-
使用In, N分离的GaInAs/GaNAs超晶格作为有源区是实现高质量1eV带隙 GaInNAs基太阳能电池的重要方案之一. 为在实验上生长出高质量相应吸收带边的超晶格结构, 本文采用计算超晶格电子态常用的Kronig-Penney模型比较了不同阱层材料选择下, 吸收带边为1 eV的GaInAs/GaNAs超晶格相关参数的对应关系以及超晶格应变状态. 结果表明: GaNAs与GaInAs作为超晶格阱层材料在实现1 eV的吸收带边时具有不同的考虑和要求; 在固定1 eV的吸收带边时, GaNAs材料作为阱层可获得较好的超晶格应变补偿, 将有利于生长高质量且充分吸收的太阳能电池有源区.
-
关键词:
- GaInAs/GaNAs超晶格 /
- Kronig-Penney模型 /
- 太阳能电池
The GaInAs/GaNAs super-lattice with a feature of space separation of In and N constituents as an active region, is one of the most important ways to achieve 1 eV GaInNAs-based solar cells. To experimentally realize the high-quality super-lattice structure with the required band-gap, Kronig-Penney model is used to obtain the barrier thickness dependence on the well thickness and its composition. Meanwhile, the strain state of GaInAs/GaNAs SLs with various well choices is also discussed. Results show that when both the GaNAs and GaInAs act as the well layers the super-lattice can achieve 1 eV band-gap, and when the GaN0.04As0.96 is considered to act as the well layer, the entire GaInAs/GaNAs SLs have smaller strain accumulations as compared with the case of Ga0.7In0.3As as the well layer in the super-lattice structure.-
Keywords:
- GaInAs/GaNAs super-lattice /
- Kronig-Penney model /
- solar cell
[1] Kondow M, Uomi K, Niwa A, Kitatani T, Watahiki S, Yazawa Y 1996 Jpn. J. Appl. Phys. 35 1273
[2] Kurtz S R, Myers D, Olson J M 1997 Proceedings of the 26th IEEE Photovoltaic Specialists Conference, Anaheim, 29 Sep–3 Oct 1997, p 875
[3] Zhao J, Zeng Y P 2011 Physics 4 233 (in Chinese) [赵杰, 曾一平 2011 物理 4 233]
[4] Kong X, Trampert A, Tournie E, Ploog K H 2005 Appl. Phys. Lett. 87 171901
[5] Oshima R, Huang J, Miyashita N, Matsubara K, Okada Y, Ponce F 2011 Appl. Phys. Lett. 99 191907
[6] Miyamoto T, Sato S, Pan Z, Schlenker D, Koyama F, Iga K 1998 J. Cryst Growth. 195 421
[7] Hong Y G, Tu C W, Ahrenkiel R K 2001 J Cryst Growth. 227–228 536
[8] Hong Y G, Egorov A Y, Tu C W 2002 J. Vac. Sci. Technol B 20 1163
[9] Wu P H, Su Y K, Yen C T, Hong H F, Chu K Y, Chen Y R 2007 Semicond Sci. Tech. 22 549
[10] Wu P H, Su Y K, Chen I L, Chiou C H, Hsu J T, Chen W R 2006 Jpn. J. Appl. Phys. 45 L647
[11] Wu P H, Su Y K, Chen I L, Chiou C H, Hsu J T, Chen W R 2007 Physica Status Solidi (c) 4 2854
[12] Wang H X, Zheng X H, Wen Y, Wu Y Y, Gan X Y, Wang N M, Yang H 2013 Scientia Sinica Pysica, Mechanica & Astronomica 43 930 (in Chinese) [王海啸, 郑新和, 文瑜, 吴渊渊, 甘兴源, 王乃明, 杨辉 2013 中国科学: 物理学 力学 天文学 43 930]
[13] Li L, Zhao D G, Jiang D S, Liu Z S, Chen P, Wu L L, Le L C, Wang H, Yang H 2013 Chin. Phys. B 22 068802
[14] Esaki L, Tsu R 1970 IBM Journal of Research and Development. 14 61
[15] Lu W, Xue M, Wei Y, He L 2011 Acta Phys. Sin. 60 87807 (in Chinese) [芦伟, 徐明, 魏屹, 何林 2011 物理学报 60 87807]
[16] Tisch U, Finkman E, Salzman J 2002 Appl. Phys. Lett. 81 463
[17] Niki S, Lin C L, Chang W S C, Wieder H H 1989 Appl. Phys. Lett. 55 1339
-
[1] Kondow M, Uomi K, Niwa A, Kitatani T, Watahiki S, Yazawa Y 1996 Jpn. J. Appl. Phys. 35 1273
[2] Kurtz S R, Myers D, Olson J M 1997 Proceedings of the 26th IEEE Photovoltaic Specialists Conference, Anaheim, 29 Sep–3 Oct 1997, p 875
[3] Zhao J, Zeng Y P 2011 Physics 4 233 (in Chinese) [赵杰, 曾一平 2011 物理 4 233]
[4] Kong X, Trampert A, Tournie E, Ploog K H 2005 Appl. Phys. Lett. 87 171901
[5] Oshima R, Huang J, Miyashita N, Matsubara K, Okada Y, Ponce F 2011 Appl. Phys. Lett. 99 191907
[6] Miyamoto T, Sato S, Pan Z, Schlenker D, Koyama F, Iga K 1998 J. Cryst Growth. 195 421
[7] Hong Y G, Tu C W, Ahrenkiel R K 2001 J Cryst Growth. 227–228 536
[8] Hong Y G, Egorov A Y, Tu C W 2002 J. Vac. Sci. Technol B 20 1163
[9] Wu P H, Su Y K, Yen C T, Hong H F, Chu K Y, Chen Y R 2007 Semicond Sci. Tech. 22 549
[10] Wu P H, Su Y K, Chen I L, Chiou C H, Hsu J T, Chen W R 2006 Jpn. J. Appl. Phys. 45 L647
[11] Wu P H, Su Y K, Chen I L, Chiou C H, Hsu J T, Chen W R 2007 Physica Status Solidi (c) 4 2854
[12] Wang H X, Zheng X H, Wen Y, Wu Y Y, Gan X Y, Wang N M, Yang H 2013 Scientia Sinica Pysica, Mechanica & Astronomica 43 930 (in Chinese) [王海啸, 郑新和, 文瑜, 吴渊渊, 甘兴源, 王乃明, 杨辉 2013 中国科学: 物理学 力学 天文学 43 930]
[13] Li L, Zhao D G, Jiang D S, Liu Z S, Chen P, Wu L L, Le L C, Wang H, Yang H 2013 Chin. Phys. B 22 068802
[14] Esaki L, Tsu R 1970 IBM Journal of Research and Development. 14 61
[15] Lu W, Xue M, Wei Y, He L 2011 Acta Phys. Sin. 60 87807 (in Chinese) [芦伟, 徐明, 魏屹, 何林 2011 物理学报 60 87807]
[16] Tisch U, Finkman E, Salzman J 2002 Appl. Phys. Lett. 81 463
[17] Niki S, Lin C L, Chang W S C, Wieder H H 1989 Appl. Phys. Lett. 55 1339
计量
- 文章访问数: 6172
- PDF下载量: 687
- 被引次数: 0