-
本文提出一种双吸收层钙钛矿异质结(Dual-absorption-layer Perovskite Heterojunction, DPHJ)策略,即通过将能带交错的II型钙钛矿异质结(p-pCsPbI2Br-CsPbIBr2)应用到全钙钛矿叠层太阳电池作为顶电池的双层结构的吸收层。电池模拟结果表明,与顶电池为单一吸收层CsPbI2Br的全钙钛矿叠层太阳电池相比,DPHJ的引入使得叠层太阳电池的开路电压显著增强(从2.16 V到2.25 V)、短路电流密度进一步提升(从15.96 mA·cm-2到16.76 mA·cm-2)。这主要归因于顶电池的双层结构的吸收层在CsPbI2Br/CsPbIBr2界面处形成能带弯曲,诱导产生增强的内建电场,促进载流子输运,抑制了吸收层体内的非辐射复合。由此基于DPHJ策略的叠层太阳电池可达到高的理论能量转换效率(32.47%)。进一步实验结果表明,相比于单层CsPbI2Br(激子结合能E2=101.9 meV、电子-声子耦合强度(γac=1.2×10-2,γLO=6.9×103),双吸收层薄膜展现出更高的激子结合能(E2=110.7 meV)和更低的电子-声子耦合强度(γac=1.1×10-2,γLO=6.3×103),表现出更强的光、热稳定性,这有利于制备长效稳定的全钙钛矿叠层太阳电池。Organic cations in hybrid organic-inorganic perovskite solar cells are susceptible to decomposition under high temperatures and ultraviolet light, leading to a decline in power conversion efficiency (PCE). All-inorganic perovskite solar cells exhibit both high PCE and superior photothermal stability, making them promising candidates for single-junction and tandem photovoltaic applications. The mixed-halide perovskite CsPbI2Br has garnered significant attention as a top cell in semi-transparent and tandem solar cells owing to its excellent thermal stability and suitable bandgap (1.90 eV). Although the PCE of CsPbI2Br-based solar cells is nearing its theoretical limit, the non-radiative recombination-induced energy losses remaining a major barrier to further performance enhancement. This non-radiative recombination is primarily caused by inadequate band alignment between the absorption layer and the transport layer, resulting in open-circuit voltage (VOC) losses and reduced short-circuit current density (JSC). Two-dimensional perovskite passivation formed via solution processing could mitigate interfacial recombination, but it also could impede efficient charge transport. Constructing three-dimensional perovskite structures not only provides an effective solution to these limitations but also enhances sunlight absorption and facilitates carrier transport. In this study, we propose a Dual-absorption-layer Perovskite Heterojunction (DPHJ) strategy, which involves integrating a staggered type-II perovskite heterojunction (p-pCsPbI2Br-CsPbIBr2) into the absorption layer of the top cell in an all-perovskite tandem solar cell. The result of simulation indicates that stacking a 100 nm-thick CsPbIBr2 layer atop a 300 nm-thick CsPbI2Br layer significantly enhances the PCE of the single-junction device from 19.46% to 22.29%. This improvement is primarily attributed to band bending at the CsPbI2Br/CsPbIBr2 interface, which enhances the built-in electric field, facilitates carrier transport, and suppresses non-radiative recombination within the absorption layer. Compared with the tandem solar cell utilizing a single-absorption-layer CsPbI2Br top cell, the DPHJ-based tandem solar cell significantly increases the VOC (from 2.16 V to 2.25 V) and enhances the JSC (from 15.96 mA
×cm-2 to 16.76 mA ×cm-2). As a result, the DPHJ-based tandem solar cell achieves a high theoretical PCE of 32.47%. In addition, the DPHJ-based tandem solar cell exhibits a significantly enhanced external quantum efficiency in the 500-580 nm wavelength range, which could be attributed to the band-edge absorption of CsPbIBr2. This enhanced absorption generates more photogenerated carriers, thereby significantly improving the JSC. The results of this study surpass the experimentally reported VOC and PCE values of current CsPbI2Br single-junction and all-perovskite tandem solar cells. Further experimental results show that compared with the single-layer CsPbI2Br (E2= 101.9 meV, electron-phonon coupling strength γac=1.2×10-2,γLO=6.9×103), the double-absorption-layer film exhibits a higher exciton binding energy (E2= 110.7 meV) and reduced electron-phonon coupling strength (γac=1.1×10-2,γLO=6.3×103), which helps suppress phase segregation and enhances both optical and thermal stability—favorable for fabricating long-term stable all-perovskite tandem solar cells. By focusing on absorption layer design, this work provides new insights and theoretical guidance for enhancing the efficiency and stability of all-perovskite tandem solar cells. It presents a versatile design concept for optimizing absorption layers in all-perovskite multijunction cells and is expected to drive further advancements in this field. -
Keywords:
- heterojunction /
- perovskite /
- tandem solar cell
-
[1] Jiang Q, Zhu K 2024 Nat. Rev. Mater. 6 399
[2] Zhang Z, Wang X, Yan Q, Yuan X, Lu Y, Cao H, He D, Jiang Z, Xu R, Chen T, Ma Z, Song H, Hong F, Xu F 2024 Sol. RRL 8 2400216
[3] Jiang B, Chen S, Cui X, Hu Z, Li Y, Zhang X, Wu K, Wang W, Jiang Z, Hong F, Ma Z, Zhao L, Xu F, Xu R, Zhan Y 2019 Acta Phys. Sin. 68 246801(蒋泵, 陈思良, 崔晓磊, 胡紫婷, 李跃, 张笑铮, 吴康敬, 王文贞, 蒋最敏, 洪峰, 马忠权, 赵磊, 徐飞, 徐闰, 詹义强 2019 物理学报 68 246801)
[4] Khan F, Rezgui B D, Khan M T, Al-Sulaiman F 2022 Renew. Sustain. Energy Rev. 165 112553
[5] Kim J, Lee H, Lee Y, Kim J 2024 ChemSusChem 17 e202400945
[6] Bai Y, Tian R, Sun K, Liu C, Lang X, Yang M, Meng Y, Xiao C, Wang Y, Lu X, Wang J, Pan H, Song Z, Zhou S, Ge Z 2024 Energy Environ. Sci. 17 8557
[7] Xie G, Li H, Wang X, Fang J, Lin D, Wang D, Li S, He S, Qiu L 2023 Adv. Funct. Mater. 33 2308794
[8] Liu Z, Lin R, Wei M, Yin M, Wu P, Li M, Li L, Wang Y, Chen G, Carnevali V, Agosta L, Slama V, Lempesis N, Wang Z, Wang M, Deng Y, Luo H, Gao H, Rothlisberger U, Zakeeruddin S M, Luo X, Liu Y, Grätzel M, Tan H 2025 Nat. Mater. 24 252
[9] Zou F, Duan C, Lin Z, Zhang Z, Xu S, Chen C, Chen J, Li J, Zou S, Ding L, Luo H, Yan K 2024 Chem. Eng. J. 491 152118
[10] Chu X, Ye Q, Wang Z, Zhang C, Ma F, Qu Z, Zhao Y, Yin Z, Deng H X, Zhang X, You J 2023 Nat. Energy 8 372
[11] Patil J V, Mali S S, Hong C K 2024 Adv. Funct. Mater. 33 2408721
[12] Zhang Z, Yuan X, Lu Y, He D, Yan Q, Cao H, Hong F, Jiang Z, Xu R, Ma Z, Song H, Xu F 2024 Acta Phys. Sin. 73 098803(张子发, 袁翔, 鹿颖申, 何丹敏, 严全河, 曹浩宇, 洪峰, 蒋最敏, 徐闰, 马忠权, 宋宏伟, 徐飞 2024 物理学报 73 098803)
[13] Duan C, Zhang K, Peng Z, Li S, Zou F, Wang F, Li J, Zhang Z, Chen C, Zhu Q, Qiu J, Lu X, Li N, Ding L, Brabec C J, Gao F, Yan K 2025 Nature 637 1111
[14] Lu Y, He D, Yuan X, Yan Q, Shu X, Hu Z, Zhang Z, Liu Z, Jiang Z, Xu R, Wang W, Ma Z, Chen T, Xu H, Xu F, Hong F, Song H 2025 Adv. Funct. Mater. 35 2413507
[15] Xu H, Guo Z, Chen P, Wang S 2024 Chem. Commun. 60 12287
[16] Sha W E I, Wang X, Chen W, Fu Y, Zhang L, Tian L, Lin M, Jiao S, Xu T, Sun T, Liu D 2025 Chin. Phys. B 34 018801
[17] Liu X, Li J, Liu Z, Tan X, Sun B, Xi S, Shi T, Tang Z, Liao G 2020 Electrochimica Acta 330 135266
[18] Zou C, Zheng J, Chang C, Majumdar A, Lin L Y 2019 Adv. Opt. Mater. 7 1900558
[19] Wang N, Zhou Y, Ju M G, Garces H F, Ding T, Pang S, Zeng X C, Padture N P, Sun X W 2016 Adv. Energy Mater. 6 1601130
[20] Wang Y, Li J, Chen Q, Liu W, Gao Z, Fu Y, Liu Q, He D, Li Y 2023 ACS Appl. Energy Mater. 6 4584
[21] Sittinger V, Schulze P S C, Messmer C, Pflug A, Goldschmidt J C 2022 Opt. Express 30 37957
[22] Steirer K X, Ndione P F, Widjonarko N E, Lloyd M T, Meyer J, Ratcliff E L, Kahn A, Armstrong N R, Curtis C J, Ginley D S, Berry J J, Olson D C 2011 Adv. Energy Mater. 1 813
[23] Wang N, Zhou Y, Ju M G, Garces H F, Ding T, Pang S, Zeng X C, Padture N P, Sun X W 2016 Adv. Energy Mater. 6 1601130
[24] Stewart A W, Bouich A, Soucase B M 2021 J. Mater. Sci. 56 20071
[25] Wang J, Zhao P, Hu Y, Lin Z, Su J, Zhang J, Chang J, Hao Y 2021 Sol. RRL 5 2100121
[26] M. S. Rahman, S. Miah, M. S. W. Marma, M. Ibrahim 2020 2020 IEEE Reg. 10 Conf. 10 140
[27] Chen W, Li D, Chen S, Liu S, Shen Y, Zeng G, Zhu X, Zhou E, Jiang L, Li Y, Li Y 2020 Adv. Energy Mater. 10 2000851
[28] Yuan Y, Yan G, Hong R, Liang Z, Kirchartz T 2022 Adv. Mater. 34 2108132
[29] Li Y, Zhang Y, Zhu P, Li J, Wu J, Zhang J, Zhou X, Jiang Z, Wang X, Xu B 2023 Adv. Funct. Mater. 33 2309010
[30] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 NANO Lett. 15 3692
[31] Zhuang J, Wei Y, Luan Y, Chen N, Mao P, Cao S, Wang J 2019 Nanoscale 11 14553
[32] Ozturk T, Akman E, Shalan A E, Akin S 2021 Nano Energy 87 106157
[33] Han Y, Zhao H, Duan C, Yang S, Yang Z, Liu Z, Liu S (Frank) 2020 Adv. Funct. Mater. 30 1909972
[34] Meng L, Wei Z, Zuo T, Gao P 2020 Nano Energy 75 104866
[35] Lin R, Wang Y, Lu Q, Tang B, Li J, Gao H, Gao Y, Li H, Ding C, Wen J, Wu P, Liu C, Zhao S, Xiao K, Liu Z, Ma C, Deng Y, Li L, Fan F, Tan H 2023 Nature 620 994
[36] Tress W, Petrich A, Hummert M, Hein M, Leo K, Riede M 2011 Appl. Phys. Lett. 98 063301
[37] Liu M, Wan Q, Wang H, Carulli F, Sun X, Zheng W, Kong L, Zhang Q, Zhang C, Zhang Q, Brovelli S, Li L 2021 Nat. Photonics 15 379
[38] Jiang B, Li Y, Zhu J, Hu Z, Zhou X, Zhang Y, Gao M, Wang W, Jiang Z, Ma Z, Zhao L, Chen T, Xu Z, Xu H, Xu F, Xu R, Hong F 2020 Appl. Phys. Lett. 116 072104
[39] Yang Z, Wang M, Qiu H, Yao X, Lao X, Xu S, Lin Z, Sun L, Shao J 2018 Adv. Funct. Mater. 28 1705908
[40] Dai J, Zheng H, Zhu C, Lu J, Xu C 2016 J. Mater. Chem. C 4 4408
[41] Zeng Q, Zhang X, Liu C, Feng T, Chen Z, Zhang W, Zheng W, Zhang H, Yang B 2019 Sol. RRL 3 1800239
[42] Blancon J C, Tsai H, Nie W, Stoumpos C C, Pedesseau L, Katan C, Kepenekian M, Soe C M M, Appavoo K, Sfeir M Y, Tretiak S, Ajayan P M, Kanatzidis M G, Even J, Crochet J J, Mohite A D 2017 Science 355 1288
[43] Li C, Cao Q, Wang F, Xiao Y, Li Y, Delaunay J J, Zhu H 2018 Chem. Soc. Rev. 47 4981
[44] Gregg B A, Hanna M C 2003 J. Appl. Phys. 93 3605
[45] Jin B, Zuo N, Hu Z Y, Cui W, Wang R, Van Tendeloo G, Zhou X, Zhai T 2020 Adv. Funct. Mater. 30 2006166
[46] Wright A D, Verdi C, Milot R L, Eperon G E, Pérez-Osorio M A, Snaith H J, Giustino F, Johnston M B, Herz L M 2016 Nat. Commun. 7 11755
[47] Bischak C G, Hetherington C L, Wu H, Aloni S, Ogletree D F, Limmer D T, Ginsberg N S 2017 Nano Lett. 17 1028
[48] Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613
[49] Ji R, Zhang Z, Hofstetter Y J, Buschbeck R, Hänisch C, Paulus F, Vaynzof Y 2022 Nat. Energy 7 1170
[50] Mali S S, Patil J V, Shao J Y, Zhong Y W, Rondiya S R, Dzade N Y, Hong C K 2023 Nat. Energy 8 989
[51] Xiao H, Zuo C, Yan K, Jin Z, Cheng Y, Tian H, Xiao Z, Liu F, Ding Y, Ding L 2023 Adv. Energy Mater. 13 2300738
[52] Shan S, Xu C, Wu H, Niu B, Fu W, Zuo L, Chen H 2023 Adv. Energy Mater. 13 2203682
[53] Liu X, Lian H, Zhou Z, Zou C, Xie J, Zhang F, Yuan H, Yang S, Hou Y, Yang H G 2022 Adv. Energy Mater. 12 2103933
[54] Guo Z, Jena A K, Takei I, Ikegami M, Ishii A, Numata Y, Shibayama N, Miyasaka T 2021 Adv. Funct. Mater. 31 2103614
[55] Mali S S, Patil J V, Shinde P S, de Miguel G, Hong C K 2021 Matter 4 635
[56] Ahmad K, Ahmad Khan R, Shakhawat Hossain M, Sonic M M R 2024 ChemistrySelect 9 e202401827
[57] Duan Q, Ji J, Hong X, Fu Y, Wang C, Zhou K, Liu X, Yang H, Wang Z Y 2020 Sol. Energy 201 555
[58] Karthick S, Velumani S, Bouclé J 2020 Sol. Energy 205 349
[59] Lin R, Xu J, Wei M, Wang Y, Qin Z, Liu Z, Wu J, Xiao K, Chen B, Park S M, Chen G, Atapattu H R, Graham K R, Xu J, Zhu J, Li L, Zhang C, Sargent E H, Tan H 2022 Nature 603 73
[60] Chen J, Du J, Cai J, Ouyang B, Li Z, Wu X, Tian C, Sun A, Zhuang R, Wu X, Chen C, Cen T, Li R, Xue T, Zhao Y, Zhao K, Chen Q, Chen C C 2025 ACS Energy Lett. 10 1117
[61] Pan Y, Wang J, Sun Z, Zhang J, Zhou Z, Shi C, Liu S, Ren F, Chen R, Cai Y, Sun H, Liu B, Zhang Z, Zhao Z, Cai Z, Qin X, Zhao Z, Ji Y, Li N, Huang W, Liu Z, Chen W 2024 Nat. Commun. 15 7335
[62] Li M, Yan J, Zhang A, Zhao X, Yang X, Yan S, Ma N, Ma T, Luo D, Chen Z, Li L, Li X, Chen C, Song H, Tang J 2025 Joule 9 101825
[63] Hu H, Pan T, Singh R, Nejand B A, Paetzold U W 2025 ACS Appl. Mater. Interfaces 17 7804
[64] Wang W, Yu G, Attique S 2023 Sol. RRL 7 2201064
[65] Xie Z, Zhang S, Chen S, Pei Y, Li L, Yang J, Fu G, Wu P 2025 Chem. Eng. J. 506 159788
[66] Xie Z, Chen S, Pei Y, Li L, Zhang S, Wu P 2024 Chem. Eng. J. 482 148638
[67] Moradbeigi M, Razaghi M 2024 Renew. Energy 220 119723
[68] Rajagopal A, Yang Z, Jo S B, Braly I L, Liang P W, Hillhouse H W, Jen A K Y 2017 Adv. Mater. 29 1702140
[69] Lim E L, Yang J, Wei Z 2023 Energy Environ. Sci. 16 862
计量
- 文章访问数: 10
- PDF下载量: 1
- 被引次数: 0