搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿太阳电池中各功能层的光辐照稳定性研究进展

李燕 贺红 党威武 陈雪莲 孙璨 郑嘉璐

引用本文:
Citation:

钙钛矿太阳电池中各功能层的光辐照稳定性研究进展

李燕, 贺红, 党威武, 陈雪莲, 孙璨, 郑嘉璐

Research progress of light irradiation stability of functional layers in perovskite solar cells

Li Yan, He Hong, Dang Wei-Wu, Chen Xue-Lian, Sun Can, Zheng Jia-Lu
PDF
HTML
导出引用
  • 钙钛矿太阳电池简单的制备工艺、低廉的成本和优异的性能使其有望替代已产业化的硅太阳电池, 革新现有能源供给结构, 然而, 钙钛矿太阳电池的稳定性差制约了其产业化进程, 本文分别介绍了光辐照下, 钙钛矿薄膜内部本征的离子迁移行为和由此产生的磁滞、荧光淬灭/增强和电池失效问题; 以及典型的TiO2/钙钛矿界面的紫外光不稳定、空穴传输层和金属电极不稳定问题. 作为依光器件深刻理解其光辐照稳定性对顺利解决电池各种环境稳定性问题至关重要.
    The low-cost, high-efficiency and easy fabrication of perovskite solar cells make them an ideal candidate for replacing industrialized silicon solar cells, and thus reforming the current energy supply structure. However, the industrialization of perovskite solar cells is now restricted due to its poor stability. In this article, the intrinsic ion migration behavior in the perovskite film under light irradiation is introduced, which is mainly responsible for hysteresis, fluorescence quenching/enhancement and the failure of solar cell. In addition, the typical ultraviolet light instability of TiO2/perovskite interface, and the light instability of hole transport layer and metal electrodes are also discussed subsequently. As a light-dependent device, improving its light radiation stability is essential for making it suitable to various environmental applications.
      通信作者: 李燕, li1988yan@163.com
    • 基金项目: 陕西省自然科学基础研究计划(批准号: 2019JQ-286, 2018JQ-5130)、陕西省教育厅科研计划(批准号: 19JK0660, 20JK0507)、西安交通大学金属材料强度国家重点实验室、西安石油大学《材料科学与工程》省级优势学科(批准号: YS37020203)和西安石油大学研究生创新与实践能力培养计划(批准号: YCS20212115)
      Corresponding author: Li Yan, li1988yan@163.com
    • Funds: Project supported by the Natural Science Foundation Research Project of Shaanxi Province, China (Grant Nos. 2019JQ-286, 2018JQ-5130), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant Nos. 19JK0660, 20JK0507), the State Key Laboratory of Metal Material Strength of Xi'an Jiaotong University, China, the Materials Science and Engineering of Provincial Advantage Disciplines in Xi’an Shiyou University, China (Grant No. YS37020203), and the Postgraduate Innovation and Practical Ability Training Program of Xi'an Shiyou University, China (Grant No. YCS20212115)
    [1]

    万冬云, 黄富强 2011 硅酸盐学报 39 611Google Scholar

    Wan D Y, Huang F Q 2011 J. Chin. Ceram. Soc. 39 611Google Scholar

    [2]

    万福成, 汤富领, 薛红涛, 路文江, 冯煜东, 芮执元 2014 半导体学报 35 024011Google Scholar

    Wan F C, Tang F L, Xue H T, Lu W J, Feng Y D, Rui Z Y 2014 J. Semiconductors 35 024011Google Scholar

    [3]

    任驹, 郑建邦, 赵建林 2007 物理学报 56 2868Google Scholar

    Ren J, Zhen J B, Zhao J L 2007 Acta Phys. Sin. 56 2868Google Scholar

    [4]

    马廷丽 2006 化学进展 18 176Google Scholar

    Ma T L 2006 Prog. Chem. 18 176Google Scholar

    [5]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [6]

    杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 物理学报 64 038404Google Scholar

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404Google Scholar

    [7]

    The National Renewable Energy Laboratory (NREL). https://www.nrel.gov/pv/cell-efficiency.html [2020-9-25]

    [8]

    Business Wire https://financialpost.com/pmn/press-releases-pmn/business-wire-news-releases-pmn/japans-nedo-and-panasonic-achieve-the-worlds-highest-conversion-efficiency-of-16-09-for-largest-area-perovskite-solar-cell-module [2020-8-23]

    [9]

    Yoon S J, Kuno K, Kamat P 2017 ACS Energy Lett. 9 15Google Scholar

    [10]

    Morana M, Wegscheider M, Bonanni A, Kopidakis N, Shaheen S, Scharber M, Zhu Z, Waller D, Gaudiana R, Brabec C 2008 Adv. Funct. Mater. 18 1757Google Scholar

    [11]

    Grancini G, Roldan-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin M K 2017 Nat. Commun. 8 15684Google Scholar

    [12]

    Meng L, You J, Yang Y 2018 Nat. Commun. 9 5265Google Scholar

    [13]

    Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchunangatchaval T, Wheeler S, Durrant J R, Haque S A 2016 Energy Environ. Sci. 9 1655Google Scholar

    [14]

    Lopez-Varo P, Jiménez-Tejada J A, García-Rosell M, Ravishankar S, Garcia-Belmonte G, Bisquert J, Almora O 2018 Adv. Energy Mater. 8 1702772Google Scholar

    [15]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am Chem. Soc. 134 17396Google Scholar

    [16]

    Haruyama J, Sodeyama K, Han L, Tateyama Y 2015 J. Am. Chem. Soc. 137 10048Google Scholar

    [17]

    Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 63903Google Scholar

    [18]

    Yuan Y, Chae J, Shao Y, Wang Q, Xiao Z, Centrone A, Huang J 2015 Adv. Energy Mater. 5 1500615Google Scholar

    [19]

    Yang T Y, Gregori G, Pellet N, Gratzel M, Maier J 2015 Angew. Chem. Int. Ed. Engl. 54 7905Google Scholar

    [20]

    Kim J, Lee S H, Lee J H, Hong K H 2014 J. Phys. Chem. Lett. 5 1312Google Scholar

    [21]

    Mosconi E, Meggiolaro D, Snaith H J, Stranks S D, De Angelis F 2016 Energy Environ. Sci. 9 3180Google Scholar

    [22]

    Wu B, Fu K, Yantara N, Xing G, Sun S, Sum T C, Mathews N 2015 Adv. Energy Mater. 5 1500829Google Scholar

    [23]

    Dong R, Fang Y, Chae J, Dai J, Xiao Z, Dong Q, Yuan Y, Centrone A, Zeng X C, Huang J 2015 Adv. Mater. 27 1912Google Scholar

    [24]

    Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y 2014 Nano Lett. 14 4158Google Scholar

    [25]

    Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J 2015 Nat. Mater. 14 193Google Scholar

    [26]

    Kim H S, Park N G 2014 J. Phys. Chem. Lett. 5 2927Google Scholar

    [27]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar

    [28]

    Dualeh A, Moehl T, Tétreault N, Teuscher J L, Gao P, Nazeeruddin M K, Gratzel M 2013 Acs Nano 8 362Google Scholar

    [29]

    Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A, Shield J, Huang J 2016 Energy Environ. Sci. 9 1752Google Scholar

    [30]

    Ke W, Xiao C, Wang C, Saparov B, Duan H S, Zhao D, Xiao Z, Schulz P, Harvey S P, Liao W, Meng W, Yu Y, Cimaroli A J, Jiang C S, Zhu K, Al-Jassim M, Fang G, Mitzi D B, Yan Y 2016 Adv. Mater. 28 5214Google Scholar

    [31]

    Cao K, Li H, Liu S, Cui J, Shen Y, Wang M 2016 Nanoscale 8 8839Google Scholar

    [32]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I 2015 Nature 517 476Google Scholar

    [33]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [34]

    Jacobs D L, Scarpulla M A, Wang C, Bunes B R, Zang L 2016 J. Phys. Chem. C 120 7893Google Scholar

    [35]

    Leijtens T, Hoke E T, Grancini G, Slotcavage D J, Eperon G E, Ball J M, De Bastiani M, Bowring A R, Martino N, Wojciechowski K, McGehee M D, Snaith H J, Petrozza A 2015 Adv. Energy Mater. 5 15451Google Scholar

    [36]

    Choi J J, Yang X, Norman Z M, Billinge S J, Owen J S 2014 Nano Lett. 14 127Google Scholar

    [37]

    Li Y, Shi J, Yu B, Duan B, Wu J, Li H, Li D, Luo Y, Wu H, Meng Q 2020 Joule 4 472Google Scholar

    [38]

    Xiao J Y, Shi J J, Li D M, Meng Q B 2015 Sci. China Chem. 58 221Google Scholar

    [39]

    Wang H, Whittaker-Brooks L, Fleming G R 2015 J. Phys. Chem. C 119 19590Google Scholar

    [40]

    Frost J M, Walsh A 2016 Acc. Chem. Res. 49 528Google Scholar

    [41]

    Yang B, Dyck O, Poplawsky J, Keum J, Puretzky A, Das S, Ivanov I, Rouleau C, Duscher G, Geohegan D, Xiao K 2015 J. Am. Chem. Soc. 137 9210Google Scholar

    [42]

    Srimath Kandada A R, Petrozza A 2016 Acc. Chem. Res. 49 536Google Scholar

    [43]

    Herz L M 2016 Annu. Rev. Phys. Chem. 67 65Google Scholar

    [44]

    Zhu X Y, Podzorov V 2015 J. Phys. Chem. Lett. 6 4758Google Scholar

    [45]

    Christians J A, Manser J S, Kamat P V 2015 J. Phys. Chem. Lett. 6 2086Google Scholar

    [46]

    Yuan Y, Huang J 2016 Acc. Chem. Res. 49 286Google Scholar

    [47]

    Eames C, Frost J M, Barnes P R, O'Regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497Google Scholar

    [48]

    Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar

    [49]

    DeQuilettes D W, Zhang W, Burlakov V M, Graham D J, Leijtens T, Osherov A, Bulovic V, Snaith H J, Ginger D S, Stranks S D 2016 Nat. Commun. 7 11683Google Scholar

    [50]

    Azpiroz J M, Mosconi E, Bisquert J, De Angelis F 2015 Energy Environ. Sci. 8 2118Google Scholar

    [51]

    Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano. Lett. 14 6281Google Scholar

    [52]

    Galisteo-Lopez J F, Li Y, Miguez H 2016 J. Phys. Chem. Lett. 7 5227Google Scholar

    [53]

    Zhang T, Hu C, Yang S 2019 Small Methods 4 1900552Google Scholar

    [54]

    Birkhold S T, Precht J T, Liu H, Giridharagopal R, Eperon G E, Schmidt-Mende L, Li X, Ginger D S 2018 ACS Energy Lett. 3 1279Google Scholar

    [55]

    Walsh A, Scanlon D O, Chen S, Gong X G, Wei S-H 2015 Angew. Chem. 127 1811Google Scholar

    [56]

    Pockett A, Eperon G E, Sakai N, Snaith H J, Peter L M, Cameron P J 2017 Phys. Chem. Chem. Phys. 19 5959Google Scholar

    [57]

    Domanski K, Roose B, Matsui T, Saliba M, Turren-Cruz S-H, Correa-Baena J-P, Carmona C R, Richardson G, Foster J M, De Angelis F, Ball J M, Petrozza A, Mine N, Nazeeruddin M K, Tress W, Grätzel M, Steiner U, Hagfeldt A, Abate A 2017 Energy Environ. Sci. 10 604Google Scholar

    [58]

    Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Grätzel M 2015 Energy Environ. Sci. 8 995Google Scholar

    [59]

    Unger E L, Hoke E T, Bailie C D, Nguyen W H, Bowring A R, Heumüller T, Christoforo M G, McGehee M D 2014 Energy Environ. Sci. 7 3690Google Scholar

    [60]

    Zhang T, Chen H N, Bai Y, Xiao S, Zhu L, Hu C, Xue Q Z, Yang S H 2016 Nano Energy 26 620Google Scholar

    [61]

    Sanchez R S, Gonzalez-Pedro V, Lee J W, Park N G, Kang Y S, Mora-Sero I, Bisquert J L 2014 J. Phys. Chem. Lett. 13 2357Google Scholar

    [62]

    Jung H J, Kim D, Kim S, Park J, Dravid P, Shin B 2018 Adv. Mater. 30 1802769Google Scholar

    [63]

    Girolamo D, Matteocci F, Kosasih F U, Chistiakova G, Weiwei Zuo G D, Lars Korte C D, Aldo Di Carlo D D, Abate A 2019 Adv. Energy Mater. 9 1901642Google Scholar

    [64]

    Panzer F, Li C, Meier T, Köhler A, Huettner S 2017 Adv. Energy Mater. 7 1700286Google Scholar

    [65]

    Leijtens T, Srimath Kandada A R, Eperon G E, Grancini G, D'Innocenzo V, Ball J M, Stranks S D, Snaith H J, Petrozza A 2015 J. Am. Chem. Soc. 137 15451Google Scholar

    [66]

    Chen S, Wen X, Huang S, Huang F, Cheng Y-B, Green M, Ho-Baillie A 2017 Solar RRL 1 1600001Google Scholar

    [67]

    Xu Z, De Rosia T, Weeks C 2017 J. Phys. Chem. C 9 130Google Scholar

    [68]

    Deng X, Wen X, Lau C F J, Young T, Yun J, Green M A, Huang S, Ho-Baillie A W Y 2016 J. Phys. Chem. C 4 9060Google Scholar

    [69]

    Chen S, Wen X, Sheng R, Huang S, Deng X, Green M A, Ho-Baillie A 2016 ACS Appl. Mater. Inter. 8 5351Google Scholar

    [70]

    Lan D 2019 Prog. Photovoltaics 28 6Google Scholar

    [71]

    Miyano K, Yanagida M, Shirai Y 2020 Adv. Energy Mater. 2 1903097Google Scholar

    [72]

    Di Girolamo D, Phung N, Kosasih F U, Di Giacomo F, Matteocci F, Smith J A, Flatken M A, Köbler H, Turren Cruz S H, Mattoni A, Cinà L, Rech B, Latini A, Divitini G, Ducati C, Di Carlo A, Dini D, Abate A 2020 Adv. Energy Mater. 10 2000310Google Scholar

    [73]

    You J, Yang Y, Hong Z, Song T B, Meng L, Liu Y, Jiang C, Zhou H, Chang W H, Li G, Yang Y 2014 Appl. Phys. Lett 18 183902Google Scholar

    [74]

    Ahn N, Kwak K, Jang M S, Yoon H, Lee B Y, Lee J K, Pikhitsa P V, Byun J, Choi M 2016 Nat. Commun. 7 13422Google Scholar

    [75]

    Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam M S, Haque S A 2017 Nat. Commun. 8 15218Google Scholar

    [76]

    Abdelmageed G, Jewell L, Hellier K, Seymour L, Luo B, Bridges F, Zhang J Z, Carter S 2016 Appl. Phys. Lett. 109 233095Google Scholar

    [77]

    Konrad W 2014 ACS Nano 12 8Google Scholar

    [78]

    Jeangros Q, Duchamp M, Werner J, Kruth M, Dunin-Borkowski R E, Niesen B, Ballif C, Hessler-Wyser A 2016 Nano Lett. 16 7013Google Scholar

    [79]

    Liu Z, Zeng D, Gao X, Li P, Zhang Q, Peng X 2019 Sol. Energy Mater. Sol. C 189 103Google Scholar

    [80]

    Li C, Guerrero A, Zhong Y, Graser A, Luna C A M, Kohler J, Bisquert J, Hildner R, Huettner S 2017 Small 13 1701711Google Scholar

    [81]

    Dong Q, Liu F, Wong M K, Tam H W, Djurisic A B, Ng A, Surya C, Chan W K, Ng A M 2016 ChemSusChem 9 2597Google Scholar

    [82]

    Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J 2018 Nat. Energy 3 560Google Scholar

    [83]

    Wu W Q, Wang Q, Fang Y, Shao Y, Tang S, Deng Y, Lu H, Liu Y, Li T, Yang Z, Gruverman A, Huang J 2018 Nat. Commun. 9 1625Google Scholar

    [84]

    Xu J, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, McDowell J J, Kanjanaboos P, Sun J P, Lan X, Quan L N, Kim D H, Hill I G, Maksymovych P, Sargent E H 2015 Nat. Commun. 6 7081Google Scholar

    [85]

    Bi D, Gao P, Scopelliti R, Oveisi E, Luo J, Gratzel M, Hagfeldt A, Nazeeruddin M K 2016 Adv. Mater. 28 2910Google Scholar

    [86]

    Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huang J 2014 Energy Environ. Sci. 7 2359Google Scholar

    [87]

    Yang B, Brown C C, Huang J, Collins L, Sang X, Unocic R R, Jesse S, Kalinin S V, Belianinov A, Jakowski J, Geohegan D B, Sumpter B G, Xiao K, Ovchinnikova O S 2017 Adv. Funct. Mater. 27 1700749Google Scholar

    [88]

    Xing J, Wang Q, Dong Q, Yuan Y, Fang Y, Huang J 2016 Phys. Chem. Chem. Phys. 18 30484Google Scholar

    [89]

    Chen J, Lee D, Park N G 2017 ACS Appl. Mater. Inter. 9 36338Google Scholar

    [90]

    Wang Z, Lin Q, Chmiel F P, Sakai N, Herz L M, Snaith H J 2017 Nat. Energy 2 1700749Google Scholar

    [91]

    Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, De Marco N, Zhao H, Sun P, Huang Y, Yang Y 2018 Nat. Commun. 9 3021Google Scholar

    [92]

    Xiao X, Dai J, Fang Y, Zhao J, Zheng X, Tang S, Rudd P N, Zeng X C, Huang J 2018 ACS Energy Lett. 3 684Google Scholar

    [93]

    Umeyama T, Imahori H, Murugadoss G, Tanaka S, Mizuta G, Kanaya S, Nishino H, Ito S 2015 Japan. J. Appl. Phys. 54 8Google Scholar

    [94]

    Mosconi E, Grancini G, Roldán-Carmona C, Gratia P, Zimmermann I, Nazeeruddin M K, De Angelis F 2016 Chem. Mater. 28 3612Google Scholar

    [95]

    Lee S W, Kim S, Bae S, Cho K, Chung T, Mundt L E, Lee S, Park S, Park H, Schubert M 2016 Sci. Rep. 6 38150Google Scholar

    [96]

    Li Y, Li Y, Shi J, Li H, Zhang H, Wu J, Li D, Luo Y, Wu H, Meng Q J 2018 Appl. Phys. Lett. 112 053904Google Scholar

    [97]

    Farooq A, Hossain, Ihteaz M, Moghadamzadeh, Somayeh, Schwenzer, Jonas A, Abzieher 2018 ACS Appl. Mater. Inter. 10 21985Google Scholar

    [98]

    Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323Google Scholar

    [99]

    Jin J, Li H, Chen C, Zhang B, Bi W, Song Z, Xu L, Dong B, Song H, Dai Q 2018 ACS Appl. Energy Mater. 1 2096Google Scholar

    [100]

    Wang Q, Zhang X, Jin Z, Zhang J, Gao Z, Li Y, Liu S F 2017 ACS Energy Lett. 2 1479Google Scholar

    [101]

    You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y 2016 Nat. Nanotechnol. 11 75Google Scholar

    [102]

    Carnie M J, Charbonneau C, Davies M L, Troughton J, Watson T M, Wojciechowski K, Snaith H, Worsley D A 2013 Chem. Commun. (Camb) 49 7893Google Scholar

    [103]

    Wang C, Guan L, Zhao D, Yu Y, Grice C R, Song Z, Awni R A, Chen J, Wang J, Zhao X, Yan Y 2017 ACS Energy Lett. 2 2118Google Scholar

    [104]

    Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J 2016 Nat. Energy 2 16177Google Scholar

    [105]

    Wang Z, Kamarudin A, Huey C, Yang F, Pandey M, Kapil G, Ma T, Hayase S 2018 ChemSusChem 11 3941Google Scholar

    [106]

    Hu M, Zhang L, She S, Wu J, Zhou X, Li X, Wang D, Miao J, Mi G, Chen H, Tian Y, Xu B, Cheng C 2020 Sol. Rrl. 4 2070014Google Scholar

    [107]

    Sidhik S, Panikar S S, Pérez C R, Luke T L, Carriles R, Carrera S C, De la Rosa E 2018 ACS Sus. Chem. Eng. 6 15391Google Scholar

    [108]

    Shih Y C, Lan Y B, Li C S, Hsieh H C, Wang L, Wu C I, Lin K F 2017 Small 13 36338Google Scholar

    [109]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. C. 118 16651Google Scholar

    [110]

    Zhou Q, Liu X, Luo W, Shen J, Wei D, Wang Y 2018 Mater. Res. Express. 5 3Google Scholar

    [111]

    Zhang L, Rao H, Pan Z, Zhong X 2019 ACS Appl. Mater. Inter. 84 234Google Scholar

    [112]

    Lee Y H, Luo J, Son M K, Gao P, Cho K T, Seo J, Zakeeruddin S M, Tzel M, Nazeeruddin M 2016 Adv. Mater. 28 10124Google Scholar

    [113]

    Abrusci A, Stranks S D, Docampo P, Yip H L, Snaith H J 2013 Nano Lett. 7 3124Google Scholar

    [114]

    Hwang I, Baek M, Yong K J 2015 ACS Appl. Mater. Inter. 50 27863Google Scholar

    [115]

    Cao J, Yin J, Yuan S, Zhao Y, Zheng N 2015 Nanoscale 7 9443Google Scholar

    [116]

    Wang L Y, Dong H, Wang L 2014 Rsc. Adv. 9 10123Google Scholar

    [117]

    Li W, Zhang W, Van Reenen S, Sutton R J, Fan J, Haghighirad A Johnston M B, Wang L, Snaith H J 2016 Energy Environ. Sci. 9 490Google Scholar

    [118]

    Seo J Y, Uchida R, Kim H S, Saygili Y, Luo J, Moore C, Kerrod J, Wagstaff A, Eklund M, Mcintyre R 2018 Adv. Funct. Mater. 28 1705763Google Scholar

    [119]

    Sanchez R S, Mas-Marza E 2016 Sol. Energy Mater. Sol. C. 158 189Google Scholar

    [120]

    Jena A K, Numata Y, Ikegami M, Miyasaka T 2018 J. Mater. Chem. A 6 2219Google Scholar

    [121]

    Matteocci F, Cinà L, Lamanna E, Cacovich S, Divitini G, Midgley P A, Ducati C, Di Carlo A 2016 Nano Energy 30 162Google Scholar

    [122]

    Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J 2014 Nano Lett. 14 5561Google Scholar

    [123]

    Jung M, Kim Y C, Jeon N J, Yang W S, Seo J, Noh J H, Seok S 2016 ChemSusChem 9 2592Google Scholar

    [124]

    Liu J, Pathak S K, Sakai N, Sheng R, Bai S, Wang Z, Snaith H J 2016 Adv. Mater. Inter. 3 1600571Google Scholar

    [125]

    Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Chen W, Han L 2014 Energy Environ. Sci. 7 2963Google Scholar

    [126]

    Li J W, Dong Q S, Li N, Wang L D 2017 Adv. Energy Mater. 14 1602922Google Scholar

    [127]

    Ming W, Yang D, Li T, Zhang L, Du M H 2018 Adv. Sci. 5 1700662Google Scholar

    [128]

    Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Graetzel M J E 2017 Science 358 768Google Scholar

    [129]

    Shao F, Tian Z, Qin P, Bu K, Zhao W, Xu L, Wang D, Huang F 2018 Sci. Rep. 8 7033Google Scholar

    [130]

    Yang Y, Xiao J, Wei H, Zhu L, Li D, Luo Y, Wu H, Meng Q 2014 RSC Adv. 4 52825Google Scholar

    [131]

    Zhang F, Yang X, Cheng M, Wang W, Sun L 2016 Nano Energy 20 108Google Scholar

    [132]

    Liu Z, Zhang M, Xu X, Bu L, Zhang W, Li W, Zhao Z, Wang M, Cheng Y B, He H 2015 Dalton. Trans. 44 3967Google Scholar

  • 图 1  PSCs的(a)正向和(c)反向基本结构; (b)钙钛矿材料的晶体结构; 在(d)短路和(e)开路状态下PSCs内部的能级结构; (f) PSCs不稳定的主要诱因示意图[14]

    Fig. 1.  Basic structure of PSCs in (a) regular and (c) inverted configurations; (b) crystalline structure of perovskite materials; general energy band diagram at (d) short circuit and (e) open circuit; (f) main contributing factors in the degradation processes of PSCs[14].

    图 2  PSCs内部电荷-载流子动力学过程 (a)载流子动力学过程; (b)动力学过程发生的时间尺度[37]

    Fig. 2.  General charge-carrier processes within a PSC: (a) Carrier dynamics processes; (b) corresponding time scale of the cell[37].

    图 3  ABX3钙钛矿晶体结构的变化 (a), (b)标准钙钛矿结构; (c) BX6八面体的扭曲和旋转引起的结构变化; (d)—(f)过大的A位原子对钙钛矿结构的破坏[38]

    Fig. 3.  Structure of the ABX3: (a), (b) Standard perovskite structure; (c) structural changes caused by the twist and rotation of BX6 octahedron; (d)–(f) destruction of perovskite structure by too large A atom[38].

    图 4  固定电压下PSCs内部的能级结构对齐关系 (a)和(b)正向扫描; (c)和(d)反向扫描; 其中(a)和(c)不考虑离子迁移行为, (b)和(d)考虑离子迁移行为[60]

    Fig. 4.  Schematic illustration of the ion migration: (a) and (b) Electronic band structure alignments of the PSCs at a fixed bias under forward scan; (c) and (d) reverse scan; (a) and (c) without, (b) and (d) with consideration of ion migration[60].

    图 5  离子和电子分布示意图(左侧)和相应的能级分布(右侧) (a)黑暗中; (b)光照的瞬间; (c)光辐照一段时间后; 其中, 红色阴影区域为耗尽区域, 阴影等级表示电场强度, 由于光照下产生的内建电场, 图(b)和(c)中耗尽区域宽度逐渐减小, 在图(b)中, 左侧的虚线箭头代表离子迁移到平衡状态之前, 电子和空穴在萎缩的耗尽层区域的重新分布, 与此同时能带的弯曲减少了对外的静电流[70]

    Fig. 5.  Schematics of ionic and electronic carrier distributions (left) and corresponding band diagrams (right) for three situations of interest: (a) Dark equilibrium; (b) immediately after light turns on; (c) after prolonged illumination. Where the red-color shaded region is the depletion region with the shade grading indicating the electric field strength, note that the depletion region width reduces in panel (b) and (c), because of photovoltage bulid-up after illumination; in panel (b), dashed arrows on the left indicate redistribution of electrons and holes upon the shrinkage of the depletion region but before ions move to new equilibriums, while distortion of the band diagram on the right results in a reduction in the net currents[70].

    图 6  光曝后碘的重新分布现象 (a)不同光曝时间下MAPbI3薄膜的瞬态荧光淬灭结果, 其中脉冲激发光源为470 nm, 1.2 kJ/cm2; (b) ToF-SIMS采集的钙钛矿薄膜内碘元素在深度方向的信息, 标尺为10 μm; (c)是对图(b)中蓝线区域碘分布的线扫描结果(右轴), 照明激光的空间轮廓测试结果被显示在左轴[49]

    Fig. 6.  Iodide redistribution after light soaking: (a) A series of time resolved photoluminescence decays from a MAPbI3 film measured over time under illumination before ToF-SIMS measurements, and the sample was photoexcited with pulsed excitation (470 nm, 1.2 kJ/cm2); (b) ToF-SIMS image of the iodide (I) distribution summed through the film depth (the image has been adjusted to show maximum contrast), scale bar, 10 μm; (c) line scan of the blue arrow in panel (b) to show the iodide distribution (right axis), where the measured spatial profile of the illumination laser (blue) is shown on the left axis[49].

    图 7  SKPM在MAPbI3/Au (a)−(c)和MAPbI3/PMMA/SiO2/Au (d)−(f)电极界面的单线扫描结果 (a)和(d)从左侧为两类样品加上+9 V的偏压; (b), (c), (e)和(f)是关掉+9 V正向偏压后接地; (g)是去掉+9 V偏压后MAPbI3/PMMA/SiO2/Au样品中的电荷密度分布; (h)是去掉偏压后, 两类样品中电子和离子的分布示意图[54]

    Fig. 7.  SKPM scan of a single line within the electrode gap of (a)−(c) MAPbI3/Au and (d)−(f) MAPbI3/PMMA/SiO2/Au, measured (a), (d) with a +9 V bias applied to the right electrode and (b), (c), (e), (f) at 0 V bias after turning off the +9 V bias; the black line in (b) displays the SKPM CPD signal prior to biasing; (g) charge density in MAPbI3/PMMA/SiO2/Au after bias; (h) illustration of electronic and ionic charge distribution after electric biasing[54].

    图 8  在Pb/MAPbI3/AgI/Ag电池中(a)电场作用下带电离子的流动方向; (b)电池A, B面的图片; (c) B面的SEM图片; (d)在10 nA直流电下服役1周后A, B两面的XRD; (e) B面Pb元素的EDS[19]

    Fig. 8.  (a) Flow directions of the charged ion species in a Pb/MAPbI3/AgI/Ag cell under electrical bias; (b) images for surfaces A and B; (c) SEM image of surface B on the Pb pellet; (d) XRD patterns of surfaces A and B of the Pb disk after applying a direct current of 10 nA for a week; (e) EDS spectrum for surface B of Pb[19].

    图 9  紫外线照射下TiO2材料的光催化(a)−(d)行为及机理(TiO2材料中存在大量缺陷, 通过吸附和脱附O2分子的过程, 形成深能级缺陷Ti4+, 它通过从卤素负离子中提取电子的方式破坏了钙钛矿结构的电平衡)[98]

    Fig. 9.  Photocatalysis of TiO2 material under UV illumination: (a)−(d) there are abundant defects in TiO2 material. During the absorption and deabsorption of the O2 molecular, the positive charge (Ti4+) is formed, which will extract electrons from halogen negative ions, thus destroying the electrical balance of perovskite structure[98].

    图 10  不同温度下(a) CsBr钝化后的电池和(b)无CsBr钝化的电池的界面电容数值; (c) CsBr钝化后的电池和(d)无CsBr钝化的电池在特定测试频率下的Arrhenius点, 基于此可获得缺陷的活化能[117]

    Fig. 10.  Temperature dependence of capacitance for (a) device with CsBr and (b) control device without CsBr. Arrhenius plot of the characteristic frequencies to extract the defect activation energy for (c) device with CsBr and (d) control device without CsBr[117].

    图 11  在(a) 85 ℃下24 h处理之前和(b)处理之后, 断面内ToF-SIMS测试的元素分布; (c)热处理后不同温度下断面内Ag, I和CN分布[126]

    Fig. 11.  ToF-SIMS elemental depth profiles (a) before and (b) after a thermal treatment at 85 ℃ for 24 h; (c) depth profiles of Ag, I and CN after different temperature of thermal treatment[126].

    表 1  钙钛矿材料的离子活化能

    Table 1.  Ion activation energy of the perovskite material

    材料迁移离子EA/eV文献
    MAPbI3I0.58[47]
    Pb2+2.31
    MA+0.84
    MAPbI3I0.19 ± 0.05[49]
    MAPbI3I0.1[50]
    Pb2+0.8
    MA+0.5
    MAPbI3I0.33[16]
    MA+0.55
    MAPbI3MA+0.36[18]
    MAPbI3$ {\rm{I}}_{\rm{i}}^{0} $0.06[21]
    $ {\rm{I}}_{\rm{i}}^{-} $0.08
    $ {\rm{I}}_{\rm{i}}^{-} $(e/h)0.05
    $ {\rm{V}}_{\rm{I}}^{0} $0.15
    $ {\rm{V}}_{\rm{I}}^{+} $0.09
    $ {\rm{V}}_{\rm{I}}^{+} $(e/h)0.15
    下载: 导出CSV
  • [1]

    万冬云, 黄富强 2011 硅酸盐学报 39 611Google Scholar

    Wan D Y, Huang F Q 2011 J. Chin. Ceram. Soc. 39 611Google Scholar

    [2]

    万福成, 汤富领, 薛红涛, 路文江, 冯煜东, 芮执元 2014 半导体学报 35 024011Google Scholar

    Wan F C, Tang F L, Xue H T, Lu W J, Feng Y D, Rui Z Y 2014 J. Semiconductors 35 024011Google Scholar

    [3]

    任驹, 郑建邦, 赵建林 2007 物理学报 56 2868Google Scholar

    Ren J, Zhen J B, Zhao J L 2007 Acta Phys. Sin. 56 2868Google Scholar

    [4]

    马廷丽 2006 化学进展 18 176Google Scholar

    Ma T L 2006 Prog. Chem. 18 176Google Scholar

    [5]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [6]

    杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 物理学报 64 038404Google Scholar

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404Google Scholar

    [7]

    The National Renewable Energy Laboratory (NREL). https://www.nrel.gov/pv/cell-efficiency.html [2020-9-25]

    [8]

    Business Wire https://financialpost.com/pmn/press-releases-pmn/business-wire-news-releases-pmn/japans-nedo-and-panasonic-achieve-the-worlds-highest-conversion-efficiency-of-16-09-for-largest-area-perovskite-solar-cell-module [2020-8-23]

    [9]

    Yoon S J, Kuno K, Kamat P 2017 ACS Energy Lett. 9 15Google Scholar

    [10]

    Morana M, Wegscheider M, Bonanni A, Kopidakis N, Shaheen S, Scharber M, Zhu Z, Waller D, Gaudiana R, Brabec C 2008 Adv. Funct. Mater. 18 1757Google Scholar

    [11]

    Grancini G, Roldan-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin M K 2017 Nat. Commun. 8 15684Google Scholar

    [12]

    Meng L, You J, Yang Y 2018 Nat. Commun. 9 5265Google Scholar

    [13]

    Bryant D, Aristidou N, Pont S, Sanchez-Molina I, Chotchunangatchaval T, Wheeler S, Durrant J R, Haque S A 2016 Energy Environ. Sci. 9 1655Google Scholar

    [14]

    Lopez-Varo P, Jiménez-Tejada J A, García-Rosell M, Ravishankar S, Garcia-Belmonte G, Bisquert J, Almora O 2018 Adv. Energy Mater. 8 1702772Google Scholar

    [15]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am Chem. Soc. 134 17396Google Scholar

    [16]

    Haruyama J, Sodeyama K, Han L, Tateyama Y 2015 J. Am. Chem. Soc. 137 10048Google Scholar

    [17]

    Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 63903Google Scholar

    [18]

    Yuan Y, Chae J, Shao Y, Wang Q, Xiao Z, Centrone A, Huang J 2015 Adv. Energy Mater. 5 1500615Google Scholar

    [19]

    Yang T Y, Gregori G, Pellet N, Gratzel M, Maier J 2015 Angew. Chem. Int. Ed. Engl. 54 7905Google Scholar

    [20]

    Kim J, Lee S H, Lee J H, Hong K H 2014 J. Phys. Chem. Lett. 5 1312Google Scholar

    [21]

    Mosconi E, Meggiolaro D, Snaith H J, Stranks S D, De Angelis F 2016 Energy Environ. Sci. 9 3180Google Scholar

    [22]

    Wu B, Fu K, Yantara N, Xing G, Sun S, Sum T C, Mathews N 2015 Adv. Energy Mater. 5 1500829Google Scholar

    [23]

    Dong R, Fang Y, Chae J, Dai J, Xiao Z, Dong Q, Yuan Y, Centrone A, Zeng X C, Huang J 2015 Adv. Mater. 27 1912Google Scholar

    [24]

    Chen Q, Zhou H, Song T B, Luo S, Hong Z, Duan H S, Dou L, Liu Y, Yang Y 2014 Nano Lett. 14 4158Google Scholar

    [25]

    Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J 2015 Nat. Mater. 14 193Google Scholar

    [26]

    Kim H S, Park N G 2014 J. Phys. Chem. Lett. 5 2927Google Scholar

    [27]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar

    [28]

    Dualeh A, Moehl T, Tétreault N, Teuscher J L, Gao P, Nazeeruddin M K, Gratzel M 2013 Acs Nano 8 362Google Scholar

    [29]

    Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A, Shield J, Huang J 2016 Energy Environ. Sci. 9 1752Google Scholar

    [30]

    Ke W, Xiao C, Wang C, Saparov B, Duan H S, Zhao D, Xiao Z, Schulz P, Harvey S P, Liao W, Meng W, Yu Y, Cimaroli A J, Jiang C S, Zhu K, Al-Jassim M, Fang G, Mitzi D B, Yan Y 2016 Adv. Mater. 28 5214Google Scholar

    [31]

    Cao K, Li H, Liu S, Cui J, Shen Y, Wang M 2016 Nanoscale 8 8839Google Scholar

    [32]

    Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, Seok S I 2015 Nature 517 476Google Scholar

    [33]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511Google Scholar

    [34]

    Jacobs D L, Scarpulla M A, Wang C, Bunes B R, Zang L 2016 J. Phys. Chem. C 120 7893Google Scholar

    [35]

    Leijtens T, Hoke E T, Grancini G, Slotcavage D J, Eperon G E, Ball J M, De Bastiani M, Bowring A R, Martino N, Wojciechowski K, McGehee M D, Snaith H J, Petrozza A 2015 Adv. Energy Mater. 5 15451Google Scholar

    [36]

    Choi J J, Yang X, Norman Z M, Billinge S J, Owen J S 2014 Nano Lett. 14 127Google Scholar

    [37]

    Li Y, Shi J, Yu B, Duan B, Wu J, Li H, Li D, Luo Y, Wu H, Meng Q 2020 Joule 4 472Google Scholar

    [38]

    Xiao J Y, Shi J J, Li D M, Meng Q B 2015 Sci. China Chem. 58 221Google Scholar

    [39]

    Wang H, Whittaker-Brooks L, Fleming G R 2015 J. Phys. Chem. C 119 19590Google Scholar

    [40]

    Frost J M, Walsh A 2016 Acc. Chem. Res. 49 528Google Scholar

    [41]

    Yang B, Dyck O, Poplawsky J, Keum J, Puretzky A, Das S, Ivanov I, Rouleau C, Duscher G, Geohegan D, Xiao K 2015 J. Am. Chem. Soc. 137 9210Google Scholar

    [42]

    Srimath Kandada A R, Petrozza A 2016 Acc. Chem. Res. 49 536Google Scholar

    [43]

    Herz L M 2016 Annu. Rev. Phys. Chem. 67 65Google Scholar

    [44]

    Zhu X Y, Podzorov V 2015 J. Phys. Chem. Lett. 6 4758Google Scholar

    [45]

    Christians J A, Manser J S, Kamat P V 2015 J. Phys. Chem. Lett. 6 2086Google Scholar

    [46]

    Yuan Y, Huang J 2016 Acc. Chem. Res. 49 286Google Scholar

    [47]

    Eames C, Frost J M, Barnes P R, O'Regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497Google Scholar

    [48]

    Hoke E T, Slotcavage D J, Dohner E R, Bowring A R, Karunadasa H I, McGehee M D 2015 Chem. Sci. 6 613Google Scholar

    [49]

    DeQuilettes D W, Zhang W, Burlakov V M, Graham D J, Leijtens T, Osherov A, Bulovic V, Snaith H J, Ginger D S, Stranks S D 2016 Nat. Commun. 7 11683Google Scholar

    [50]

    Azpiroz J M, Mosconi E, Bisquert J, De Angelis F 2015 Energy Environ. Sci. 8 2118Google Scholar

    [51]

    Buin A, Pietsch P, Xu J, Voznyy O, Ip A H, Comin R, Sargent E H 2014 Nano. Lett. 14 6281Google Scholar

    [52]

    Galisteo-Lopez J F, Li Y, Miguez H 2016 J. Phys. Chem. Lett. 7 5227Google Scholar

    [53]

    Zhang T, Hu C, Yang S 2019 Small Methods 4 1900552Google Scholar

    [54]

    Birkhold S T, Precht J T, Liu H, Giridharagopal R, Eperon G E, Schmidt-Mende L, Li X, Ginger D S 2018 ACS Energy Lett. 3 1279Google Scholar

    [55]

    Walsh A, Scanlon D O, Chen S, Gong X G, Wei S-H 2015 Angew. Chem. 127 1811Google Scholar

    [56]

    Pockett A, Eperon G E, Sakai N, Snaith H J, Peter L M, Cameron P J 2017 Phys. Chem. Chem. Phys. 19 5959Google Scholar

    [57]

    Domanski K, Roose B, Matsui T, Saliba M, Turren-Cruz S-H, Correa-Baena J-P, Carmona C R, Richardson G, Foster J M, De Angelis F, Ball J M, Petrozza A, Mine N, Nazeeruddin M K, Tress W, Grätzel M, Steiner U, Hagfeldt A, Abate A 2017 Energy Environ. Sci. 10 604Google Scholar

    [58]

    Tress W, Marinova N, Moehl T, Zakeeruddin S M, Nazeeruddin M K, Grätzel M 2015 Energy Environ. Sci. 8 995Google Scholar

    [59]

    Unger E L, Hoke E T, Bailie C D, Nguyen W H, Bowring A R, Heumüller T, Christoforo M G, McGehee M D 2014 Energy Environ. Sci. 7 3690Google Scholar

    [60]

    Zhang T, Chen H N, Bai Y, Xiao S, Zhu L, Hu C, Xue Q Z, Yang S H 2016 Nano Energy 26 620Google Scholar

    [61]

    Sanchez R S, Gonzalez-Pedro V, Lee J W, Park N G, Kang Y S, Mora-Sero I, Bisquert J L 2014 J. Phys. Chem. Lett. 13 2357Google Scholar

    [62]

    Jung H J, Kim D, Kim S, Park J, Dravid P, Shin B 2018 Adv. Mater. 30 1802769Google Scholar

    [63]

    Girolamo D, Matteocci F, Kosasih F U, Chistiakova G, Weiwei Zuo G D, Lars Korte C D, Aldo Di Carlo D D, Abate A 2019 Adv. Energy Mater. 9 1901642Google Scholar

    [64]

    Panzer F, Li C, Meier T, Köhler A, Huettner S 2017 Adv. Energy Mater. 7 1700286Google Scholar

    [65]

    Leijtens T, Srimath Kandada A R, Eperon G E, Grancini G, D'Innocenzo V, Ball J M, Stranks S D, Snaith H J, Petrozza A 2015 J. Am. Chem. Soc. 137 15451Google Scholar

    [66]

    Chen S, Wen X, Huang S, Huang F, Cheng Y-B, Green M, Ho-Baillie A 2017 Solar RRL 1 1600001Google Scholar

    [67]

    Xu Z, De Rosia T, Weeks C 2017 J. Phys. Chem. C 9 130Google Scholar

    [68]

    Deng X, Wen X, Lau C F J, Young T, Yun J, Green M A, Huang S, Ho-Baillie A W Y 2016 J. Phys. Chem. C 4 9060Google Scholar

    [69]

    Chen S, Wen X, Sheng R, Huang S, Deng X, Green M A, Ho-Baillie A 2016 ACS Appl. Mater. Inter. 8 5351Google Scholar

    [70]

    Lan D 2019 Prog. Photovoltaics 28 6Google Scholar

    [71]

    Miyano K, Yanagida M, Shirai Y 2020 Adv. Energy Mater. 2 1903097Google Scholar

    [72]

    Di Girolamo D, Phung N, Kosasih F U, Di Giacomo F, Matteocci F, Smith J A, Flatken M A, Köbler H, Turren Cruz S H, Mattoni A, Cinà L, Rech B, Latini A, Divitini G, Ducati C, Di Carlo A, Dini D, Abate A 2020 Adv. Energy Mater. 10 2000310Google Scholar

    [73]

    You J, Yang Y, Hong Z, Song T B, Meng L, Liu Y, Jiang C, Zhou H, Chang W H, Li G, Yang Y 2014 Appl. Phys. Lett 18 183902Google Scholar

    [74]

    Ahn N, Kwak K, Jang M S, Yoon H, Lee B Y, Lee J K, Pikhitsa P V, Byun J, Choi M 2016 Nat. Commun. 7 13422Google Scholar

    [75]

    Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam M S, Haque S A 2017 Nat. Commun. 8 15218Google Scholar

    [76]

    Abdelmageed G, Jewell L, Hellier K, Seymour L, Luo B, Bridges F, Zhang J Z, Carter S 2016 Appl. Phys. Lett. 109 233095Google Scholar

    [77]

    Konrad W 2014 ACS Nano 12 8Google Scholar

    [78]

    Jeangros Q, Duchamp M, Werner J, Kruth M, Dunin-Borkowski R E, Niesen B, Ballif C, Hessler-Wyser A 2016 Nano Lett. 16 7013Google Scholar

    [79]

    Liu Z, Zeng D, Gao X, Li P, Zhang Q, Peng X 2019 Sol. Energy Mater. Sol. C 189 103Google Scholar

    [80]

    Li C, Guerrero A, Zhong Y, Graser A, Luna C A M, Kohler J, Bisquert J, Hildner R, Huettner S 2017 Small 13 1701711Google Scholar

    [81]

    Dong Q, Liu F, Wong M K, Tam H W, Djurisic A B, Ng A, Surya C, Chan W K, Ng A M 2016 ChemSusChem 9 2597Google Scholar

    [82]

    Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J 2018 Nat. Energy 3 560Google Scholar

    [83]

    Wu W Q, Wang Q, Fang Y, Shao Y, Tang S, Deng Y, Lu H, Liu Y, Li T, Yang Z, Gruverman A, Huang J 2018 Nat. Commun. 9 1625Google Scholar

    [84]

    Xu J, Buin A, Ip A H, Li W, Voznyy O, Comin R, Yuan M, Jeon S, Ning Z, McDowell J J, Kanjanaboos P, Sun J P, Lan X, Quan L N, Kim D H, Hill I G, Maksymovych P, Sargent E H 2015 Nat. Commun. 6 7081Google Scholar

    [85]

    Bi D, Gao P, Scopelliti R, Oveisi E, Luo J, Gratzel M, Hagfeldt A, Nazeeruddin M K 2016 Adv. Mater. 28 2910Google Scholar

    [86]

    Wang Q, Shao Y, Dong Q, Xiao Z, Yuan Y, Huang J 2014 Energy Environ. Sci. 7 2359Google Scholar

    [87]

    Yang B, Brown C C, Huang J, Collins L, Sang X, Unocic R R, Jesse S, Kalinin S V, Belianinov A, Jakowski J, Geohegan D B, Sumpter B G, Xiao K, Ovchinnikova O S 2017 Adv. Funct. Mater. 27 1700749Google Scholar

    [88]

    Xing J, Wang Q, Dong Q, Yuan Y, Fang Y, Huang J 2016 Phys. Chem. Chem. Phys. 18 30484Google Scholar

    [89]

    Chen J, Lee D, Park N G 2017 ACS Appl. Mater. Inter. 9 36338Google Scholar

    [90]

    Wang Z, Lin Q, Chmiel F P, Sakai N, Herz L M, Snaith H J 2017 Nat. Energy 2 1700749Google Scholar

    [91]

    Lee J W, Dai Z, Han T H, Choi C, Chang S Y, Lee S J, De Marco N, Zhao H, Sun P, Huang Y, Yang Y 2018 Nat. Commun. 9 3021Google Scholar

    [92]

    Xiao X, Dai J, Fang Y, Zhao J, Zheng X, Tang S, Rudd P N, Zeng X C, Huang J 2018 ACS Energy Lett. 3 684Google Scholar

    [93]

    Umeyama T, Imahori H, Murugadoss G, Tanaka S, Mizuta G, Kanaya S, Nishino H, Ito S 2015 Japan. J. Appl. Phys. 54 8Google Scholar

    [94]

    Mosconi E, Grancini G, Roldán-Carmona C, Gratia P, Zimmermann I, Nazeeruddin M K, De Angelis F 2016 Chem. Mater. 28 3612Google Scholar

    [95]

    Lee S W, Kim S, Bae S, Cho K, Chung T, Mundt L E, Lee S, Park S, Park H, Schubert M 2016 Sci. Rep. 6 38150Google Scholar

    [96]

    Li Y, Li Y, Shi J, Li H, Zhang H, Wu J, Li D, Luo Y, Wu H, Meng Q J 2018 Appl. Phys. Lett. 112 053904Google Scholar

    [97]

    Farooq A, Hossain, Ihteaz M, Moghadamzadeh, Somayeh, Schwenzer, Jonas A, Abzieher 2018 ACS Appl. Mater. Inter. 10 21985Google Scholar

    [98]

    Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323Google Scholar

    [99]

    Jin J, Li H, Chen C, Zhang B, Bi W, Song Z, Xu L, Dong B, Song H, Dai Q 2018 ACS Appl. Energy Mater. 1 2096Google Scholar

    [100]

    Wang Q, Zhang X, Jin Z, Zhang J, Gao Z, Li Y, Liu S F 2017 ACS Energy Lett. 2 1479Google Scholar

    [101]

    You J, Meng L, Song T B, Guo T F, Yang Y M, Chang W H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y 2016 Nat. Nanotechnol. 11 75Google Scholar

    [102]

    Carnie M J, Charbonneau C, Davies M L, Troughton J, Watson T M, Wojciechowski K, Snaith H, Worsley D A 2013 Chem. Commun. (Camb) 49 7893Google Scholar

    [103]

    Wang C, Guan L, Zhao D, Yu Y, Grice C R, Song Z, Awni R A, Chen J, Wang J, Zhao X, Yan Y 2017 ACS Energy Lett. 2 2118Google Scholar

    [104]

    Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J 2016 Nat. Energy 2 16177Google Scholar

    [105]

    Wang Z, Kamarudin A, Huey C, Yang F, Pandey M, Kapil G, Ma T, Hayase S 2018 ChemSusChem 11 3941Google Scholar

    [106]

    Hu M, Zhang L, She S, Wu J, Zhou X, Li X, Wang D, Miao J, Mi G, Chen H, Tian Y, Xu B, Cheng C 2020 Sol. Rrl. 4 2070014Google Scholar

    [107]

    Sidhik S, Panikar S S, Pérez C R, Luke T L, Carriles R, Carrera S C, De la Rosa E 2018 ACS Sus. Chem. Eng. 6 15391Google Scholar

    [108]

    Shih Y C, Lan Y B, Li C S, Hsieh H C, Wang L, Wu C I, Lin K F 2017 Small 13 36338Google Scholar

    [109]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. C. 118 16651Google Scholar

    [110]

    Zhou Q, Liu X, Luo W, Shen J, Wei D, Wang Y 2018 Mater. Res. Express. 5 3Google Scholar

    [111]

    Zhang L, Rao H, Pan Z, Zhong X 2019 ACS Appl. Mater. Inter. 84 234Google Scholar

    [112]

    Lee Y H, Luo J, Son M K, Gao P, Cho K T, Seo J, Zakeeruddin S M, Tzel M, Nazeeruddin M 2016 Adv. Mater. 28 10124Google Scholar

    [113]

    Abrusci A, Stranks S D, Docampo P, Yip H L, Snaith H J 2013 Nano Lett. 7 3124Google Scholar

    [114]

    Hwang I, Baek M, Yong K J 2015 ACS Appl. Mater. Inter. 50 27863Google Scholar

    [115]

    Cao J, Yin J, Yuan S, Zhao Y, Zheng N 2015 Nanoscale 7 9443Google Scholar

    [116]

    Wang L Y, Dong H, Wang L 2014 Rsc. Adv. 9 10123Google Scholar

    [117]

    Li W, Zhang W, Van Reenen S, Sutton R J, Fan J, Haghighirad A Johnston M B, Wang L, Snaith H J 2016 Energy Environ. Sci. 9 490Google Scholar

    [118]

    Seo J Y, Uchida R, Kim H S, Saygili Y, Luo J, Moore C, Kerrod J, Wagstaff A, Eklund M, Mcintyre R 2018 Adv. Funct. Mater. 28 1705763Google Scholar

    [119]

    Sanchez R S, Mas-Marza E 2016 Sol. Energy Mater. Sol. C. 158 189Google Scholar

    [120]

    Jena A K, Numata Y, Ikegami M, Miyasaka T 2018 J. Mater. Chem. A 6 2219Google Scholar

    [121]

    Matteocci F, Cinà L, Lamanna E, Cacovich S, Divitini G, Midgley P A, Ducati C, Di Carlo A 2016 Nano Energy 30 162Google Scholar

    [122]

    Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J 2014 Nano Lett. 14 5561Google Scholar

    [123]

    Jung M, Kim Y C, Jeon N J, Yang W S, Seo J, Noh J H, Seok S 2016 ChemSusChem 9 2592Google Scholar

    [124]

    Liu J, Pathak S K, Sakai N, Sheng R, Bai S, Wang Z, Snaith H J 2016 Adv. Mater. Inter. 3 1600571Google Scholar

    [125]

    Liu J, Wu Y, Qin C, Yang X, Yasuda T, Islam A, Zhang K, Peng W, Chen W, Han L 2014 Energy Environ. Sci. 7 2963Google Scholar

    [126]

    Li J W, Dong Q S, Li N, Wang L D 2017 Adv. Energy Mater. 14 1602922Google Scholar

    [127]

    Ming W, Yang D, Li T, Zhang L, Du M H 2018 Adv. Sci. 5 1700662Google Scholar

    [128]

    Arora N, Dar M I, Hinderhofer A, Pellet N, Schreiber F, Zakeeruddin S M, Graetzel M J E 2017 Science 358 768Google Scholar

    [129]

    Shao F, Tian Z, Qin P, Bu K, Zhao W, Xu L, Wang D, Huang F 2018 Sci. Rep. 8 7033Google Scholar

    [130]

    Yang Y, Xiao J, Wei H, Zhu L, Li D, Luo Y, Wu H, Meng Q 2014 RSC Adv. 4 52825Google Scholar

    [131]

    Zhang F, Yang X, Cheng M, Wang W, Sun L 2016 Nano Energy 20 108Google Scholar

    [132]

    Liu Z, Zhang M, Xu X, Bu L, Zhang W, Li W, Zhao Z, Wang M, Cheng Y B, He H 2015 Dalton. Trans. 44 3967Google Scholar

  • [1] 商文丽, 王立坤, 张晓春, 岳鑫, 李一锋, 万政慧, 杨华翼, 李婷, 王辉. 基于埋底界面修饰策略制备正式钙钛矿太阳电池的研究. 物理学报, 2025, 74(2): . doi: 10.7498/aps.74.20241549
    [2] 李雨凡, 薛文清, 李玉超, 战艳虎, 谢倩, 李艳凯, 查俊伟. 三明治结构柔性储能电介质材料研究进展. 物理学报, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [3] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池. 物理学报, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [4] 张喜生, 晏春愉, 胡李纳, 王景州, 姚陈忠. 低温溶液加工CsPbBr3纳晶薄膜制备钙钛矿太阳电池. 物理学报, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [5] 韩晓静, 杨静, 张佳莉, 刘冬雪, 石标, 王鹏阳, 赵颖, 张晓丹. 反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用. 物理学报, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [6] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [7] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [8] 卢辉东, 韩红静, 刘杰. FA1–xCsx PbI3–y Bry钙钛矿材料优化及太阳电池性能计算. 物理学报, 2021, 70(3): 036301. doi: 10.7498/aps.70.20201387
    [9] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算. 物理学报, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [10] 徐婷, 王子帅, 李炫华, 沙威. 基于等效电路模型的钙钛矿太阳电池效率损失机理分析. 物理学报, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [11] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军. 肖特基钙钛矿太阳电池结构设计与优化. 物理学报, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [12] 潘恒, 陈沛润, 石标, 李玉成, 高清运, 张力, 赵颖, 黄茜, 张晓丹. 钙钛矿电池纳米陷光结构的研究进展. 物理学报, 2020, 69(7): 077101. doi: 10.7498/aps.69.20191660
    [13] 陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹. 钙钛矿太阳电池中的缓冲层研究进展. 物理学报, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [14] 游家学, 王锦程, 王理林, 王志军, 李俊杰, 林鑫. 悬浮液凝固研究进展. 物理学报, 2019, 68(1): 018101. doi: 10.7498/aps.68.20181645
    [15] 吴步军, 林东旭, 李征, 程振平, 李新, 陈科, 时婷婷, 谢伟广, 刘彭义. 钙钛矿薄膜气相制备的晶粒尺寸优化及高效光伏转换. 物理学报, 2019, 68(7): 078801. doi: 10.7498/aps.68.20182221
    [16] 贾宁, 王善朋, 陶绪堂. 中远红外非线性光学晶体研究进展. 物理学报, 2018, 67(24): 244203. doi: 10.7498/aps.67.20181591
    [17] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生. 高效平面异质结有机-无机杂化钙钛矿太阳电池的质量管理. 物理学报, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [18] 王军霞, 毕卓能, 梁柱荣, 徐雪青. 新型碳材料在钙钛矿太阳电池中的应用研究进展. 物理学报, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [19] 王福芝, 谭占鳌, 戴松元, 李永舫. 平面异质结有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [20] 韩 永, 王体健, 饶瑞中, 王英俭. 大气气溶胶物理光学特性研究进展. 物理学报, 2008, 57(11): 7396-7407. doi: 10.7498/aps.57.7396
计量
  • 文章访问数:  14074
  • PDF下载量:  318
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-23
  • 修回日期:  2020-12-11
  • 上网日期:  2021-04-27
  • 刊出日期:  2021-05-05

/

返回文章
返回