搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温溶液加工CsPbBr3纳晶薄膜制备钙钛矿太阳电池

张喜生 晏春愉 胡李纳 王景州 姚陈忠

引用本文:
Citation:

低温溶液加工CsPbBr3纳晶薄膜制备钙钛矿太阳电池

张喜生, 晏春愉, 胡李纳, 王景州, 姚陈忠
cstr: 32037.14.aps.73.20241152

Perovskite solar cells prepared by processing CsPbBr3 nanocrystalline films in low temperature solution

Zhang Xi-Sheng, Yan Chun-Yu, Hu Li-Na, Wang Jing-Zhou, Yao Chen-Zhong
cstr: 32037.14.aps.73.20241152
PDF
HTML
导出引用
  • 溶液法制备钙钛矿多晶薄膜过程中, 不仅使用有毒溶剂配置前驱液, 而且热处理仍是诱导钙钛矿晶粒生长的主要途径, 这项工艺会增加能耗, 还阻碍柔性电池的发展. 为消除有毒溶剂的使用和高温处理, 本文通过低温溶液加工CsPbBr3纳晶薄膜获得相应的多晶薄膜, 应用到太阳电池中. 首先热注入法制备CsPbBr3纳米晶墨汁前驱液, 并采用旋涂法制备其纳晶薄膜. 大气环境下, CsPbBr3纳晶薄膜经Pb(SCN)2与NH4Br乙酸甲酯饱和溶液处理制备CsPbBr3多晶薄膜, 将其作为吸收层制备钙钛矿太阳电池, 有效提高了电池的性能, 电池效率达到8.43%. 研究表明, Pb(SCN)2与NH4Br乙酸甲酯(MA)饱和溶液不仅可以使纳晶继续结晶生长, 同时还可以有效地钝化钙钛矿薄膜中的缺陷. 采用该方法制备CsPbBr3多晶薄膜过程中, 既无高温处理, 也无高沸点毒性溶剂的使用, 同时适用于刚性和柔性电池的制备.
    In the process of preparing perovskite polycrystalline films by solution method, toxic solvents are used, and heat treatment is still the main way to induce perovskite grain growth, which not only increases energy consumption, but also hinders the development of flexible solar cells. In order to avoid the use of toxic solvents and high-temperature process, CsPbBr3 nanocrystal films are treated with low temperature solution to obtain corresponding polycrystalline thin films, which are applied to solar cells. Firstly, CsPbBr3 nanocrystalline (nanocrystalline NC) ink precursor is prepared by hot injection method, and nanocrystalline film is prepared by spinning coating method. In atmospheric environment, CsPbBr3 nanocrystalline films are prepared by saturated solution of Pb(SCN)2 and NH4Br methyl acetate. Using the CsPbBr3 nanocrystalline film as an absorbing layer, the perovskite solar cell is prepared and the performance of the cell is effectively improved, and the efficiency of the cell reaches 8.43%. The results show that the saturated solution of Pb(SCN)2 and NH4Br methyl acetate (MA) can not only continue the nanocrystalline crystallization, but also effectively passivate the defects in the perovskite films. In the process of preparing CsPbBr3 polycrystalline films, neither high temperature treatment nor the high boiling point toxic solvent is used, which is suitable for the preparation rigid and flexible solar cells.The inorganic halide perovskite nanocrystals are developed and used as “ink” to fabricate fully air-processed, electrically stable solar cells. Although the prepared film is composed of mosaic nanocrystals capped with a large number of organic ligands and surface traps, this method provides a new approach for single-step, large-scale fabrication of inorganic perovskite devices. Moreover, the flexible control of the material composition provides a platform for uncovering the optimal conditions for optoelectronics and photonics.
      通信作者: 张喜生, zhangxisheng@ycu.edu.cn
    • 基金项目: 山西省自然科学基金(批准号: 202303021211189)和运城学院博士科研项目(批准号: YQ2023068)资助的课题.
      Corresponding author: Zhang Xi-Sheng, zhangxisheng@ycu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 202303021211189) and the Yuncheng University Doctoral Research Project, China (Grant No. YQ2023068).
    [1]

    Bai W H, Xuan T T, Zhao H Y, Dong H R, Xie R J 2023 Adv. Mater. 35 2302283Google Scholar

    [2]

    Zhang J X, Zhang G Z, Su P Y, Huang R, Lin J G, Wang W R, Pan Z X, Rao H S 2023 Angew. Chem. Int. Ed. 62 e202303486Google Scholar

    [3]

    Xu T F, Xiang W C, Yang J J, J. Kubicki D, Tress W G, Chen T, Fang Z M, Liu Y L, Liu S Z 2023 Adv. Mater. 35 2303346

    [4]

    Zhang X S, Wang Q, Jin Z W, Zhang J R, Liu S Z 2017 Nanoscale 9 6278Google Scholar

    [5]

    陈莹, 李富强 2024 太阳能学报 45 123

    Chen Y, Li F Q 2024 Acta Energiae Solaris Sin. 45 123

    [6]

    Wang Y H, Zheng W, Ji H, Shen D P, Zhang Y H, Han Y K, Gao J W, Qiang L, Liu H, Han L, Zhang Y 2021 Adv. Mater. Interfaces 8 2100279Google Scholar

    [7]

    Zhou Q W, Duan J L, Du J, Guo Q Y, Zhang Q Y, Yang X Y, Duan Y Y, Tang Q W 2021 Adv. Sci. 8 2101418

    [8]

    Feng S N, Qin Q L, Han X P, Zhang C F, Wang X Y, Yu T, Xiao M 2022 Adv. Mater. 34 2106278

    [9]

    Zhang X S, Jin Z W, Zhang J R, Bai D L, Bian H, Wang K, Wang Q, Liu S Z 2018 ACS Appl. Mater. Interfaces 10 7145

    [10]

    Lin H, Wei Q, Ng KW, Dong J Y, Li J L, Liu W W, Yan S S, Chen S, Xing G C, Tang X S, Tang Z K, Wang S P 2021 Small 17 2101359Google Scholar

    [11]

    Sun J Y, Zhao X, Si H N, Gao F F, Zhao B, Ouyang T, Li Q, Liao Q L, Zhang Y 2023 Adv. Opt. Mater. 11 2202877Google Scholar

    [12]

    羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬 2023 物理学报 72 168101

    Yang M L, Zou L, Cheng J J, Wang J M, Jiang Y F, Hao H Y, Xing J, Liu H, Fan Z J, Dong J J 2023 Acta Phys. Sin. 72 168101

    [13]

    Xie G X, Li Q L, Lu X C, Li L T 2024 11 3365Google Scholar

    [14]

    Mali S S, Patil J V, Shao J Y, Zhong Y W, Rondiya S R, Dzade N Y, Hong C K 2023 Nat. Energy 8 989Google Scholar

    [15]

    Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T 2016 J. Phys. Chem. Lett. 7 746Google Scholar

    [16]

    Zhang S J, Guo R, Zeng H P, Zhao Y, Liu X Y, You S, Li M, Luo L, Lira-Cantu M, Li L, Liu F X, Zheng X, Liao G L, Li X 2022 Energy Environ. Sci. 15 244

    [17]

    Li M H, Jiao B X, Peng Y C, Zhou J J, Tan L G, Ren N Y, Ye Y R, Liu Y, Yang Y, Chen Y, Ding L M, Yi C Y 2024 Adv. Mater. 36 2406532Google Scholar

    [18]

    Hailegnaw B, Demchyshyn S, Putz C, Lehner L E, Mayr F, Schiller D, Pruckner R, Cobet M, Ziss D, Krieger T M, Rastelli A, Sariciftci N S, Scharber M C, Kaltenbrunner M 2024 Nat. Energy 9 677Google Scholar

    [19]

    Chin X Y, Turkay D, Steele J A, Tabean S, Eswara S, Mensi M, Fiala P, Wolff C M, Paracchino A, Artuk K, Jacobs D, Guesnay Q, Sahli F, Andreatta G, Boccard M, Jeangros Q, Ballif C 2023 Science 381 59Google Scholar

    [20]

    Liang Z, Zhang Y, Xu H F, Chen W J, Liu B Y, Zhang J Y, Zhang H, Wang Z H, Kang D H, Zeng J R, Gao X Y, Wang Q S, Hu H J, Zhou H M, Cai X B, Tian X Y, Reiss P, Xu B M, Kirchartz T, Xiao Z G, Dai S Y, Park N G, Ye J J, Pan X 2023 Nature 624 557Google Scholar

    [21]

    Doolin A J, Charles R G, De Castro C S P, Garcia Rodriguez R, Vincent Péan E, Rahul P, Dunlop T, Charbonneau C, Watson T, Lloyd Davies M 2021 Green Chem. 23 2471Google Scholar

    [22]

    Zhang X S, Cao Y, Feng J S, Liu S Z 2024 Solar RRL 8 20230087

    [23]

    Shi W B, Zhang X, Chen H S, Matras-Postolek K, Yang P 2022 J. Mater. Chem. C. 10 13117Google Scholar

    [24]

    Ma J J, Qin M C, Li P W, Han L Y, Zhang Y Q, Song Y L 2022 Energy Environ. Sci. 15 413

    [25]

    Jia D L, Chen J X, Mei X Y, Fan W T, Luo S, Yu M, Liu J H, Zhang X L 2021 Energy Environ. Sci. 14 4599

    [26]

    Liu H, Worku M, Mondal A, Blessed Shonde T, Chaaban M, Ben-Akacha A, Lee S J, Gonzalez F, Olasupo O, Lin X S, Raaj Vellore Winfred J S, Xin Y, Lochner E, Ma B W 2023 Adv. Energy Mater. 13 2201605Google Scholar

    [27]

    Zhao C, Li Y K, Ye W G, Shen X F, Wen Z C, Yuan X Y, Cao Y G, Ma C Y 2022 Adv. Opt. Mater. 10 2102200Google Scholar

    [28]

    Christopher B M 2009 Science 324 1276Google Scholar

    [29]

    Liao C H, Chen C H, Bing J M, Bailey C, Lin Y T, Pandit T M, Granados L, Zheng J H, Tang S, Lin B H, Yen H W, McCamey Dane R, Kennedy Brendan J, Chueh C C, Ho-Baillie Anita W Y 2022 Adv. Mater. 34 2104782Google Scholar

    [30]

    Yan N, Cao Y, Jin Z W, Liu Y C, Liu S Z, Fang Z M, Feng J S 2024 Adv. Mater. 36 2403682Google Scholar

    [31]

    王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福 2024 物理学报 73 078401

    Wang H, Zheng D X, Jiang X, Cao Y X, Du M Y, Wang K, Liu S Z, Zhang C F 2024 Acta Phys. Sin. 73 078401

    [32]

    Song J Z, Cui Q Z, Li J H, Xu J Y, Wang Y, Xu L M, Xue J, Dong Y H, Tian T, Sun H D, Zeng H B 2017 Adv. Opt. Mater. 5 1700157Google Scholar

  • 图 1  CsPbBr3纳晶 (a) X射线衍射图; (b) TEM图; (c) SEM图; (d) 多晶薄膜的SEM图, 内插照片分别为纳晶墨汁、纳晶及多晶薄膜在自然光和紫外灯照射下荧光; (e), (f) CsPbBr3纳晶墨汁、纳米晶薄膜和多晶薄膜的(e) 紫外-可见吸收光谱和(f)光致发光光谱图, NC代表纳米晶

    Fig. 1.  CsPbBr3 nanocrystalline: (a) XRD spectrum, (b) TEM image; (c) SEM image; (d) SEM image of polycrystalline film, the interpolated photos show the fluorescence emission of nanocrystalline ink, nanocrystalline and polycrystalline films under natural light and ultraviolet lamps, respectively; (e) UV-VIS absorption spectra and (f) photoluminescence spectra of CsPbBr3 nanocrystalline ink, nanocrystalline film and polycrystalline film, NC in the figures represents nanocrystalline.

    图 2  CsPbBr3钙钛矿太阳电池的截面图 (a) 纳晶薄膜; (b) 纳晶团聚结晶; (c), (d) 纳晶薄膜经饱和溶液分别处理15 s和30 s所得的多晶薄膜. 钙钛矿薄膜表面形貌 (e) 纳晶薄膜; (f) 纳晶团聚薄膜; (g), (h) 分别对应图(c), (d)多晶薄膜

    Fig. 2.  Cross-sectional SEM images of CsPbBr3 perovskite solar cells: (a) Nanocrystalline; (b) nanocrystalline agglomerative crystals; (c), (d) polycrystalline films obtained by treating nanocrystalline films with saturated solution for 15 s and 30 s, respectively. Morphology of perovskite films: (e) Nanocrystalline film; (f) nanocrystalline agglomerative film; (g), (h) corresponding to panels (c), (d) polycrystalline films, respectively.

    图 3  CsPbBr3钙钛矿太阳能电池的(a) J-V和(b) EQE曲线, 图中NC film表示纳晶薄膜器件, 15 s PC film和30 s PC film分别代表纳晶薄膜经饱和溶液分别处理15 s和30 s所得的多晶薄膜器件

    Fig. 3.  (a) J-V curves and (b) EQE curve of CsPbBr3 perovskite solar cells, where NC represents nanocrystalline film, 15 s PC film and 30 s PC film represent devices of polycrystalline film obtained by nanocrystalline film treated with saturated solution for 15 s and 30 s, respectively.

    图 4  (a) CsPbBr3纳晶及经饱和溶液处理15 s和30 s所得多晶薄膜的XRD谱; (b) 薄膜正面照射所得PL光谱(激光激发波长为375 nm); (c) 时间分辨荧光光谱图; (d) 单电子器件的暗态I-V曲线 (内插图单电子器件的结构)

    Fig. 4.  (a) XRD patterns of CsPbBr3 nanocrystalline and polycrystalline films obtained by treating it with saturated solution for 15 s and 30 s; (b) PL spectrum obtained by positive irradiation of the films (laser excitation wavelength is 375 nm); (c) time-resolved fluorescence spectrum; (d) dark state I-V curves of single electron device (internal illustration of the structure of single electron device).

    表 1  3种薄膜所制备太阳能电池光伏性能及电学参数

    Table 1.  Photovoltaic properties and electrical parameters of solar cells prepared by three thin films.

    DeviceVOC/VJSC/
    (mA·cm–2)
    FF/%PCE/%Rs
    NC film最大值1.495.6264.15.36261.4
    平均值1.465.6163.85.23
    15 s PC film最大值1.476.3474.26.9271.7
    平均值1.466.3473.56.80
    30 s PC film最大值1.556.9678.18.4365.9
    平均值1.546.9477.98.35
    下载: 导出CSV

    表 2  3种薄膜薄膜的时间分辨荧光的拟合参数

    Table 2.  Fitting parameters of time-resolved photoluminescence of three thin films.

    器件类型平均寿命
    τave /ns
    寿命
    τ1 /ns
    权重
    A1
    寿命
    τ2/ ns
    权重
    A2
    FTO/TiO2/NC film14.6019.712619459.73556783
    FTO/TiO2/15 s PC film4.364.368758934.36875893
    FTO/TiO2/30 s PC film2.132.1331129502.133112950
    下载: 导出CSV
  • [1]

    Bai W H, Xuan T T, Zhao H Y, Dong H R, Xie R J 2023 Adv. Mater. 35 2302283Google Scholar

    [2]

    Zhang J X, Zhang G Z, Su P Y, Huang R, Lin J G, Wang W R, Pan Z X, Rao H S 2023 Angew. Chem. Int. Ed. 62 e202303486Google Scholar

    [3]

    Xu T F, Xiang W C, Yang J J, J. Kubicki D, Tress W G, Chen T, Fang Z M, Liu Y L, Liu S Z 2023 Adv. Mater. 35 2303346

    [4]

    Zhang X S, Wang Q, Jin Z W, Zhang J R, Liu S Z 2017 Nanoscale 9 6278Google Scholar

    [5]

    陈莹, 李富强 2024 太阳能学报 45 123

    Chen Y, Li F Q 2024 Acta Energiae Solaris Sin. 45 123

    [6]

    Wang Y H, Zheng W, Ji H, Shen D P, Zhang Y H, Han Y K, Gao J W, Qiang L, Liu H, Han L, Zhang Y 2021 Adv. Mater. Interfaces 8 2100279Google Scholar

    [7]

    Zhou Q W, Duan J L, Du J, Guo Q Y, Zhang Q Y, Yang X Y, Duan Y Y, Tang Q W 2021 Adv. Sci. 8 2101418

    [8]

    Feng S N, Qin Q L, Han X P, Zhang C F, Wang X Y, Yu T, Xiao M 2022 Adv. Mater. 34 2106278

    [9]

    Zhang X S, Jin Z W, Zhang J R, Bai D L, Bian H, Wang K, Wang Q, Liu S Z 2018 ACS Appl. Mater. Interfaces 10 7145

    [10]

    Lin H, Wei Q, Ng KW, Dong J Y, Li J L, Liu W W, Yan S S, Chen S, Xing G C, Tang X S, Tang Z K, Wang S P 2021 Small 17 2101359Google Scholar

    [11]

    Sun J Y, Zhao X, Si H N, Gao F F, Zhao B, Ouyang T, Li Q, Liao Q L, Zhang Y 2023 Adv. Opt. Mater. 11 2202877Google Scholar

    [12]

    羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬 2023 物理学报 72 168101

    Yang M L, Zou L, Cheng J J, Wang J M, Jiang Y F, Hao H Y, Xing J, Liu H, Fan Z J, Dong J J 2023 Acta Phys. Sin. 72 168101

    [13]

    Xie G X, Li Q L, Lu X C, Li L T 2024 11 3365Google Scholar

    [14]

    Mali S S, Patil J V, Shao J Y, Zhong Y W, Rondiya S R, Dzade N Y, Hong C K 2023 Nat. Energy 8 989Google Scholar

    [15]

    Beal R E, Slotcavage D J, Leijtens T, Bowring A R, Belisle R A, Nguyen W H, Burkhard G F, Hoke E T 2016 J. Phys. Chem. Lett. 7 746Google Scholar

    [16]

    Zhang S J, Guo R, Zeng H P, Zhao Y, Liu X Y, You S, Li M, Luo L, Lira-Cantu M, Li L, Liu F X, Zheng X, Liao G L, Li X 2022 Energy Environ. Sci. 15 244

    [17]

    Li M H, Jiao B X, Peng Y C, Zhou J J, Tan L G, Ren N Y, Ye Y R, Liu Y, Yang Y, Chen Y, Ding L M, Yi C Y 2024 Adv. Mater. 36 2406532Google Scholar

    [18]

    Hailegnaw B, Demchyshyn S, Putz C, Lehner L E, Mayr F, Schiller D, Pruckner R, Cobet M, Ziss D, Krieger T M, Rastelli A, Sariciftci N S, Scharber M C, Kaltenbrunner M 2024 Nat. Energy 9 677Google Scholar

    [19]

    Chin X Y, Turkay D, Steele J A, Tabean S, Eswara S, Mensi M, Fiala P, Wolff C M, Paracchino A, Artuk K, Jacobs D, Guesnay Q, Sahli F, Andreatta G, Boccard M, Jeangros Q, Ballif C 2023 Science 381 59Google Scholar

    [20]

    Liang Z, Zhang Y, Xu H F, Chen W J, Liu B Y, Zhang J Y, Zhang H, Wang Z H, Kang D H, Zeng J R, Gao X Y, Wang Q S, Hu H J, Zhou H M, Cai X B, Tian X Y, Reiss P, Xu B M, Kirchartz T, Xiao Z G, Dai S Y, Park N G, Ye J J, Pan X 2023 Nature 624 557Google Scholar

    [21]

    Doolin A J, Charles R G, De Castro C S P, Garcia Rodriguez R, Vincent Péan E, Rahul P, Dunlop T, Charbonneau C, Watson T, Lloyd Davies M 2021 Green Chem. 23 2471Google Scholar

    [22]

    Zhang X S, Cao Y, Feng J S, Liu S Z 2024 Solar RRL 8 20230087

    [23]

    Shi W B, Zhang X, Chen H S, Matras-Postolek K, Yang P 2022 J. Mater. Chem. C. 10 13117Google Scholar

    [24]

    Ma J J, Qin M C, Li P W, Han L Y, Zhang Y Q, Song Y L 2022 Energy Environ. Sci. 15 413

    [25]

    Jia D L, Chen J X, Mei X Y, Fan W T, Luo S, Yu M, Liu J H, Zhang X L 2021 Energy Environ. Sci. 14 4599

    [26]

    Liu H, Worku M, Mondal A, Blessed Shonde T, Chaaban M, Ben-Akacha A, Lee S J, Gonzalez F, Olasupo O, Lin X S, Raaj Vellore Winfred J S, Xin Y, Lochner E, Ma B W 2023 Adv. Energy Mater. 13 2201605Google Scholar

    [27]

    Zhao C, Li Y K, Ye W G, Shen X F, Wen Z C, Yuan X Y, Cao Y G, Ma C Y 2022 Adv. Opt. Mater. 10 2102200Google Scholar

    [28]

    Christopher B M 2009 Science 324 1276Google Scholar

    [29]

    Liao C H, Chen C H, Bing J M, Bailey C, Lin Y T, Pandit T M, Granados L, Zheng J H, Tang S, Lin B H, Yen H W, McCamey Dane R, Kennedy Brendan J, Chueh C C, Ho-Baillie Anita W Y 2022 Adv. Mater. 34 2104782Google Scholar

    [30]

    Yan N, Cao Y, Jin Z W, Liu Y C, Liu S Z, Fang Z M, Feng J S 2024 Adv. Mater. 36 2403682Google Scholar

    [31]

    王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福 2024 物理学报 73 078401

    Wang H, Zheng D X, Jiang X, Cao Y X, Du M Y, Wang K, Liu S Z, Zhang C F 2024 Acta Phys. Sin. 73 078401

    [32]

    Song J Z, Cui Q Z, Li J H, Xu J Y, Wang Y, Xu L M, Xue J, Dong Y H, Tian T, Sun H D, Zeng H B 2017 Adv. Opt. Mater. 5 1700157Google Scholar

  • [1] 商文丽, 王立坤, 张晓春, 岳鑫, 李一锋, 万政慧, 杨华翼, 李婷, 王辉. 基于埋底界面修饰策略制备正式钙钛矿太阳电池的研究. 物理学报, 2025, 74(2): . doi: 10.7498/aps.74.20241549
    [2] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池. 物理学报, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [3] 程学明, 崔文宇, 祝鲁平, 王霞, 刘宗明, 曹丙强. 具有快响应速度和低暗电流的垂直MSM型CsPbBr3薄膜光电探测器. 物理学报, 2024, 73(20): 208501. doi: 10.7498/aps.73.20241075
    [4] 王斐, 杨振清, 夏雨虹, 刘畅, 林春丹. Ge/Sn合金化对CsPbBr3钙钛矿热载流子弛豫影响的非绝热分子动力学研究. 物理学报, 2024, 73(2): 028801. doi: 10.7498/aps.73.20231061
    [5] 韩晓静, 杨静, 张佳莉, 刘冬雪, 石标, 王鹏阳, 赵颖, 张晓丹. 反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用. 物理学报, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [6] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [7] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [8] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [9] 仲婷婷, 张晨, 哈木, 徐望舒, 唐坤鹏, 徐翔, 孙文天, 郝会颖, 董敬敬, 刘昊, 邢杰. 采用PEABr添加剂获得高效且稳定的碳基CsPbBr3太阳能电池. 物理学报, 2022, 71(2): 028101. doi: 10.7498/aps.71.20211344
    [10] 马书鹏, 林飞宇, 罗媛, 朱刘, 郭学益, 杨英. 多步旋涂过程中CsPbBr3无机钙钛矿成膜机理. 物理学报, 2022, 71(15): 158101. doi: 10.7498/aps.71.20220171
    [11] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算. 物理学报, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [12] 徐婷, 王子帅, 李炫华, 沙威. 基于等效电路模型的钙钛矿太阳电池效率损失机理分析. 物理学报, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [13] 卢辉东, 韩红静, 刘杰. FA1–xCsx PbI3–y Bry钙钛矿材料优化及太阳电池性能计算. 物理学报, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [14] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军. 肖特基钙钛矿太阳电池结构设计与优化. 物理学报, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [15] 陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹. 钙钛矿太阳电池中的缓冲层研究进展. 物理学报, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [16] 潘恒, 陈沛润, 石标, 李玉成, 高清运, 张力, 赵颖, 黄茜, 张晓丹. 钙钛矿电池纳米陷光结构的研究进展. 物理学报, 2020, 69(7): 077101. doi: 10.7498/aps.69.20191660
    [17] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展. 物理学报, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [18] 刘小冰, 郭若彤, 仲雨璇, 赵丽新, 史昊男, 刘丽娟. 强电负性配体诱导CsPbBr3纳米晶蓝光出射. 物理学报, 2020, 69(15): 158102. doi: 10.7498/aps.69.20200261
    [19] 王军霞, 毕卓能, 梁柱荣, 徐雪青. 新型碳材料在钙钛矿太阳电池中的应用研究进展. 物理学报, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [20] 贾琳, 唐大伟, 张兴. 多晶碲化锌薄膜载能子超快动力学实验研究. 物理学报, 2015, 64(8): 087802. doi: 10.7498/aps.64.087802
计量
  • 文章访问数:  518
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-18
  • 修回日期:  2024-09-30
  • 上网日期:  2024-10-16
  • 刊出日期:  2024-11-20

/

返回文章
返回