搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能

李家森 梁春军 姬超 宫宏康 宋奇 张慧敏 刘宁

引用本文:
Citation:

在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能

李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁

Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene

Li Jia-Sen, Liang Chun-Jun, Ji Chao, Gong Hong-Kang, Song Qi, Zhang Hui-Min, Liu Ning
PDF
HTML
导出引用
  • 无空穴传输层的碳基钙钛矿太阳能(PSCs)电池拥有成本低、制备步骤简单、稳定性高的优点, 应用前景广阔. 但是碳电极与活性层的直接接触, 导致器件的光电转换效率普遍低于其他金属电极的钙钛矿太阳能电池. 本文使用聚(3-己基噻吩)(P3HT)作为器件的空穴传输层, 相比传统的有机空穴传输层材料Spiro-OMeTAD, 具有低成本和易于制造的优点, 并通过在P3HT中掺杂1,8-二碘辛烷(DIO)的方法优化其光电性能, 提升了载流子的迁移率, 阻挡电子的运输, 降低界面复合, 改善了碳电极与器件的界面接触, 提高了短路电流Jsc和填充因子FF, 使器件的初始光电转换效率从14.06%提升至15.11%. 器件在氮气环境下测试稳定性, 连续光照1000 h后器件的转换效率仍保持在98%以上.
    HTL-free carbon-based perovskite solar (PSCs) batteries have the advantages of low cost, simple preparation steps, and high stability, and have broad application prospects. However, the direct contact between the carbon electrode and the active layer causes the photoelectric conversion efficiency of the device to be generally lower than that of other metal electrode perovskite solar cells. Therefore, it is necessary to add a hole-transport layer between the perovskite layer and the electrode to improve the charge transport efficiency and optimize the performance. Poly(3-hexylthiophene) has excellent photoelectric properties and is regarded as one of the suitable hole transport materials for perovskite solar cells. In this paper, P3HT is used as the hole transport layer of the device. Compared with the traditional organic hole-transport layer Spiro-OMeTAD, the P3HT has the advantages of low cost and easy manufacture. However, in the current devices with using P3HT as the hole transport layer, due to the characteristics of the surface morphology and molecular ordering of the P3HT film, the carrier mobility in the film itself is low, resulting in unsatisfactory device performance. Studies have shown that the surface morphology and molecular arrangement of the P3HT film can be changed by doping, and the migration rate of charge-carriers inside the film can be accelerated, thereby improving the photovoltaic performance of the solar cell. In this paper, a printing process is used to print carbon paste on the hole transport layer as the electrode of the device, and spin coating is used to prepare the transport layer. And through the method of doping 1,8-diiodooctane (DIO) in P3HT to optimize the device performance, the photoelectric conversion efficiency of the carbon-based perovskite solar cell is improved, the mobility of holes is improved, and the transportation of electrons is blocked. The reduced interface recombination, the improved interface contact between the carbon electrode and the device, the increased short-circuit current Jsc and the fill factor FF lead the photoelectric conversion efficiency of the device to increase from 14.06% to 15.11%. We test the light stability of the device under the 1000-h continuous illumination in a nitrogen atmosphere, and the conversion efficiency of the device remains above 98%, indicating that the addition of DIO into P3HT improves not only the photoelectric conversion efficiency of the device, but also the stability.
      通信作者: 梁春军, chjliang@bjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61874008)和北京市科委项目(批准号: Z181100004718004)资助的课题
      Corresponding author: Liang Chun-Jun, chjliang@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61874008) and the Beijing Committee of Science and Technology, China (Grant No. Z181100004718004)
    [1]

    Chapin D M, Fuller C S, Pearson G L 1954 J. Appl. Phys. 25 676Google Scholar

    [2]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [3]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Graetzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [4]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [5]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [6]

    Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico M E, Kirkpatrik J, Ball J M, Docampo P, McPherson I, Snaith H J 2013 PCCP 15 2572Google Scholar

    [7]

    Furube A, Katoh R, Hara K, Sato T, Murata S, Arakawa H, Tachiya M 2005 J. Phys. Chem. B 109 16406Google Scholar

    [8]

    Abbas H A, Kottokkaran R, Ganapathy B, Samiee M, Zhang L, Kitahara A, Noack M, Dalal V L 2015 APL Mater. 3 506

    [9]

    Wang M J, Li S B, Zhang P, Wang Y F, Li H Q, Chen Z 2015 Chem. Phys. Lett. 639 283Google Scholar

    [10]

    Yan W, Li Y, Ye S, Li Y, Rao H, Liu Z, Wang S, Bian Z, Huang C 2016 Nano Res. 9 1600Google Scholar

    [11]

    Hauch A, Georg A 2002 Electrochim. Acta 46 3457

    [12]

    Ikegami M, Miyoshi K, Miyasaka T, Teshima K, Wei T C, Wan C C, Wang Y Y 2007 Appl. Phys. Lett. 90 153122Google Scholar

    [13]

    Che M, Zhu L, Zhao Y L, Yao D S, Gu X Q, Song J, Qiang Y H 2016 Mater. Sci. Semicond. Process. 56 29Google Scholar

    [14]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Graetzel M, Han H 2014 Science 345 295Google Scholar

    [15]

    Liu J, Li N, Dong Q, Li J, Qin C, Wang L 2019 Sci. China Mater. 62 173Google Scholar

    [16]

    Zhang H, Song K, Zhu L, Meng Q 2020 Carbon 168 372Google Scholar

    [17]

    Meng F, Zhou Y, Gao L, Li Y, Liu A, Li Y, Zhang C, Fan M, Wei G, Ma T 2021 Mater. Today Energy 19 100590Google Scholar

    [18]

    Chen R, Feng Y, Zhang C, Wang M, Jing L, Ma C, Bian J, Shi Y 2020 J. Mater. Chem. C 8 9262Google Scholar

    [19]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M 2012 J. Am. Chem. Soc. 134 17396Google Scholar

    [20]

    Ku Z, Rong Y, Xu M, Liu T, Han H 2013 Sci. Rep. 3 3132Google Scholar

    [21]

    Liu Z Y, Sun B, Shi T L, Tang Z R, Liao G L 2016 J. Mater. Chem. A 4 10700Google Scholar

    [22]

    Ghoreishi F S, Ahmadi V, Poursalehi R, SamadPour M, Johansson M B, Boschloo G, Johansson E M J 2020 J. Power Sources 473 228492Google Scholar

    [23]

    Odabasi C, Yildirim R 2020 Sol. Energy Mater. Sol. Cells 205 110284Google Scholar

    [24]

    Long C Y, Wang N, Huang K Q, Li H Y, Liu B, Yang J L 2020 Chin. Phys. B 29 048801 8

    [25]

    Zhang F, Yang X, Cheng M, Wang W, Sun L 2016 Nano Energy 20 108Google Scholar

    [26]

    Wu Z, Liu Z, Hu Z, Hawash Z, Qiu L, Jiang Y, Ono L K, Qi Y 2019 Adv. Mater. 31 1804284Google Scholar

    [27]

    Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H, Seo J 2019 Nature 567 511Google Scholar

    [28]

    Almohammedi A, Khan M T, Benghanem M, Aboud S W, Shkir M, AlFaify S 2020 Mater. Sci. Semicond. Process. 120 105272Google Scholar

    [29]

    Park M S, Meresa A A, Kwon C M, Kim F S 2019 Polymers 11 1682 11

    [30]

    Kiymaz D, Kiymaz A, Zafer C 2021 Nanotechnology 32 105401Google Scholar

    [31]

    Su H, Xiao J Y, Li Q H, Peng C, Zhang X X, Mao C, Yao Q, Lu Y J, Ku Z L, Zhong J, Li W, Peng Y, Huang F Z, Cheng Y B 2020 Mater. Sci. Semicond. Process. 107 104809Google Scholar

    [32]

    Wang G M, Swensen J, Moses D, Heeger A J 2003 J. Appl. Phys. 93 6137Google Scholar

  • 图 1  钙钛矿太阳能电池器件结构与能级结构 (a) 为有空穴传输层并且基于碳电极的n-i-p结构的钙钛矿太阳能电池结构; (b) 此器件结构中的各个薄膜材料的能级结构

    Fig. 1.  PSCs device structure and energy level diagram: (a) Carbon-based n-i-p PSCs; (b) Energy level diagram.

    图 2  钙钛矿薄膜表面形貌 (a), (b), (c) 原子力显微镜(AFM)表征钙钛矿薄膜(HTL-free) (a), 旋涂了空穴传输层P3HT的钙钛矿薄膜(P3HT) (b), 旋涂了添加DIO的空穴传输层P3HT的钙钛矿薄膜(P3HT: DIO) (c)的表面形貌图; (e), (d), (f) 扫面电子显微镜表征钙钛矿薄膜(e), 旋涂了空穴传输层P3HT的钙钛矿薄膜(d), 旋涂了添加DIO的空穴传输层P3HT的钙钛矿薄膜(f)的表面形貌图

    Fig. 2.  Surface morphology of the perovskite films: (a), (b), (c) Atomic force microscopy (AFM) characterization of perovskite film (HTL-free) (a), perovskite film with P3HT (b), perovskite film with P3HT: DIO (c); (d), (e), (f) scanning electron microscopy characterization of perovskite film (HTL-free) (d), perovskite film with P3HT (e), perovskite film with P3HT: DIO (f).

    图 3  钙钛矿薄膜、旋涂空穴传输层P3HT的钙钛矿薄膜与旋涂空穴传输层中添加了DIO的P3HT薄膜的光电性能测试 (a) X射线衍射图谱; (b) 通过ITO/PEDT/P3HT结构器件测得的P3HT材料的载流子迁移率曲线; (c) 稳态光致发光曲线; (d) 时间分辨光致发光衰减曲线

    Fig. 3.  Photoelectric performance test of perovskite film, perovskite film with P3HT and perovskite with P3HT: DIO: (a) X-ray diffraction pattern; (b) carrier mobility fitting of the hole-transport layer; (c) steady-state photoluminescence; (d) time-resolved photoluminescence.

    图 4  钙钛矿太阳能电池器件性能测试曲线 (a) 钙钛矿太阳能电池的J-V曲线; (b) 外量子效率曲线图

    Fig. 4.  Performance of perovskite solar cell devices: (a) J-V curves of perovskite solar cells; (b) EQE spectra of the perovskite solar cells.

    图 5  (a), (b) 旋涂P3HT和P3HT: DIO器件的暗电流测试曲线; (c) 无空穴传输层器件、旋涂P3HT和P3HT: DIO器件的暗电流测试曲线; (d) 无空穴传输层器件、旋涂P3HT和P3HT: DIO器件结构的电化学阻抗谱

    Fig. 5.  (a), (b) The dark current test curves of spin-coated P3HT and P3HT: DIO devices; (c) dark current test curves for holeless transport layer devices, spin-coated P3HT and P3HT: DIO devices.; (d) electrochemical impedance spectra of hole-free transport layer devices, spin-coated P3HT and P3HT:DIO device structures.

    图 6  钙钛矿太阳能电池连续光照条件下测试稳定性

    Fig. 6.  The stability of perovskite solar cells under continuous light illumination.

    表 1  基于不同空穴传输材料的钙钛矿太阳能电池性能参数

    Table 1.  Photovoltaic parameters of perovskite solar cell based on different HTLs.

    HTMJSC/(mA·cm–2)VOC/VFF/%PCE/%
    P3HT:DIO22.390.9074.8615.11
    P3HT22.150.8971.3214.06
    21.070.8971.9413.48
    下载: 导出CSV
  • [1]

    Chapin D M, Fuller C S, Pearson G L 1954 J. Appl. Phys. 25 676Google Scholar

    [2]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [3]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Graetzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [4]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088Google Scholar

    [5]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [6]

    Abate A, Leijtens T, Pathak S, Teuscher J, Avolio R, Errico M E, Kirkpatrik J, Ball J M, Docampo P, McPherson I, Snaith H J 2013 PCCP 15 2572Google Scholar

    [7]

    Furube A, Katoh R, Hara K, Sato T, Murata S, Arakawa H, Tachiya M 2005 J. Phys. Chem. B 109 16406Google Scholar

    [8]

    Abbas H A, Kottokkaran R, Ganapathy B, Samiee M, Zhang L, Kitahara A, Noack M, Dalal V L 2015 APL Mater. 3 506

    [9]

    Wang M J, Li S B, Zhang P, Wang Y F, Li H Q, Chen Z 2015 Chem. Phys. Lett. 639 283Google Scholar

    [10]

    Yan W, Li Y, Ye S, Li Y, Rao H, Liu Z, Wang S, Bian Z, Huang C 2016 Nano Res. 9 1600Google Scholar

    [11]

    Hauch A, Georg A 2002 Electrochim. Acta 46 3457

    [12]

    Ikegami M, Miyoshi K, Miyasaka T, Teshima K, Wei T C, Wan C C, Wang Y Y 2007 Appl. Phys. Lett. 90 153122Google Scholar

    [13]

    Che M, Zhu L, Zhao Y L, Yao D S, Gu X Q, Song J, Qiang Y H 2016 Mater. Sci. Semicond. Process. 56 29Google Scholar

    [14]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Graetzel M, Han H 2014 Science 345 295Google Scholar

    [15]

    Liu J, Li N, Dong Q, Li J, Qin C, Wang L 2019 Sci. China Mater. 62 173Google Scholar

    [16]

    Zhang H, Song K, Zhu L, Meng Q 2020 Carbon 168 372Google Scholar

    [17]

    Meng F, Zhou Y, Gao L, Li Y, Liu A, Li Y, Zhang C, Fan M, Wei G, Ma T 2021 Mater. Today Energy 19 100590Google Scholar

    [18]

    Chen R, Feng Y, Zhang C, Wang M, Jing L, Ma C, Bian J, Shi Y 2020 J. Mater. Chem. C 8 9262Google Scholar

    [19]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M 2012 J. Am. Chem. Soc. 134 17396Google Scholar

    [20]

    Ku Z, Rong Y, Xu M, Liu T, Han H 2013 Sci. Rep. 3 3132Google Scholar

    [21]

    Liu Z Y, Sun B, Shi T L, Tang Z R, Liao G L 2016 J. Mater. Chem. A 4 10700Google Scholar

    [22]

    Ghoreishi F S, Ahmadi V, Poursalehi R, SamadPour M, Johansson M B, Boschloo G, Johansson E M J 2020 J. Power Sources 473 228492Google Scholar

    [23]

    Odabasi C, Yildirim R 2020 Sol. Energy Mater. Sol. Cells 205 110284Google Scholar

    [24]

    Long C Y, Wang N, Huang K Q, Li H Y, Liu B, Yang J L 2020 Chin. Phys. B 29 048801 8

    [25]

    Zhang F, Yang X, Cheng M, Wang W, Sun L 2016 Nano Energy 20 108Google Scholar

    [26]

    Wu Z, Liu Z, Hu Z, Hawash Z, Qiu L, Jiang Y, Ono L K, Qi Y 2019 Adv. Mater. 31 1804284Google Scholar

    [27]

    Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H, Seo J 2019 Nature 567 511Google Scholar

    [28]

    Almohammedi A, Khan M T, Benghanem M, Aboud S W, Shkir M, AlFaify S 2020 Mater. Sci. Semicond. Process. 120 105272Google Scholar

    [29]

    Park M S, Meresa A A, Kwon C M, Kim F S 2019 Polymers 11 1682 11

    [30]

    Kiymaz D, Kiymaz A, Zafer C 2021 Nanotechnology 32 105401Google Scholar

    [31]

    Su H, Xiao J Y, Li Q H, Peng C, Zhang X X, Mao C, Yao Q, Lu Y J, Ku Z L, Zhong J, Li W, Peng Y, Huang F Z, Cheng Y B 2020 Mater. Sci. Semicond. Process. 107 104809Google Scholar

    [32]

    Wang G M, Swensen J, Moses D, Heeger A J 2003 J. Appl. Phys. 93 6137Google Scholar

  • [1] 仲婷婷, 郝会颖. 基于大气环境下全无机钙钛矿薄膜及碳基太阳能电池的组分调控和添加剂工程. 物理学报, 2024, 73(23): . doi: 10.7498/aps.73.20241439
    [2] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [3] 李斌, 苗向阳. 单个CsPbBr3钙钛矿量子点的荧光闪烁特性. 物理学报, 2021, 70(20): 207802. doi: 10.7498/aps.70.20210908
    [4] 张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛. CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [5] 宋蕊, 冯凯, 林上金, 何曼丽, 仝亮. 钙钛矿NaFeF3结构物性的理论研究及应力和掺杂调控. 物理学报, 2019, 68(14): 147101. doi: 10.7498/aps.68.20190573
    [6] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [7] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [8] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展. 物理学报, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [9] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展. 物理学报, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [10] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [11] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [12] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [13] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 物理学报, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [14] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨. 物理学报, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [15] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [16] 夏祥, 刘喜哲. CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用. 物理学报, 2015, 64(3): 038104. doi: 10.7498/aps.64.038104
    [17] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [18] 王海啸, 郑新和, 吴渊渊, 甘兴源, 王乃明, 杨辉. 1 eV吸收带边GaInAs/GaNAs超晶格太阳能电池的阱层设计. 物理学报, 2013, 62(21): 218801. doi: 10.7498/aps.62.218801
    [19] 李小娟, 韦尚江, 吕文辉, 吴丹, 李亚军, 周文政. 一种新方法制备硅/聚(3, 4-乙撑二氧噻吩)核/壳纳米线阵列杂化太阳能电池. 物理学报, 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [20] 向 军, 李莉萍, 苏文辉. 钙钛矿型氧离子导体KNb1-xMgxO3-δ的制备和表征. 物理学报, 2003, 52(6): 1474-1478. doi: 10.7498/aps.52.1474
计量
  • 文章访问数:  5831
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 修回日期:  2021-04-28
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-10-05

/

返回文章
返回