-
本文提出一种双吸收层钙钛矿异质结(dual-absorption-layer perovskite heterojunction, DPHJ)策略, 即通过将能带交错的II型钙钛矿异质结(p-pCsPbI2Br-CsPbIBr2)应用到全钙钛矿叠层太阳电池作为顶电池的双层结构的吸收层. 电池模拟结果表明, 与顶电池为单一吸收层CsPbI2Br的全钙钛矿叠层太阳电池相比, DPHJ的引入使得叠层太阳电池的开路电压显著增强(从2.16到2.25 V)、短路电流密度进一步提升(从15.96到16.76 mA⋅cm–2). 这主要归因于顶电池的双层结构的吸收层在CsPbI2Br/CsPbIBr2界面处形成能带弯曲, 诱导产生增强的内建电场, 促进载流子输运, 抑制了吸收层体内的非辐射复合. 由此基于DPHJ策略的叠层太阳电池可达到高的理论能量转换效率(32.47%). 进一步实验结果表明, 相比于单层CsPbI2Br(激子结合能E2 = 101.9 meV、电子-声子耦合强度$ {\gamma }_{\text{ac}}=1.2\times {10}^{-2}, {\gamma }_{\text{LO}}=6.9\times {10}^{3} $), 双吸收层薄膜展现出更高的激子结合能(E2 = 110.7 meV)和更低的电子-声子耦合强度($ {\gamma }_{\text{ac}}=1.1\times {10}^{-2}, {\gamma }_{\text{LO}}=6.3\times {10}^{3} $), 表现出更强的光、热稳定性, 这有利于制备长效稳定的全钙钛矿叠层太阳电池.Organic cations in hybrid organic-inorganic perovskite solar cells are susceptible to decomposition under high temperatures and ultraviolet light, leading their power conversion efficiency (PCE) to decrease. All-inorganic perovskite solar cells exhibit both high PCE and superior photothermal stability, making them promising candidates for single-junction and tandem photovoltaic applications. The mixed-halide perovskite CsPbI2Br has received much attention as a top cell in semi-transparent and tandem solar cells due to its excellent thermal stability and suitable bandgap (1.90 eV). Although the PCE of CsPbI2Br-based solar cells is approaching its theoretical limit, the energy loss caused by non-radiative recombination remains a major barrier to further improving performance. This non-radiative recombination is mainly caused by inadequate band alignment between the absorption layer and the transport layer, resulting in the loss of open-circuit voltage (VOC) and decrease of short-circuit current density (JSC). Two-dimensional perovskite passivation formed through solution processing can mitigate interfacial recombination, but it can also impede efficient charge transport. Constructing three-dimensional perovskite structures not only provides an effective solution to these limitations but also enhances sunlight absorption and facilitates carrier transport. In this study, we propose a dual-absorption-layer perovskite heterojunction (DPHJ) strategy, which involves integrating a staggered type-II perovskite heterojunction (p-pCsPbI2Br-CsPbIBr2) into the absorption layer of the top cell in an all-perovskite tandem solar cell. The simulation result indicates that stacking a 100-nm-thick CsPbIBr2 layer atop a 300-nm-thick CsPbI2Br layer greatly enhances the PCE of the single-junction device from 19.46% to 22.29%. This improvement is mainly attributed to band bending at the CsPbI2Br/CsPbIBr2 interface, which enhances the built-in electric field, facilitates carrier transport, and suppresses non-radiative recombination within the absorption layer. Compared with the tandem solar cell utilizing a single-absorption-layer CsPbI2Br top cell, the DPHJ-based tandem solar cell significantly increases VOC from 2.16 to 2.25 V and JSC from 15.96 to 16.76 mA⋅cm–2. As a result, the DPHJ-based tandem solar cell achieves a high theoretical PCE of 32.47%. In addition, the DPHJ-based tandem solar cell exhibits a significantly enhanced external quantum efficiency in a wavelength range of 500—580 nm , which can be attributed to the band-edge absorption of CsPbIBr2. This enhanced absorption generates more photogenerated carriers, thereby significantly improving the JSC. The VOC and PCE values in this study exceed those experimentally reported values of current CsPbI2Br single-junction and all-perovskite tandem solar cells. Compared with the single-layer CsPbI2Br (E2=101.9 meV, electron-phonon coupling strength $ {\gamma _{{\text{ac}}}} = 1.2 \times {10^{ - 2}},{\text{ }}{\gamma _{{\text{LO}}}} = 6.9 \times {10^3} $), the double-absorption-layer film exhibits a high exciton binding energy (E2=110.7 meV) and reduced electron-phonon coupling strength ($ {\gamma _{{\text{ac}}}} = 1.1 \times {10^{ - 2}},{\text{ }}{\gamma _{{\text{LO}}}} = $$ 6.3 \times {10^3} $), which helps suppress phase segregation and enhance both optical and thermal stability, which is favorable for fabricating long-term stable all-perovskite tandem solar cells. This work provides new ideas and theoretical guidance for improving the efficiency and stability of all-perovskite tandem solar cells. In addition, it also proposes a universal design concept for optimizing absorption layers in all-perovskite multijunction cells, which is expected to further advance the research in this field.
-
Keywords:
- heterojunction /
- perovskite /
- tandem solar cell
-
图 1 双吸收层钙钛矿异质结(p-pCsPbI2Br-CsPbIBr2)太阳电池 (a) 电池结构图; (b) J-V曲线; (c) 光伏参数; (d) Control电池能带图; (e) DPHJ电池能带图. Control和DPHJ电池 (f) 内部电势和电场强度图; (g) 电子电流密度和空穴电流密度分布曲线; (h) 载流子浓度分布曲线; (i) 钙钛矿与传输层界面处的复合速率
Fig. 1. Dual-absorption-layer perovskite heterojunction (p-pCsPbI2Br-CsPbIBr2) solar cells: (a) Device architecture diagram; (b) J-V curves; (c) photovoltaic parameters; (d) energy band diagram of Control device; (e) energy band diagram of DPHJ device. Control and DPHJ cells: (f) Internal potential and electric field–strength diagrams; (g) distribution curves of electron and hole current densities; (h) carrier concentration distribution curve; (i) recombination rate at the perovskite and transport layer interface.
图 4 (a) 本工作与已经报道的CsPbI2Br钙钛矿单结太阳电池开路电压与效率对比图; (b) 本工作与全钙钛矿叠层太阳电池顶电池开路电压与效率对比图 (实心点表示实验结果, 空心点为模拟结果)
Fig. 4. Performance benchmarking of this work: (a) Comparison of VOC and PCE between this work and previously reported perovskite single-junction solar cells; (b) comparison of VOC of the top subcell and PCE in this work with those of all-perovskite tandem solar cells reported in the literature. (Solid symbols: experimental records; open symbols: simulated values).
图 2 (a) 叠层太阳电池电池结构图; (b) AM1.5G标准太阳光谱辐照度; (c) 经过顶电池过滤后的太阳光谱辐照度; (d) 底电池的短路电流随厚度变化曲线; Control电池和DPHJ电池作为顶电池的叠层太阳电池及其子电池的J-V曲线(e)和EQE曲线(f)
Fig. 2. (a) Device architecture of tandem solar cells; (b) AM1.5G standard solar spectral irradiance; (c) filtered spectral irradiance through the top cell; (d) thickness-dependent short-circuit current density of the bottom cell; (e) J-V curves and (f) EQE spectra of tandem solar cells with control top cell and DPHJ top cell.
图 3 CsPbI2Br薄膜、CsPbIBr2薄膜和DPHJ薄膜的 (a)—(c) 变温PL谱, (d)—(f) 归一化投影图, (g)—(i) 积分强度和半高宽的温度变化曲线(虚线为采用(10)式的单指数函数拟合的曲线); 持续光照下薄膜的PL谱随时间的变化 (j) CsPbI2Br, (k) CsPbIBr2, (l) DPHJ; (m) 峰位和半高宽随时间变化曲线(实心表示峰位; 空心表示半高宽); (n) DPHJ薄膜的顶视图和底视图以及其PL及紫外-可见吸收光谱; (o) CsPbI2Br薄膜和CsPbIBr2薄膜随时间老化图像
Fig. 3. (a)–(c) PL spectra of CsPbI2Br films, CsPbIBr2 films and DPHJ films; (d)–(f) normalized projection diagram; (g)–(i) temperature dependence of the integrated PL intensity and full width at half-maximum (FWHM); Dashed lines are single-exponential fits according to Eq. (10). Evolution of the PL spectra under continuous illumination for (j) CsPbI2Br, (k) CsPbIBr2 and (l) DPHJ films; (m) temporal evolution of the PL peak position (filled symbols) and FWHM (open symbols); (n) top-view and bottom-view photographs of the DPHJ film together with its PL and UV–vis absorption spectra; (o) photographic images showing the aging of CsPbI2Br and CsPbIBr2 films over time.
表 1 全无机钙钛矿光吸收层和传输层的光伏模拟参数[10,24-28]
Table 1. Photovoltaic simulation parameters of all-inorganic perovskite light-absorbing layer coupled with transport layers (ETL/HTL) [10,24-28].
参数 CsPbI2Br CsPbIBr2 CsSnI3 NiOX PCBM SnO2 Spiro-OMeTAD 厚度/nm 300 100 800 30 30 50 50 受主浓度/cm–3 1×1015 1×1015 5×1016 1×1015 0 0 1×1019 施主浓度/cm–3 0 0 0 0 5×1017 1×1019 0 带隙/eV 1.92 2.11 1.27 3.50 2 3.49 2.6 导带有效态密度/cm–3 5.1×1017 1×1019 1.58×1019 2.8×1019 1×1019 4.36×1018 2.5×1020 价带有效态密度/cm–3 1.8×1018 1×1019 1.47×1018 1.8×1019 1×1019 2.52×1019 2.5×1020 电子亲合能/eV 4.16 3.56 4.47 1.80 4.30 4.31 2.60 相对介电常数 7.43 20 10.59 10.70 4 9 3 电子迁移率/(cm2⋅V–1⋅s–1) 1.02×105 2.3×103 4.37 12 1×10–4 240 2×10–4 空穴迁移率/(cm2⋅V–1⋅s–1) 1.93×104 3.2×102 4.37 25 1×10–2 25 2×10–4 表 2 变温PL的拟合参数
Table 2. Temperature-dependent photoluminescence fitting parameters.
Sample E1/meV E2/meV γac γLO ELO/meV CsPbI2Br 7.85 101.9 1.2×10–2 6.9×103 156.6 CsPbIBr2 9.25 85.8 1.8×10–3 5.8×103 167.7 DPHJ 8.98 110.7 1.1×10–2 6.3×103 162.5 -
[1] Jiang Q, Zhu K 2024 Nat. Rev. Mater. 6 399
[2] Zhang Z, Wang X, Yan Q, Yuan X, Lu Y, Cao H, He D, Jiang Z, Xu R, Chen T, Ma Z, Song H, Hong F, Xu F 2024 Sol. RRL 8 2400216
Google Scholar
[3] 蒋泵, 陈思良, 崔晓磊, 胡紫婷, 李跃, 张笑铮, 吴康敬, 王文贞, 蒋最敏, 洪峰, 马忠权, 赵磊, 徐飞, 徐闰, 詹义强 2019 物理学报 68 246801
Google Scholar
Jiang B, Chen S, Cui X, Hu Z, Li Y, Zhang X, Wu K, Wang W, Jiang Z, Hong F, Ma Z, Zhao L, Xu F, Xu R, Zhan Y 2019 Acta Phys. Sin. 68 246801
Google Scholar
[4] Khan F, Rezgui B D, Khan M T, Al-Sulaiman F 2022 Renewable Sustainable Energy Rev. 165 112553
Google Scholar
[5] Kim J, Lee H, Lee Y, Kim J 2024 ChemSusChem 17 e202400945
Google Scholar
[6] Bai Y, Tian R, Sun K, Liu C, Lang X, Yang M, Meng Y, Xiao C, Wang Y, Lu X, Wang J, Pan H, Song Z, Zhou S, Ge Z 2024 Energy Environ. Sci. 17 8557
Google Scholar
[7] Xie G, Li H, Wang X, Fang J, Lin D, Wang D, Li S, He S, Qiu L 2023 Adv. Funct. Mater. 33 2308794
Google Scholar
[8] Liu Z, Lin R, Wei M, Yin M, Wu P, Li M, Li L, Wang Y, Chen G, Carnevali V, Agosta L, Slama V, Lempesis N, Wang Z, Wang M, Deng Y, Luo H, Gao H, Rothlisberger U, Zakeeruddin S M, Luo X, Liu Y, Grätzel M, Tan H 2025 Nat. Mater. 24 252
Google Scholar
[9] Zou F, Duan C, Lin Z, Zhang Z, Xu S, Chen C, Chen J, Li J, Zou S, Ding L, Luo H, Yan K 2024 Chem. Eng. J. 491 152118
Google Scholar
[10] Chu X, Ye Q, Wang Z, Zhang C, Ma F, Qu Z, Zhao Y, Yin Z, Deng H X, Zhang X, You J 2023 Nat. Energy 8 372
Google Scholar
[11] Patil J V, Mali S S, Hong C K 2024 Adv. Funct. Mater. 33 2408721
[12] 张子发, 袁翔, 鹿颖申, 何丹敏, 严全河, 曹浩宇, 洪峰, 蒋最敏, 徐闰, 马忠权, 宋宏伟, 徐飞 2024 物理学报 73 098803
Google Scholar
Zhang Z, Yuan X, Lu Y, He D, Yan Q, Cao H, Hong F, Jiang Z, Xu R, Ma Z, Song H, Xu F 2024 Acta Phys. Sin. 73 098803
Google Scholar
[13] Duan C, Zhang K, Peng Z, Li S, Zou F, Wang F, Li J, Zhang Z, Chen C, Zhu Q, Qiu J, Lu X, Li N, Ding L, Brabec C J, Gao F, Yan K 2025 Nature 637 1111
Google Scholar
[14] Lu Y, He D, Yuan X, Yan Q, Shu X, Hu Z, Zhang Z, Liu Z, Jiang Z, Xu R, Wang W, Ma Z, Chen T, Xu H, Xu F, Hong F, Song H 2025 Adv. Funct. Mater. 35 2413507
Google Scholar
[15] Xu H, Guo Z, Chen P, Wang S 2024 Chem. Commun. 60 12287
Google Scholar
[16] Sha W E I, Wang X Y, Chen W C, Fu Y H, Zhang L J, Tian L, Lin M S, Jiao S D, Xu T, Sun T G, Liu D X 2025 Chin. Phys. B 34 018801
Google Scholar
[17] Liu X, Li J, Liu Z, Tan X, Sun B, Xi S, Shi T, Tang Z, Liao G 2020 Electrochimica Acta 330 135266
Google Scholar
[18] Zou C, Zheng J, Chang C, Majumdar A, Lin L Y 2019 Adv. Opt. Mater. 7 1900558
Google Scholar
[19] Wang N, Zhou Y, Ju M G, Garces H F, Ding T, Pang S, Zeng X C, Padture N P, Sun X W 2016 Adv. Energy Mater. 6 1601130
Google Scholar
[20] Wang Y, Li J, Chen Q, Liu W, Gao Z, Fu Y, Liu Q, He D, Li Y 2023 ACS Appl. Energy Mater. 6 4584
Google Scholar
[21] Sittinger V, Schulze P S C, Messmer C, Pflug A, Goldschmidt J C 2022 Opt. Express 30 37957
Google Scholar
[22] Steirer K X, Ndione P F, Widjonarko N E, Lloyd M T, Meyer J, Ratcliff E L, Kahn A, Armstrong N R, Curtis C J, Ginley D S, Berry J J, Olson D C 2011 Adv. Energy Mater. 1 813
Google Scholar
[23] Wang N, Zhou Y, Ju M G, Garces H F, Ding T, Pang S, Zeng X C, Padture N P, Sun X W 2016 Adv. Energy Mater. 6 1601130
Google Scholar
[24] Stewart A W, Bouich A, Soucase B M 2021 J. Mater. Sci. 56 20071
Google Scholar
[25] Wang J, Zhao P, Hu Y, Lin Z, Su J, Zhang J, Chang J, Hao Y 2021 Sol. RRL 5 2100121
Google Scholar
[26] Rahman M S, Miah S, Marma M S W, Ibrahim M 2020 2020 IEEE Reg. 10 Conf. 10 140
[27] Chen W, Li D, Chen S, Liu S, Shen Y, Zeng G, Zhu X, Zhou E, Jiang L, Li Y, Li Y 2020 Adv. Energy Mater. 10 2000851
Google Scholar
[28] Yuan Y, Yan G, Hong R, Liang Z, Kirchartz T 2022 Adv. Mater. 34 2108132
Google Scholar
[29] Li Y, Zhang Y, Zhu P, Li J, Wu J, Zhang J, Zhou X, Jiang Z, Wang X, Xu B 2023 Adv. Funct. Mater. 33 2309010
Google Scholar
[30] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692
Google Scholar
[31] Zhuang J, Wei Y, Luan Y, Chen N, Mao P, Cao S, Wang J 2019 Nanoscale 11 14553
Google Scholar
[32] Ozturk T, Akman E, Shalan A E, Akin S 2021 Nano Energy 87 106157
Google Scholar
[33] Han Y, Zhao H, Duan C, Yang S, Yang Z, Liu Z, Liu S (Frank) 2020 Adv. Funct. Mater. 30 1909972
Google Scholar
[34] Meng L, Wei Z, Zuo T, Gao P 2020 Nano Energy 75 104866
Google Scholar
[35] Lin R, Wang Y, Lu Q, Tang B, Li J, Gao H, Gao Y, Li H, Ding C, Wen J, Wu P, Liu C, Zhao S, Xiao K, Liu Z, Ma C, Deng Y, Li L, Fan F, Tan H 2023 Nature 620 994
Google Scholar
[36] Tress W, Petrich A, Hummert M, Hein M, Leo K, Riede M 2011 Appl. Phys. Lett. 98 063301
Google Scholar
[37] Liu M, Wan Q, Wang H, Carulli F, Sun X, Zheng W, Kong L, Zhang Q, Zhang C, Zhang Q, Brovelli S, Li L 2021 Nat. Photonics 15 379
Google Scholar
[38] Jiang B, Li Y, Zhu J, Hu Z, Zhou X, Zhang Y, Gao M, Wang W, Jiang Z, Ma Z, Zhao L, Chen T, Xu Z, Xu H, Xu F, Xu R, Hong F 2020 Appl. Phys. Lett. 116 072104
Google Scholar
[39] Yang Z, Wang M, Qiu H, Yao X, Lao X, Xu S, Lin Z, Sun L, Shao J 2018 Adv. Funct. Mater. 28 1705908
Google Scholar
[40] Dai J, Zheng H, Zhu C, Lu J, Xu C 2016 J. Mater. Chem. C 4 4408
Google Scholar
[41] Zeng Q, Zhang X, Liu C, Feng T, Chen Z, Zhang W, Zheng W, Zhang H, Yang B 2019 Sol. RRL 3 1800239
Google Scholar
[42] Blancon J C, Tsai H, Nie W, Stoumpos C C, Pedesseau L, Katan C, Kepenekian M, Soe C M M, Appavoo K, Sfeir M Y, Tretiak S, Ajayan P M, Kanatzidis M G, Even J, Crochet J J, Mohite A D 2017 Science 355 1288
Google Scholar
[43] Li C, Cao Q, Wang F, Xiao Y, Li Y, Delaunay J J, Zhu H 2018 Chem. Soc. Rev. 47 4981
Google Scholar
[44] Gregg B A, Hanna M C 2003 J. Appl. Phys. 93 3605
Google Scholar
[45] Jin B, Zuo N, Hu Z Y, Cui W, Wang R, Van Tendeloo G, Zhou X, Zhai T 2020 Adv. Funct. Mater. 30 2006166
Google Scholar
[46] Wright A D, Verdi C, Milot R L, Eperon G E, Pérez-Osorio M A, Snaith H J, Giustino F, Johnston M B, Herz L M 2016 Nat. Commun. 7 11755
Google Scholar
[47] Bischak C G, Hetherington C L, Wu H, Aloni S, Ogletree D F, Limmer D T, Ginsberg N S 2017 Nano Lett. 17 1028
Google Scholar
[48] Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613
Google Scholar
[49] Ji R, Zhang Z, Hofstetter Y J, Buschbeck R, Hänisch C, Paulus F, Vaynzof Y 2022 Nat. Energy 7 1170
Google Scholar
[50] Mali S S, Patil J V, Shao J Y, Zhong Y W, Rondiya S R, Dzade N Y, Hong C K 2023 Nat. Energy 8 989
Google Scholar
[51] Xiao H, Zuo C, Yan K, Jin Z, Cheng Y, Tian H, Xiao Z, Liu F, Ding Y, Ding L 2023 Adv. Energy Mater. 13 2300738
Google Scholar
[52] Shan S, Xu C, Wu H, Niu B, Fu W, Zuo L, Chen H 2023 Adv. Energy Mater. 13 2203682
Google Scholar
[53] Liu X, Lian H, Zhou Z, Zou C, Xie J, Zhang F, Yuan H, Yang S, Hou Y, Yang H G 2022 Adv. Energy Mater. 12 2103933
Google Scholar
[54] Guo Z, Jena A K, Takei I, Ikegami M, Ishii A, Numata Y, Shibayama N, Miyasaka T 2021 Adv. Funct. Mater. 31 2103614
Google Scholar
[55] Mali S S, Patil J V, Shinde P S, de Miguel G, Hong C K 2021 Matter 4 635
Google Scholar
[56] Ahmad K, Ahmad Khan R, Shakhawat Hossain M, Sonic M M R 2024 ChemistrySelect 9 e202401827
Google Scholar
[57] Duan Q, Ji J, Hong X, Fu Y, Wang C, Zhou K, Liu X, Yang H, Wang Z Y 2020 Sol. Energy 201 555
Google Scholar
[58] Karthick S, Velumani S, Bouclé J 2020 Sol. Energy 205 349
Google Scholar
[59] Lin R, Xu J, Wei M, Wang Y, Qin Z, Liu Z, Wu J, Xiao K, Chen B, Park S M, Chen G, Atapattu H R, Graham K R, Xu J, Zhu J, Li L, Zhang C, Sargent E H, Tan H 2022 Nature 603 73
Google Scholar
[60] Chen J, Du J, Cai J, Ouyang B, Li Z, Wu X, Tian C, Sun A, Zhuang R, Wu X, Chen C, Cen T, Li R, Xue T, Zhao Y, Zhao K, Chen Q, Chen C C 2025 ACS Energy Lett. 10 1117
Google Scholar
[61] Pan Y, Wang J, Sun Z, Zhang J, Zhou Z, Shi C, Liu S, Ren F, Chen R, Cai Y, Sun H, Liu B, Zhang Z, Zhao Z, Cai Z, Qin X, Zhao Z, Ji Y, Li N, Huang W, Liu Z, Chen W 2024 Nat. Commun. 15 7335
Google Scholar
[62] Li M, Yan J, Zhang A, Zhao X, Yang X, Yan S, Ma N, Ma T, Luo D, Chen Z, Li L, Li X, Chen C, Song H, Tang J 2025 Joule 9 101825
Google Scholar
[63] Hu H, Pan T, Singh R, Nejand B A, Paetzold U W 2025 ACS Appl. Mater. Interfaces 17 7804
Google Scholar
[64] Wang W, Yu G, Attique S 2023 Sol. RRL 7 2201064
Google Scholar
[65] Xie Z, Zhang S, Chen S, Pei Y, Li L, Yang J, Fu G, Wu P 2025 Chem. Eng. J. 506 159788
Google Scholar
[66] Xie Z, Chen S, Pei Y, Li L, Zhang S, Wu P 2024 Chem. Eng. J. 482 148638
Google Scholar
[67] Moradbeigi M, Razaghi M 2024 Renewable Energy 220 119723
Google Scholar
[68] Rajagopal A, Yang Z, Jo S B, Braly I L, Liang P W, Hillhouse H W, Jen A K Y 2017 Adv. Mater. 29 1702140
Google Scholar
[69] Lim E L, Yang J, Wei Z 2023 Energy Environ. Sci. 16 862
Google Scholar
计量
- 文章访问数: 417
- PDF下载量: 13
- 被引次数: 0