-
埋底界面是影响钙钛矿太阳能电池光电性能的关键因素,因此埋底界面工程是有效提高钙钛矿太阳能电池效率和稳定性的有效方法。本文将极性有机分子4-巯基苯硼酸(4-MPBA)加入到CsPbI2Br钙钛矿前驱体中,CsPbI2Br钙钛矿结晶过程中4-MPBA分子被挤出钙钛矿晶格,并在钙钛矿下表面聚集。4-MPBA分子的硼酸官能团与TiO2电子传输层具有较强的相互作用,因此在埋底的TiO2电子传输层/CsPbI2Br钙钛矿界面原位形成4-MPBA界面层。实验结果表明原位形成的4-MPBA界面层明显改善了界面接触、减少了界面缺陷、优化了界面能级结构,从而有效增强了界面电荷迁移。所组装的无空穴传输层 CsPbI2Br钙钛矿太阳能电池光电转换效率达到14.83%,比无4-MPBA界面层电池效率提高了26%。另外,4-MPBA界面层修饰的CsPbI2Br钙钛矿太阳能电池具有较高的稳定性,未密封状态下在空气环境中贮存40天,其效率仍能保持初始值的90%以上。Inorganic cesium halide perovskites (CsPbX3, X=I,Br) are promising candidates as the light-harvesting materials of new-generation photovoltaic devices owing to their intrinsic advantages, such as the high thermal stability, excellent optoelectronic properties, and facile solution fabrication process. In particular, CsPbI2Br perovskite which balances the light-harvesting ability and phase stability has attracted ever-increasing attention in the field of the single junction, the tandem, and the semitransparent photovoltaic devices. In the past several years, inorganic CsPbI2Br perovskite solar cells (PSCs) have achieved great progress in both the power conversion efficiency and the stability through versatile device engineering. Nevertheless, the inferior buried interface derived from the uncontrollable up-to-bottom perovskite crystallization process leads to the serious charge recombination and energy loss within CsPbI2Br PSCs, which considerably hinders the further development and practical deployment of CsPbI2Br PSCs. This highlights the necessity of developing facile but effective strategy to modify buried interface towards achieving superior cell performance. In this work, we report a facile additive strategy to in situ modify the buried interface of CsPbI2Br PSCs through forming a dipolar interlayer. The polar 4-mercaptophenylboronic acid (4-MPBA) additive is directly added into CsPbI2Br precursor solution. 4-MPBA molecules can't incorporate into the crystal lattice of CsPbI2Br perovskite due to its large size. Therefore, 4-MPBA molecules are excluded from CsPbI2Br perovskite crystal and pushed downwards the buried interface of TiO2 electron-transport-layer and CsPbI2Br perovskite film during the perovskite crystallization process. Because of the strong interaction between the -B(OH)2 group of 4-MPBA molecule and TiO2, 4-MPBA molecules tend to accumulate at the buried interface between CsPbI2Br perovskite and TiO2 layer and form a dipolar interlayer. Scanning electron microscopy, X-ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy measurements clearly demonstrate that the formation of 4-MPBA interlayer greatly enhance the interface contact, improve the interfacial energy level structure, and passivate the interface defects, which effectively suppresses the charge recombination and promotes the charge collection within the cell. As a result, the assembled carbon-based CsPbI2Br PSC without hole-transport layer delivers a power conversion efficiency of 14.83%, which is increased by 26% compared to the efficiency of the cell without 4-MPBA interlayer. Moreover, the cell without any encapsulation retains ~90% of the original efficiency after 960 h of aging in ambient air, suggesting a superior long-term stability. Therefore, this work highlights a facile strategy to in situ modify the buried interface for effectively enhancing the photovoltaic performance of inorganic perovskite solar cells.
-
Keywords:
- inorganic perovskite /
- buried interface /
- in situ modification /
- solar cell /
- photovoltaic performance
-
[1] Patil J V, Mali S S, Sadale S B 2023 Inorg. Chem. Front. 10 3213.
[2] Wang M, Cao F R, Wang M, Deng K M, Li L 2021 Adv. Mater. 33 2006745.
[3] Lim E L, Yang J, Wei Z H 2023 Energy Environ. Sci. 16 862
[4] Xiao H R, Zuo C T, Yan K Y, Jin Z W, Xiao Z, Liu F Y, Ding L M 2023 Adv. Energy Mater. 13 2300738
[5] Li T T, Xu J, Lin R X, Teale S, Li H J, Liu Z, Duan C Y, Zhao Q, Chen B, Jiang S, Xiong S B, Bao Q, Tian Y, Gao X, Guo X P, Xie J, Sargent E H, Tan H R 2023 Nat. Energy 8 610
[6] Kang C T, Xu S H, Rao H S, Pan Z X, Zhong X H 2023 ACS Energy Lett. 8 909
[7] Fu S, Zhang W X, Li X D, Wan L, Chen L J, Liu X H, Fang J F 2020 ACS Energy Lett. 5 676
[8] Li H, Duan J L, Zhang C J, Liu N M, Duan X X, Dou J, Guo Q Y, He B L, Zhao Y Y, Tang Q W 2025 Angew. Chem. Int. Ed. 64 e202419061
[9] Saha R, Chiu W H, Degutis G, Chen P, Solano E, Orlov N, Angelis F D, Mali S S, Hoang M T, Yang Y, Garnett E, Wang L Z, Wang H X, Roeffaers M, Steele J A 2024 ACS Nano 18, 16994.
[10] Shan S Q, Xu C, Wu H T, Niu B F, Fu W F, Zuo L J, Chen H Z 2023 Adv. Energy. Mater. 13 2203682.
[11] Zhong T T, Hao H Y 2024 Acta Phys. Sin. 73 238101 (in Chinese) [仲婷婷, 郝会颖2024 物理学报 73 238101]
[12] Huang T Y, Zhu R, Luo D Y 2024 Chin. Phys. Lett. 41 098501
[13] Zhang D, Zhang X, Guo T H, Jin J J, Zou J J, Cao Q, Zhang J, Ren Z W, Tai Q D 2023 ACS Appl. Mater. Interfaces 15 10897
[14] Yun T, Cai H Z, Lyu W Y, Lu X B, Gao X S, Liu J M, Wu S J 2024 ACS Appl. Mater. Interfaces 16 57412
[15] Qiu F Z, Li M H, Wu J P, Hu J S 2024 J. Energy Chem. 89 364
[16] Chen B, Chen H, Hou Y, Xu J, Teale S, Chen H J, Proppe A, Zhou Q L, Yu D N, Xu K M, Liu Y, Jung E H, Chen C, Vafaie M, Ning Z J, Sargent E H 2021 Adv. Mater. 33 e2103394
[17] Chen S S, Xiao X, Chen B, Kelly L, Zhao J J, Lin Y, Toney M F, Huang J S 2021 Sci. Adv. 7 eabb2412
[18] Guo H X, Liu C, Hu H L, Zhang S, Ji X Y, Cao X M, Ning Z J, Zhu W H, Tian H, Wu Y Z 2023 Natl. Sci. Rev. 10 nwad057
[19] Dong Y. Shen W J, Bai S, Zhao Z, Dong W, Huang F Z, Cheng Y B, Zhong J 2022 Adv. Energy Mater. 12 2200417.
[20] Qiu J M, Mei X Y, Zhang M X, Wang G L, Zou S W, Huang J M, Hua Y, Zhang X H 2024 Angew. Chem. Int. Ed. 63 e202401751
[21] Yan F R, Yang P Z, Li J B, Guo Q Y, Zhang J S, Duan Y Y, Duan J L, Tang Q W 2022 Chem. Eng. J. 430 132781.
[22] Yu L T, Guo T H, Yuan H B, Zhang Z Q, Zheng M K, Zhang J, Hu Z Y, Zhu Y J 2021 Chem. Eng. J. 420 129931
[23] Tan S, Shi J J, Yu B C, Zhao W Y, Li Y M, Hu H J, Luo Y H, Li D M, Meng Q B 2021 Adv. Funct. Mater. 31 2010813.
计量
- 文章访问数: 15
- PDF下载量: 0
- 被引次数: 0








下载: