta L, Slama V, Lempesis N, Wang Z, Wang M, Deng Y, Luo H, Gao H, Rothlisberger U, Zakeeruddin S M, Luo X, Liu Y, Grätzel M, Tan H 2025 Nat. Mater. 24 252

    [9]

    Zou F, Duan C, Lin Z, Zhang Z, Xu S, Chen C, Chen J, Li J, Zou S, Ding L, Luo H, Yan K 2024 Chem. Eng. J. 491 152118

    [10]

    Chu X, Ye Q, Wang Z, Zhang C, Ma F, Qu Z, Zhao Y, Yin Z, Deng H X, Zhang X, You J 2023 Nat. Energy 8 372

    [11]

    Patil J V, Mali S S, Hong C K 2024 Adv. Funct. Mater. 33 2408721

    [12]

    Zhang Z, Yuan X, Lu Y, He D, Yan Q, Cao H, Hong F, Jiang Z, Xu R, Ma Z, Song H, Xu F 2024 Acta Phys. Sin. 73 098803(张子发, 袁翔, 鹿颖申, 何丹敏, 严全河, 曹浩宇, 洪峰, 蒋最敏, 徐闰, 马忠权, 宋宏伟, 徐飞 2024 物理学报 73 098803)

    [13]

    Duan C, Zhang K, Peng Z, Li S, Zou F, Wang F, Li J, Zhang Z, Chen C, Zhu Q, Qiu J, Lu X, Li N, Ding L, Brabec C J, Gao F, Yan K 2025 Nature 637 1111

    [14]

    Lu Y, He D, Yuan X, Yan Q, Shu X, Hu Z, Zhang Z, Liu Z, Jiang Z, Xu R, Wang W, Ma Z, Chen T, Xu H, Xu F, Hong F, Song H 2025 Adv. Funct. Mater. 35 2413507

    [15]

    Xu H, Guo Z, Chen P, Wang S 2024 Chem. Commun. 60 12287

    [16]

    Sha W E I, Wang X, Chen W, Fu Y, Zhang L, Tian L, Lin M, Jiao S, Xu T, Sun T, Liu D 2025 Chin. Phys. B 34 018801

    [17]

    Liu X, Li J, Liu Z, Tan X, Sun B, Xi S, Shi T, Tang Z, Liao G 2020 Electrochimica Acta 330 135266

    [18]

    Zou C, Zheng J, Chang C, Majumdar A, Lin L Y 2019 Adv. Opt. Mater. 7 1900558

    [19]

    Wang N, Zhou Y, Ju M G, Garces H F, Ding T, Pang S, Zeng X C, Padture N P, Sun X W 2016 Adv. Energy Mater. 6 1601130

    [20]

    Wang Y, Li J, Chen Q, Liu W, Gao Z, Fu Y, Liu Q, He D, Li Y 2023 ACS Appl. Energy Mater. 6 4584

    [21]

    Sittinger V, Schulze P S C, Messmer C, Pflug A, Goldschmidt J C 2022 Opt. Express 30 37957

    [22]

    Steirer K X, Ndione P F, Widjonarko N E, Lloyd M T, Meyer J, Ratcliff E L, Kahn A, Armstrong N R, Curtis C J, Ginley D S, Berry J J, Olson D C 2011 Adv. Energy Mater. 1 813

    [23]

    Wang N, Zhou Y, Ju M G, Garces H F, Ding T, Pang S, Zeng X C, Padture N P, Sun X W 2016 Adv. Energy Mater. 6 1601130

    [24]

    Stewart A W, Bouich A, Soucase B M 2021 J. Mater. Sci. 56 20071

    [25]

    Wang J, Zhao P, Hu Y, Lin Z, Su J, Zhang J, Chang J, Hao Y 2021 Sol. RRL 5 2100121

    [26]

    M. S. Rahman, S. Miah, M. S. W. Marma, M. Ibrahim 2020 2020 IEEE Reg. 10 Conf. 10 140

    [27]

    Chen W, Li D, Chen S, Liu S, Shen Y, Zeng G, Zhu X, Zhou E, Jiang L, Li Y, Li Y 2020 Adv. Energy Mater. 10 2000851

    [28]

    Yuan Y, Yan G, Hong R, Liang Z, Kirchartz T 2022 Adv. Mater. 34 2108132

    [29]

    Li Y, Zhang Y, Zhu P, Li J, Wu J, Zhang J, Zhou X, Jiang Z, Wang X, Xu B 2023 Adv. Funct. Mater. 33 2309010

    [30]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 NANO Lett. 15 3692

    [31]

    Zhuang J, Wei Y, Luan Y, Chen N, Mao P, Cao S, Wang J 2019 Nanoscale 11 14553

    [32]

    Ozturk T, Akman E, Shalan A E, Akin S 2021 Nano Energy 87 106157

    [33]

    Han Y, Zhao H, Duan C, Yang S, Yang Z, Liu Z, Liu S (Frank) 2020 Adv. Funct. Mater. 30 1909972

    [34]

    Meng L, Wei Z, Zuo T, Gao P 2020 Nano Energy 75 104866

    [35]

    Lin R, Wang Y, Lu Q, Tang B, Li J, Gao H, Gao Y, Li H, Ding C, Wen J, Wu P, Liu C, Zhao S, Xiao K, Liu Z, Ma C, Deng Y, Li L, Fan F, Tan H 2023 Nature 620 994

    [36]

    Tress W, Petrich A, Hummert M, Hein M, Leo K, Riede M 2011 Appl. Phys. Lett. 98 063301

    [37]

    Liu M, Wan Q, Wang H, Carulli F, Sun X, Zheng W, Kong L, Zhang Q, Zhang C, Zhang Q, Brovelli S, Li L 2021 Nat. Photonics 15 379

    [38]

    Jiang B, Li Y, Zhu J, Hu Z, Zhou X, Zhang Y, Gao M, Wang W, Jiang Z, Ma Z, Zhao L, Chen T, Xu Z, Xu H, Xu F, Xu R, Hong F 2020 Appl. Phys. Lett. 116 072104

    [39]

    Yang Z, Wang M, Qiu H, Yao X, Lao X, Xu S, Lin Z, Sun L, Shao J 2018 Adv. Funct. Mater. 28 1705908

    [40]

    Dai J, Zheng H, Zhu C, Lu J, Xu C 2016 J. Mater. Chem. C 4 4408

    [41]

    Zeng Q, Zhang X, Liu C, Feng T, Chen Z, Zhang W, Zheng W, Zhang H, Yang B 2019 Sol. RRL 3 1800239

    [42]

    Blancon J C, Tsai H, Nie W, Stoumpos C C, Pedesseau L, Katan C, Kepenekian M, Soe C M M, Appavoo K, Sfeir M Y, Tretiak S, Ajayan P M, Kanatzidis M G, Even J, Crochet J J, Mohite A D 2017 Science 355 1288

    [43]

    Li C, Cao Q, Wang F, Xiao Y, Li Y, Delaunay J J, Zhu H 2018 Chem. Soc. Rev. 47 4981

    [44]

    Gregg B A, Hanna M C 2003 J. Appl. Phys. 93 3605

    [45]

    Jin B, Zuo N, Hu Z Y, Cui W, Wang R, Van Tendeloo G, Zhou X, Zhai T 2020 Adv. Funct. Mater. 30 2006166

    [46]

    Wright A D, Verdi C, Milot R L, Eperon G E, Pérez-Osorio M A, Snaith H J, Giustino F, Johnston M B, Herz L M 2016 Nat. Commun. 7 11755

    [47]

    Bischak C G, Hetherington C L, Wu H, Aloni S, Ogletree D F, Limmer D T, Ginsberg N S 2017 Nano Lett. 17 1028

    [48]

    Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613

    [49]

    Ji R, Zhang Z, Hofstetter Y J, Buschbeck R, Hänisch C, Paulus F, Vaynzof Y 2022 Nat. Energy 7 1170

    [50]

    Mali S S, Patil J V, Shao J Y, Zhong Y W, Rondiya S R, Dzade N Y, Hong C K 2023 Nat. Energy 8 989

    [51]

    Xiao H, Zuo C, Yan K, Jin Z, Cheng Y, Tian H, Xiao Z, Liu F, Ding Y, Ding L 2023 Adv. Energy Mater. 13 2300738

    [52]

    Shan S, Xu C, Wu H, Niu B, Fu W, Zuo L, Chen H 2023 Adv. Energy Mater. 13 2203682

    [53]

    Liu X, Lian H, Zhou Z, Zou C, Xie J, Zhang F, Yuan H, Yang S, Hou Y, Yang H G 2022 Adv. Energy Mater. 12 2103933

    [54]

    Guo Z, Jena A K, Takei I, Ikegami M, Ishii A, Numata Y, Shibayama N, Miyasaka T 2021 Adv. Funct. Mater. 31 2103614

    [55]

    Mali S S, Patil J V, Shinde P S, de Miguel G, Hong C K 2021 Matter 4 635

    [56]

    Ahmad K, Ahmad Khan R, Shakhawat Hossain M, Sonic M M R 2024 ChemistrySelect 9 e202401827

    [57]

    Duan Q, Ji J, Hong X, Fu Y, Wang C, Zhou K, Liu X, Yang H, Wang Z Y 2020 Sol. Energy 201 555

    [58]

    Karthick S, Velumani S, Bouclé J 2020 Sol. Energy 205 349

    [59]

    Lin R, Xu J, Wei M, Wang Y, Qin Z, Liu Z, Wu J, Xiao K, Chen B, Park S M, Chen G, Atapattu H R, Graham K R, Xu J, Zhu J, Li L, Zhang C, Sargent E H, Tan H 2022 Nature 603 73

    [60]

    Chen J, Du J, Cai J, Ouyang B, Li Z, Wu X, Tian C, Sun A, Zhuang R, Wu X, Chen C, Cen T, Li R, Xue T, Zhao Y, Zhao K, Chen Q, Chen C C 2025 ACS Energy Lett. 10 1117

    [61]

    Pan Y, Wang J, Sun Z, Zhang J, Zhou Z, Shi C, Liu S, Ren F, Chen R, Cai Y, Sun H, Liu B, Zhang Z, Zhao Z, Cai Z, Qin X, Zhao Z, Ji Y, Li N, Huang W, Liu Z, Chen W 2024 Nat. Commun. 15 7335

    [62]

    Li M, Yan J, Zhang A, Zhao X, Yang X, Yan S, Ma N, Ma T, Luo D, Chen Z, Li L, Li X, Chen C, Song H, Tang J 2025 Joule 9 101825

    [63]

    Hu H, Pan T, Singh R, Nejand B A, Paetzold U W 2025 ACS Appl. Mater. Interfaces 17 7804

    [64]

    Wang W, Yu G, Attique S 2023 Sol. RRL 7 2201064

    [65]

    Xie Z, Zhang S, Chen S, Pei Y, Li L, Yang J, Fu G, Wu P 2025 Chem. Eng. J. 506 159788

    [66]

    Xie Z, Chen S, Pei Y, Li L, Zhang S, Wu P 2024 Chem. Eng. J. 482 148638

    [67]

    Moradbeigi M, Razaghi M 2024 Renew. Energy 220 119723

    [68]

    Rajagopal A, Yang Z, Jo S B, Braly I L, Liang P W, Hillhouse H W, Jen A K Y 2017 Adv. Mater. 29 1702140

    [69]

    Lim E L, Yang J, Wei Z 2023 Energy Environ. Sci. 16 862

  • [1] 袁赫泽, 陈新亮, 梁柄权, 孙爱鑫, 王雪骄, 赵颖, 张晓丹. 晶硅太阳电池钝化层技术研究进展. 物理学报, doi: 10.7498/aps.74.20241292
    [2] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, doi: 10.7498/aps.73.20240827
    [3] 张盛源, 夏康龙, 张茂林, 边昂, 刘增, 郭宇锋, 唐为华. 基于GaN/(BA)2PbI4异质结的自供电双模式紫外探测器. 物理学报, doi: 10.7498/aps.73.20231698
    [4] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, doi: 10.7498/aps.70.20210586
    [5] 李雪, 曹宝龙, 王明昊, 冯增勤, 陈淑芬. 基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管. 物理学报, doi: 10.7498/aps.70.20201379
    [6] 郤育莺, 韩悦, 李国辉, 翟爱平, 冀婷, 郝玉英, 崔艳霞. 异质结构在光伏型卤化物钙钛矿光电转换器件中的应用. 物理学报, doi: 10.7498/aps.69.20200591
    [7] 崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹. 宽带隙钙钛矿材料及太阳电池的研究进展. 物理学报, doi: 10.7498/aps.69.20200822
    [8] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, doi: 10.7498/aps.68.20190942
    [9] 宋蕊, 冯凯, 林上金, 何曼丽, 仝亮. 钙钛矿NaFeF3结构物性的理论研究及应力和掺杂调控. 物理学报, doi: 10.7498/aps.68.20190573
    [10] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, doi: 10.7498/aps.68.20190306
    [11] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 物理学报, doi: 10.7498/aps.68.20190258
    [12] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, doi: 10.7498/aps.68.20190302
    [13] 陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹. Cu2O/ZnO氧化物异质结太阳电池的研究进展. 物理学报, doi: 10.7498/aps.67.20172037
    [14] 夏祥, 刘喜哲. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用. 物理学报, doi: 10.7498/aps.64.038104
    [15] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 物理学报, doi: 10.7498/aps.64.038404
    [16] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, doi: 10.7498/aps.62.049101
    [17] 薛源, 郜超军, 谷锦华, 冯亚阳, 杨仕娥, 卢景霄, 黄强, 冯志强. 薄膜硅/晶体硅异质结电池中本征硅薄膜钝化层的性质及光发射谱研究. 物理学报, doi: 10.7498/aps.62.197301
    [18] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池. 物理学报, doi: 10.7498/aps.59.1248
    [19] 陈鸣波, 崔容强, 王亮兴, 张忠卫, 陆剑峰, 池卫英. p-n 型GaInP2/GaAs叠层太阳电池研究. 物理学报, doi: 10.7498/aps.53.3632
    [20] 李书平, 王仁智, 郑永梅, 蔡淑惠, 何国敏. 平均键能方法在应变层异质结带阶研究中的应用. 物理学报, doi: 10.7498/aps.49.1441
计量
  • 文章访问数:  10
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-16

/

返回文章
返回