搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多步旋涂过程中CsPbBr3无机钙钛矿成膜机理

马书鹏 林飞宇 罗媛 朱刘 郭学益 杨英

引用本文:
Citation:

多步旋涂过程中CsPbBr3无机钙钛矿成膜机理

马书鹏, 林飞宇, 罗媛, 朱刘, 郭学益, 杨英

Formation mechanism of CsPbBr3 in multi-step spin-coating process

Ma Shu-Peng, Lin Fei-Yu, Luo Yuan, Zhu Liu, Guo Xue-Yi, Yang Ying
PDF
HTML
导出引用
  • 在无机钙钛矿太阳能电池的研究中, 薄膜制备工艺是影响钙钛矿太阳能电池光电转换效率(PCE)的重要因素之一. CsPbBr3钙钛矿作为稳定性极好的无机钙钛矿之一, 因其前驱体盐(PbBr2, CsBr)溶解度差异过大, 通常采用多步法进行制备. 而由于对成膜机理的认识不充分, 导致制备的薄膜存在薄膜形貌差、前驱体反应不完全等问题. 本文通过旋涂不同次数的CsBr溶液, 探究了CsPbBr3钙钛矿的成膜机理. 成膜过程中CsBr扩散进入预先沉积的PbBr2薄膜完成反应, 短暂反应时间使薄膜深层反应不充分而薄膜表面过度反应, CsPb2Br5和Cs4PbBr6等相伴随CsPbBr3钙钛矿出现, 反复退火形成的薄膜阻挡CsBr扩散加剧了这一现象. 适当地延长前驱体的反应时间, 能为CsBr扩散及反应提供更充分的空间. 基于优化反应时间, CsPbBr3钙钛矿薄膜形貌得到改善、其晶粒尺寸得到提升, 钙钛矿薄膜中的晶界减少, 从而抑制了载流子复合. 在4次旋涂和30 s反应时间的条件下, 组装的CsPbBr3钙钛矿太阳能电池开路电压从1.01 V提升至1.28 V, PCE从5.32%提升至6.30%, 器件短路电流密度Jsc = 8.40 mA/cm2, 填充因子FF = 59%. 基于以上研究, 为多步旋涂法制备CsPbBr3钙钛矿薄膜和电池提供了理论借鉴.
    The quality of perovskite films plays a crucial role in solar cell, which can affect the stability and power conversion efficiency (PCE). As one of inorganic perovskites with excellent stability, CsPbBr3 perovskite is usually prepared by multi-step method due to the large difference in solubility between its precursor salts (PbBr2 and CsBr). The main reason is that the formation mechanism of CsPbBr3 film is not thoroughly studied. The incomplete reaction of PbBr2 and emergence of Cs4PbBr6 when the CsBr is excessive become problems that need to be solved urgently. In this paper, the phase transition of films during spin coating is observed in detail. In the process of film formation, the CsBr diffuses into the predeposited PbBr2 film to complete the reaction. The short reaction time results in insufficient reactions inside the film but overreaction on the surface of film. The CsPb2Br5 and Cs4PbBr6 appear with CsPbBr3 perovskite, and the film formed by repetitively annealing blocks the diffusion of CsBr. Methanol has an etching effect on the perovskite film which can eliminate the blocking effect. By extending the reaction time of CsBr solution on the film surface, the PbBr2 in the bottom layer is fully reacted, and after being annealed, the perovskite film will recrystallize to form a compact film. With the reaction time controlled appropriately, the CsPb2Br5 in the film can be effectively reduced and Cs4PbBr6 will not appear. The film grain size increases, grain boundary decreases, and the recombination is effectively inhibited, which ensures the improvement of the photoelectric performance of the solar cell. Under the condition of spin-coating four times and reaction time of 30 s, the solar cell has 6.30% PCE, Voc = 1.28 V, Jsc = 8.40 mA/cm2, FF = 0.59 . Comparing with the solar cells with no extended reaction time, the PCE improves more than 18%. This work will provide an important insight into the growth mechanism of perovskite film toward high crystallinity and less defects.
      通信作者: 杨英, muyicaoyang@csu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61774169)、清远市创新创业团队项目(批准号: 2018001)、广东省科技计划(批准号: 2018B030323010)和中南大学研究生自主探索创新项目(批准号: 2021zzts0612)资助的课题.
      Corresponding author: Yang Ying, muyicaoyang@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61774169), the Qingyuan Innovation and Entrepreneurship Team Project, China (Grant No. 2018001), the Science and Technology Project of Guangdong Province, China (Grant No. 2018B030323010), and the Fundamental Research Funds for Graduate Students of the Central South University, China(Grant No. 2021zzts0612).
    [1]

    National Renewable Energy Laboratory. Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2022-01-24]

    [2]

    Min H, Lee D Y, Kim J, et al. 2021 Nature 598 444Google Scholar

    [3]

    Colsmann A, RöhmA H 2020 Energy Technol. 8 2000912Google Scholar

    [4]

    Abdulrahim S M, Ahmad Z, Bhadra J, Al-Thani N J 2020 Molecules. 25 5794Google Scholar

    [5]

    Wei J W, Huang F R, Wang S N, et al. 2018 Mater. Res. Bull. 106 35Google Scholar

    [6]

    Yu S S, Liu H L, Wang S R, Zhu H W, Dong X F, Li X G 2021 Chem. Eng. J. 403 125724Google Scholar

    [7]

    Zhu C, Yang Y, Lin F, Luo Y, Ma S, Zhu L, Guo X 2021 Rare Met. 40 2402Google Scholar

    [8]

    Yang Y, Chen T, Pan D, Gao J, Zhu C, Lin F, Zhou C, Tai Q, Xiao S, Yuan Y, Dai Q, Han Y, Xie H, Guo X 2020 Nano Energy 67 104246Google Scholar

    [9]

    Cheng N, Li W, Zhang M, Wu H, Sun S, Zhao Z, Xiao Z, Sun Z, Zi W, Fang L 2019 Curr. Appl. Phys. 19 25Google Scholar

    [10]

    Hu Y, Bai F, Liu X, Ji Q, Miao X, Qiu T, Zhang S 2017 ACS Energy Lett. 2 2219Google Scholar

    [11]

    Zhang J, Bai D, Jin Z, Bian H, Wang K, Sun J, Wang Q, Liu S 2018 Adv. Energy Mater. 8 1703246Google Scholar

    [12]

    Bai D, Bian H, Jin Z, Wang H, Meng L, Wang Q, Liu S 2018 Nano Energy 52 408Google Scholar

    [13]

    Lin F, Yang Y, Zhu C, Chen T, Ma S, Luo Y, Zhu L, Guo X 2020 Acta Phys. Chim. Sin. 37 2005007Google Scholar

    [14]

    Kulbak M, Cahen D, Hodes G 2015 J. Phys. Chem. Lett. 6 2452Google Scholar

    [15]

    Duan J, Zhao Y, He B, Tang Q 2018 Angew. Chem. 57 3787Google Scholar

    [16]

    Liu X, Tan X, Liu Z, Ye H, Sun B, Shi T, Tang Z, Liao G 2019 Nano Energy 56 184Google Scholar

    [17]

    Teng P, Han X, Li J, Xu Y, Kang L, Wang Y, Yang Y, Yu T 2018 ACS Appl. Mater. Interfaces 10 9541Google Scholar

    [18]

    Lan H, Xiao H, Zhao J, Chen X, Fan P, Liang G 2021 Mater. Sci. Semicond. Process. 132 105869Google Scholar

    [19]

    Lei J, Gao F, Wang H, Li J, Jiang J, Wu X, Gao R, Yang Z, Liu S 2018 Sol. Energy Mater. Sol. Cells 187 1Google Scholar

    [20]

    Wang H, Wu Y, Ma M, Dong S, Li Q, Du J, Zhang H, Xu Q 2019 ACS Appl. Energy Mater. 2 2305Google Scholar

    [21]

    Yang X, Li M, Jiang J, Ma L, Tang W, Xu C, Cai H L, Zhang F M, Wu X S 2021 J. Phys. D 54 154001Google Scholar

    [22]

    Li H, Tong G, Chen T, Zhu H, Li G, Chang Y, Wang L, Jiang Y 2018 J. Mater. Chem. A 6 14255Google Scholar

    [23]

    Saidaminov M I, Almutlaq J, Sarmah S, Dursun I, Zhumekenov A A, Begum R, Pan J, Cho N, Mohammed O F Bakr O M 2016 ACS Energy Lett. 1 840Google Scholar

    [24]

    Ryu J, Yoon S, Lee S, Lee D, Parida B, Kwak H W, Kang D W 2021 Electrochim. Acta 368 137539Google Scholar

    [25]

    Zhang X, Jin Z, Zhang J, Bai D, Bian H, Wang K, Sun J, Wang Q, Liu S F 2018 ACS Appl. Mater. Interfaces. 10 7145Google Scholar

    [26]

    Jiang Y, Juarez-Perez E J, Ge Q, Wang S, Leyden M R, Ono L K, Raga S R, Hu J, Qi Y 2016 Mater. Horiz. 3 548Google Scholar

    [27]

    Ding Y, He B, Zhu J, Zhang W, Su G, Duan J, Zhao Y, Chen H, Tang Q 2019 ACS Sustainable Chem. Eng. 7 19286Google Scholar

    [28]

    Zhou F, Liu H, Wang X, Shen W 2017 Adv. Funct. Mater. 27 1606156Google Scholar

    [29]

    Li H, Guo L, Li C N, Wang C, Wang G, Wen S, Wu J, Dong W, Li Z J, Ruan S 2019 ACS Sustainable Chem. Eng. 7 8579Google Scholar

    [30]

    Saidaminov M I, Haque M A, Almutlaq J, Sarmah S, Miao X H, Begum R, Zhumekenov A A, Dursun I, Cho N, Murali B 2017 Adv. Opt. Mater. 5 1600704Google Scholar

  • 图 1  (a) 多步旋涂法示意图; (b) 不同旋涂次数钙钛矿薄膜照片

    Fig. 1.  (a) Schematic of multi-step spinning method; (b) photographs of perovskite films with different times of spin coating.

    图 2  不同旋涂次数CsPbBr3钙钛矿薄膜的(a) XRD图、(b) 紫外吸收光谱图、(c) Tauc图和 (d) PL光谱

    Fig. 2.  (a) XRD patterns, (b) UV-vis absorption spectra, (c) Tauc plots of (αhν)2 vs. the photo energy, and (d) PL spectra of CsPbBr3 perovskite films with different spin-coating times.

    图 3  不同旋涂次数制备的CsPbBr3钙钛矿薄膜SEM图 (a) 旋涂3次; (b) 旋涂4次; (c) 旋涂5次; (d) 旋涂6次; (e) 旋涂7次; (f) 旋涂4次时薄膜的截面

    Fig. 3.  The SEM images CsPbBr3 perovskite films with different spin coating times: (a) 3 times; (b) 4 times; (c) 5 times; (d) 6 times; (e) 7 times; (f) cross-section image of the film with 4 times.

    图 4  CsPbBr3钙钛矿薄膜的形成机理图

    Fig. 4.  Formation mechanism of CsPbBr3 in multi-step spin-coating.

    图 5  (a) 不同反应时间下CsPbBr3钙钛矿薄膜照片; (b)—(h) 未退火的薄膜SEM图; (i)—(o) 退火后的薄膜SEM图. 标尺1 μm

    Fig. 5.  (a) Images of as-prepared films with varied CsBr solution reaction time; (b)–(h) SEM images of unannealed films; (i)–(o) SEM images of annealed films. All films spin-coating four times. Scale bar: 1 μm.

    图 6  不同反应时间下CsPbBr3钙钛矿薄膜的(a) XRD图、(b) 紫外吸收光谱、(c) Tauc图和 (d) PL光谱

    Fig. 6.  (a) XRD patterns, (b) UV-vis absorption spectra, (c) Tauc plots of (αhν)2 vs. the photo energy, and (d) steady-state PL of the cesium lead bromide films deposited on FTO substrates with varied CsBr solution reaction time.

    图 7  (a) 不同反应时间下的CsPbBr3钙钛矿薄膜器件J-V曲线; (b) CsPbBr3电池Nyquist 图, 插图为等效电路图及相关参数; (c) 暗态下结构为FTO/TiO2/CsPbBr3/PC61BM/Ag的器件的J-V曲线

    Fig. 7.  (a) J-V curves of CsPbBr3 perovskite solar cell based on different reaction time; (b) Nyquist plots of CsPbBr3 PSCs under 1 sun illumination, the inset provides the equivalent circuit and relevant parameter; (c) J-V curves of the device with an architecture of FTO/TiO2/CsPbBr3/PC61BM/Ag under dark conditions.

    表 1  不同反应时间下CsPbBr3钙钛矿薄膜的电池器件J-V参数

    Table 1.  J-V parameters of CsPbBr3 perovskite for solar cell with different reaction time.

    反应时间/sJsc/(mA·cm–2)Voc/VFFPCE/%
    08.781.170.525.32
    108.511.220.565.86
    207.951.200.585.55
    308.401.280.596.30
    407.941.030.524.22
    506.281.080.594.02
    604.191.030.482.09
    下载: 导出CSV
  • [1]

    National Renewable Energy Laboratory. Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2022-01-24]

    [2]

    Min H, Lee D Y, Kim J, et al. 2021 Nature 598 444Google Scholar

    [3]

    Colsmann A, RöhmA H 2020 Energy Technol. 8 2000912Google Scholar

    [4]

    Abdulrahim S M, Ahmad Z, Bhadra J, Al-Thani N J 2020 Molecules. 25 5794Google Scholar

    [5]

    Wei J W, Huang F R, Wang S N, et al. 2018 Mater. Res. Bull. 106 35Google Scholar

    [6]

    Yu S S, Liu H L, Wang S R, Zhu H W, Dong X F, Li X G 2021 Chem. Eng. J. 403 125724Google Scholar

    [7]

    Zhu C, Yang Y, Lin F, Luo Y, Ma S, Zhu L, Guo X 2021 Rare Met. 40 2402Google Scholar

    [8]

    Yang Y, Chen T, Pan D, Gao J, Zhu C, Lin F, Zhou C, Tai Q, Xiao S, Yuan Y, Dai Q, Han Y, Xie H, Guo X 2020 Nano Energy 67 104246Google Scholar

    [9]

    Cheng N, Li W, Zhang M, Wu H, Sun S, Zhao Z, Xiao Z, Sun Z, Zi W, Fang L 2019 Curr. Appl. Phys. 19 25Google Scholar

    [10]

    Hu Y, Bai F, Liu X, Ji Q, Miao X, Qiu T, Zhang S 2017 ACS Energy Lett. 2 2219Google Scholar

    [11]

    Zhang J, Bai D, Jin Z, Bian H, Wang K, Sun J, Wang Q, Liu S 2018 Adv. Energy Mater. 8 1703246Google Scholar

    [12]

    Bai D, Bian H, Jin Z, Wang H, Meng L, Wang Q, Liu S 2018 Nano Energy 52 408Google Scholar

    [13]

    Lin F, Yang Y, Zhu C, Chen T, Ma S, Luo Y, Zhu L, Guo X 2020 Acta Phys. Chim. Sin. 37 2005007Google Scholar

    [14]

    Kulbak M, Cahen D, Hodes G 2015 J. Phys. Chem. Lett. 6 2452Google Scholar

    [15]

    Duan J, Zhao Y, He B, Tang Q 2018 Angew. Chem. 57 3787Google Scholar

    [16]

    Liu X, Tan X, Liu Z, Ye H, Sun B, Shi T, Tang Z, Liao G 2019 Nano Energy 56 184Google Scholar

    [17]

    Teng P, Han X, Li J, Xu Y, Kang L, Wang Y, Yang Y, Yu T 2018 ACS Appl. Mater. Interfaces 10 9541Google Scholar

    [18]

    Lan H, Xiao H, Zhao J, Chen X, Fan P, Liang G 2021 Mater. Sci. Semicond. Process. 132 105869Google Scholar

    [19]

    Lei J, Gao F, Wang H, Li J, Jiang J, Wu X, Gao R, Yang Z, Liu S 2018 Sol. Energy Mater. Sol. Cells 187 1Google Scholar

    [20]

    Wang H, Wu Y, Ma M, Dong S, Li Q, Du J, Zhang H, Xu Q 2019 ACS Appl. Energy Mater. 2 2305Google Scholar

    [21]

    Yang X, Li M, Jiang J, Ma L, Tang W, Xu C, Cai H L, Zhang F M, Wu X S 2021 J. Phys. D 54 154001Google Scholar

    [22]

    Li H, Tong G, Chen T, Zhu H, Li G, Chang Y, Wang L, Jiang Y 2018 J. Mater. Chem. A 6 14255Google Scholar

    [23]

    Saidaminov M I, Almutlaq J, Sarmah S, Dursun I, Zhumekenov A A, Begum R, Pan J, Cho N, Mohammed O F Bakr O M 2016 ACS Energy Lett. 1 840Google Scholar

    [24]

    Ryu J, Yoon S, Lee S, Lee D, Parida B, Kwak H W, Kang D W 2021 Electrochim. Acta 368 137539Google Scholar

    [25]

    Zhang X, Jin Z, Zhang J, Bai D, Bian H, Wang K, Sun J, Wang Q, Liu S F 2018 ACS Appl. Mater. Interfaces. 10 7145Google Scholar

    [26]

    Jiang Y, Juarez-Perez E J, Ge Q, Wang S, Leyden M R, Ono L K, Raga S R, Hu J, Qi Y 2016 Mater. Horiz. 3 548Google Scholar

    [27]

    Ding Y, He B, Zhu J, Zhang W, Su G, Duan J, Zhao Y, Chen H, Tang Q 2019 ACS Sustainable Chem. Eng. 7 19286Google Scholar

    [28]

    Zhou F, Liu H, Wang X, Shen W 2017 Adv. Funct. Mater. 27 1606156Google Scholar

    [29]

    Li H, Guo L, Li C N, Wang C, Wang G, Wen S, Wu J, Dong W, Li Z J, Ruan S 2019 ACS Sustainable Chem. Eng. 7 8579Google Scholar

    [30]

    Saidaminov M I, Haque M A, Almutlaq J, Sarmah S, Miao X H, Begum R, Zhumekenov A A, Dursun I, Cho N, Murali B 2017 Adv. Opt. Mater. 5 1600704Google Scholar

  • [1] 王斐, 杨振清, 夏雨虹, 刘畅, 林春丹. Ge/Sn合金化对CsPbBr3钙钛矿热载流子弛豫影响的非绝热分子动力学研究. 物理学报, 2024, 73(2): 028801. doi: 10.7498/aps.73.20231061
    [2] 南瑞华, 武春燕, 刘腾, 罗家欣, 魏永星, 坚增运. 大尺寸高质量CH3NH3PbCl3钙钛矿单晶的生长机理、相转变与光学性能. 物理学报, 2023, 72(13): 138101. doi: 10.7498/aps.72.20230097
    [3] 韩晓静, 杨静, 张佳莉, 刘冬雪, 石标, 王鹏阳, 赵颖, 张晓丹. 反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用. 物理学报, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [4] 陈雪莲, 焦琥珀, 申岩冰, 潘喜强. 高效稳定的CsPbBr3-Cs4PbBr6混合相钙钛矿纳米晶的制备及形成过程. 物理学报, 2023, 72(9): 097801. doi: 10.7498/aps.72.20230066
    [5] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [6] 宋谢飞, 晒旭霞, 李洁, 马新茹, 伏云昌, 曾春华. 无机非铅钙钛矿Cs3Bi2I9的电子和光学性质. 物理学报, 2022, 71(1): 017101. doi: 10.7498/aps.71.20211599
    [7] 陈雪莲, 巨博, 焦琥珀, 李燕, 钟玉洁. 形貌可控的CsPbBr3钙钛矿纳米晶的制备及其形成动力学的原位光致发光研究. 物理学报, 2022, 71(9): 096802. doi: 10.7498/aps.71.20212228
    [8] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池. 物理学报, 2022, 71(2): 028101. doi: 10.7498/aps.71.20211344
    [9] 宋谢飞, 晒旭霞, 李洁, 马新茹, 伏云昌, 曾春华. 无机非铅钙钛矿Cs3Bi2I9的电子和光学性质. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211599
    [10] 李斌, 苗向阳. 单个CsPbBr3钙钛矿量子点的荧光闪烁特性. 物理学报, 2021, 70(20): 207802. doi: 10.7498/aps.70.20210908
    [11] 钟旺燊, 陈野力, 钱沐杨, 刘三秋, 张家良, 王德真. 大气压非平衡等离子体甲烷干法重整零维数值模拟. 物理学报, 2021, 70(7): 075206. doi: 10.7498/aps.70.20201700
    [12] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211344
    [13] 彭勇, 罗昔贤, 付姚, 邢明铭. 热分解含硫金属有机配合物制备近红外PbS量子点. 物理学报, 2013, 62(20): 208105. doi: 10.7498/aps.62.208105
    [14] 李明阳, 于明朗, 苏庆, 刘雪芹, 谢二庆, 张晓倩. 生长在Si基底上VOX纳米管形貌的时间影响因子及其气敏性初探. 物理学报, 2012, 61(23): 236101. doi: 10.7498/aps.61.236101
    [15] 周翔, 张萱, 刘爱芬, 曾祥华. FC(O)O2的结构及其自由基与NO反应的微观机理研究. 物理学报, 2010, 59(7): 5128-5134. doi: 10.7498/aps.59.5128
    [16] 向 军, 王晓晖. Sm0.9Sr0.1AlO3-δ钙钛矿氧化物的固相反应合成和电学性能. 物理学报, 2008, 57(7): 4417-4423. doi: 10.7498/aps.57.4417
    [17] 赵 江, 崔 磊, 曾祥华, 徐秀莲. FC(O)O自由基与NO反应机理的理论研究. 物理学报, 2008, 57(11): 7349-7353. doi: 10.7498/aps.57.7349
    [18] 王佩怡, 杨 春, 李来才, 李言荣. SrTiO3薄膜生长初期Sr,Ti,O原子分子反应机理的理论研究. 物理学报, 2008, 57(4): 2340-2346. doi: 10.7498/aps.57.2340
    [19] 郭洪霞, 麦振洪. 分散相颗粒几何因素对电流变液体反应时间的影响. 物理学报, 1996, 45(1): 73-79. doi: 10.7498/aps.45.73
    [20] 储少岩, 王绪威, 程先安, 李存建, 王俊奎, 吴乾章, 黄家山. 固相反应时Bi1.92Pb0.32Sr2Ca1.7Mg0.3Cu3.07Ox超导体中2223相的生长. 物理学报, 1992, 41(12): 2024-2033. doi: 10.7498/aps.41.2024
计量
  • 文章访问数:  4939
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-24
  • 修回日期:  2022-02-28
  • 上网日期:  2022-07-18
  • 刊出日期:  2022-08-05

/

返回文章
返回