搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FA1–xCsx PbI3–y Bry钙钛矿材料优化及太阳电池性能计算

卢辉东 韩红静 刘杰

引用本文:
Citation:

FA1–xCsx PbI3–y Bry钙钛矿材料优化及太阳电池性能计算

卢辉东, 韩红静, 刘杰

Simulation and property calculation for FA1–xCsx PbI3–y Bry: Structures and optoelectronical properties

Lu Hui-Dong, Han Hong-Jing, Liu Jie
PDF
HTML
导出引用
  • 甲脒铅碘钙钛矿(FAPbI3)因其优异的光电性能而成为新兴太阳电池最具潜力的候选材料, 但是稳定性较差成为制约其发展的主要瓶颈. 通过离子掺杂可以有效地改善FAPbI3的稳定性, 如通过共掺杂Cs+和Br形成FA1–xCsxPbI3–yBry钙钛矿材料, 其耐热及耐水稳定性得到显著改善. 本文利用第一性原理计算了FA1–xCsxPbI3–yBry (x = 0.125, y = 0—0.6)体系的几何结构、电子结构和光学性质. 通过分析发现Cs+和Br的掺入使得体系能量降低, FA0.875Cs0.125PbI2.96 Br0.04最稳定. 利用等效光学导纳法模拟计算了平面结构钙钛矿太阳电池的吸收率、载流子收集效率、外量子效率、短路电流密度、开路电压和伏安特性. 对于FA1–xCsxPbI3–yBry钙钛矿太阳电池, 当x = 0.125, y = 0.04, 厚度为0.5—1.0 μm时, 电池的短路电流密度均为24.7 mA·cm–2, 开路电压为1.06 V. 结果表明Cs+和Br的共掺杂在没有降低电池短路电流的同时提高了体系的稳定性, 可为实验上制备高效稳定的钙钛矿太阳电池提供理论参考.
    Formamdinium lead triiodide (FAPbI3) perovskite has developed as a promising candidate in solar cells for its excellent optoelectronic property. However, the poor environmental stability is still a critical hurdle for its further commercial application. Element doping is an effective method of improving the stability of FAPbI3 materials. It has been reported that the FA1–xCsxPbI3–yBry stability for heat and water resistance were greatly improved by Cs cations and Br anions co-doping. In this study, we perform first-principles calculations to systematically investigate the crystal structures, electronic structures, and optical properties of FA1–xCsxPbI3–yBry. We obtain several stable crystal structures of FA1–xCsxPbI3–yBry (x = 0.125, y = 0—0.6) in the cubic phase for different ratios of Cs cations to Br anions. By analyzing the structures of these mixed ion perovskites, it is revealed that the lattice parameters decrease linearly with the increase of concentration of Cs cations and Br anions, which is consistent with previous experimental result. In this work, the formation energy difference (∆E) is calculated and our results show that the mixing of Cs cations and Br anions could increase the thermodynamic stability compared with pure FAPbI3. The FA0.875Cs0.125PbI2.96Br0.04 is found to be the most stable in all composites investigated. Furthermore, the band gap, hole and electron effective mass increase with increasing proportion of Br anions, indicating an effective strategy for extending the absorption range of FAPbI3 perovskites into the ultraviolet of the solar spectrum, thereby affecting the carrier transport mechanism in this material. Density of states (DOS) analysis indicates that the DOS of valence band edge increases with increasing proportion of Br anions and enhancing transitions between the valence and conduction bands. Finally, the absorption rate, carrier collection efficiency, external quantum efficiency, short-circuit current density, open circuit voltage and volt-ampere characteristics for the planar structure perovskite solar cell are analyzed by the equivalent optical admittance method. For the FA1–xCsxPbI3–yBry (x = 0.125, y = 0.04, thickness = 0.5—1.0 μm) solar cell, the short-circuit current density and the open circuit voltage are estimated at about 24.7 mA·cm–2 and 1.06 V. It is demonstrated that the co-doping Cs cations and Br anions can improve the stability of the system without reducing short-circuit current density, which may provide some theoretical guidance in preparing the perovskite solar cells with high efficiency and excellent stability.
      通信作者: 韩红静, 2016990036@qhu.edu.cn
    • 基金项目: 青海省科技计划(批准号: 2019-ZJ-937Q)和上海航天科技创新项目(批准号: SAST2017-139)资助的课题
      Corresponding author: Han Hong-Jing, 2016990036@qhu.edu.cn
    • Funds: Project supported by the Science and Technology Planning Project of Qinghai Province, China (Grant No. 2019-ZJ-937Q) and the Shanghai Aerospace Science and Technology Innovation Fund, China (Grant No. SAST2017-139)
    [1]

    Burschka J, Pellet N, Moon S J, Humphry B R, Gao P, Nazeeruddin M K, Gratzel M 2013 Nature 499 316Google Scholar

    [2]

    Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L, Huang J S 2015 Science 347 967Google Scholar

    [3]

    Wang C H, Zhang C J, Tong S C, Shen J Q, Wang C, Li Y Z, Xiao S, He J, Zhang J, Gao Y L, Yang J L 2017 J. Phys. Chem. C 121 6575Google Scholar

    [4]

    Zhang W H, Xiong J, Jiang L, Wang J Y, Mei T, Wang X B, Gu H S, Daoud W A, Li J H 2017 Appl. Mater. Interfaces 9 38467Google Scholar

    [5]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [6]

    Park N G, Zhu K 2020 Nat. Rev. Mater. 5 333Google Scholar

    [7]

    Green M A, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M, Ho-Baillie A W Y 2019 Prog. Photovolt. Res. Appl. 27 565Google Scholar

    [8]

    Chen H, Ye F, Tang W T, He J J, Yin M S, Wang Y B, Xie F X, Bi E B, Yang X D, Gratzel M, Han L Y 2017 Nature 550 92Google Scholar

    [9]

    Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z G, You J B 2019 Nat. Photonics 13 460Google Scholar

    [10]

    Mellouhi F E, Bentria E T, Rashkeev S N, Kais S, Alharbi F H 2016 Sci. Rep. 6 30305Google Scholar

    [11]

    Lin R X, Xiao K, Qin Z Y, Han Q L, Zhang C F, Wei M Y, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A D, Zhu J, Sargent E H, Tan H R 2019 Nat. Energy 4 864Google Scholar

    [12]

    Lee J W, Dai Z Z, Lee C, Lee H M, Han T H, Marco N D, Lin O, Choi C S, Dunn B S, Koh J, Carlo D D, Ko J H, Maynard H D, Yang Y 2018 J. Am. Chem. Soc. 140 6317Google Scholar

    [13]

    毕富珍, 郑晓, 任志勇 2019 物理化学学报 35 69Google Scholar

    Bi F Z, Zheng X, Reng Z Y 2019 Acta Phys.-Chim. Sin. 35 69Google Scholar

    [14]

    Huang Y, Li L, Liu Z H, Jiao H Y, He Y Q, Wang X G, Zhu R, Wang D, Sun J L, Chen Q, Zhou H P 2017 J. Mater. Chem. A 5 8537Google Scholar

    [15]

    Li L, Liu N, Xu Z Q, Chen Q, Wang X D, Zhou H P 2017 ACS Nano 11 8804Google Scholar

    [16]

    Li N X, Luo Y Q, Chen Z H, Niu X X, Zhang X, Lu J Z, Kumar R S, Jiang J K, Liu H F, Guo X, Lai B, Brocks G, Chen Q, Tao S X, Fenning D P, Zhou H P 2020 Joule 4 1Google Scholar

    [17]

    Yi C Y, Luo J S, Meloni S, Boziki A, Astani N A, Gratzel C, Zakeeruddin S M, Rothlisberger U, Gratzel M 2016 Energy Environ. Sci. 9 656Google Scholar

    [18]

    Wang L G, Zhou H P, Hu J N, Huang B L, Sun M Z, Dong B W, Zheng J G H, Huang Y, Chen Y H, LI L, Xu Z Q, Li N G, Liu Z, Chen Q, Sun L D, Yan C H 2019 Science 363 265Google Scholar

    [19]

    Liu W, Liu N J, Ji S L, Hua H F, Ma Y H, Hu R Y, Zhang J, Chu L, Li X A, Huang W 2020 Nano-Micro Lett. 12 119Google Scholar

    [20]

    Correa-Baena J B, Luo Y Q, Brenner T M, Snaider J, Sun S J, Li X Y, Jensen M A, Hartono N P T, Nienhaus L, Wieghold S, Poindexter J R, Wang S, Meng Y S, Wang T, Lai B, Holt M V, Cai Z H, Bawendi M G, Huang L B, Buonassisi T, Fenning D P 2019 Science 363 627Google Scholar

    [21]

    Charles B, Weller M T, Rieger S, Hatcher L E, Henry P F, Feldmann J, Wolverson D, Wilson C C 2020 Chem. Mater. 32 2282Google Scholar

    [22]

    Nakane A, Tampo H, Tamakoshi M, Fujimoto S, Kim K M, Kim S, Shibata H, Niki S, Fujiwara H 2016 J. Appl. Phys. 120 064505Google Scholar

    [23]

    Dewan R, Vasilev I, Jovanov V, Knipp D 2011 J. Appl. Phys. 110 013101Google Scholar

    [24]

    石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波 2015 物理学报 64 038402Google Scholar

    Shi J J, Wei H Y, Zhu L F, Xu X, Xu Y Z, Lü S T, Wu H J, Luo Y H, Li D M, Bo M Q 2015 Acta Phys. Sin. 64 038402Google Scholar

    [25]

    Kato Y, Fujimoto S, Kozawa M, Fujiwara H 2019 Phys. Rev. Appl. 12 024039Google Scholar

    [26]

    Weller M T, Weber O J, Frost J M, Walsh A 2015 J. Phys. Chem. Lett. 6 3209Google Scholar

    [27]

    Kato M, Fujiseki T, Miyadera T, Sugita T, Fujimoto S, Tamakoshi M, Chikamatsu M, Fujiwara H 2017 J. Appl. Phys. 121 115501Google Scholar

    [28]

    Eperon G E, Stranks S D, Menelaou S, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [29]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [30]

    柴磊, 钟敏 2016 物理学报 65 237902Google Scholar

    Chai L, Zhong M 2016 Acta Phys. Sin. 65 237902Google Scholar

    [31]

    王福芝, 谭占鳌, 戴松元, 李永舫 2015 物理学报 64 038401Google Scholar

    Wang F Z, Tan Z A, Dai S Y, Li Y F 2015 Acta Phys. Sin. 64 038401Google Scholar

    [32]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234Google Scholar

    [33]

    Pham N D, Zhang C M, Tiong V T, Zhang S L, Will G, Bou A, Bisquert J, Shaw P E, Du A J, Wilson G J, Wang H X 2019 Adv. Funct. Mater. 29 1806479Google Scholar

    [34]

    Tavakoli M M, Yadav P, Tavakoli R, Kong J 2018 Adv. Energy Mater. 1800794

    [35]

    Nazarenko O, Yakunin S, Morad V, Cherniukh I, Kovalenko V 2017 NPG Asia Mater. 9 e373Google Scholar

    [36]

    刘娜, 危阳, 马新国, 祝林, 徐国旺, 楚亮, 黄楚云 2017 物理学报 66 057103Google Scholar

    Liu N, Wei Y, Ma X G, Xu G W, Chu L, Huang C Y 2017 Acta Phys. Sin. 66 057103Google Scholar

    [37]

    蒋泵, 陈思良, 崔晓磊, 胡紫婷, 李跃, 张笑铮, 吴康敬, 王文贞, 蒋最敏, 洪峰, 马忠权, 赵磊, 徐飞, 徐闰, 詹义强 2019 物理学报 68 246801Google Scholar

    Jiang B, Chen S L, Cui X L, Hu Z T, Li Y, Zhang X Z, Wu K J, Wang W Z, Jiang Z M, Hong F, Ma Z Q, Zhao L, Xu F, Xu R, Zhan Y Q 2019 Acta Phys. Sin. 68 246801Google Scholar

  • 图 1  (a) α-FAPbI3的赝立方2 × 2 × 2超胞; (b) 正交晶格的第一布里渊区中各对称点和对称轴的记号示意图; (c) 利用图(b)中k空间路径得到α-FAPbI3的2 × 2 × 2超胞的能带图和态密度; (d) 钙钛矿太阳电池结构示意图

    Fig. 1.  (a) Pseudocubic crystal structures of α-FAPbI3 with 2 × 2 × 2 supercell; (b) the first Brillouin zone for the orthorhombic lattice of α-FAPbI3 and the k-path (red line) used to plot the band structure in the present paper; (c) band structure and DOS of α-FAPbI3 calculated using 2 × 2 × 2 supercell; (d) schematic diagram of perovskite solar cell structure.

    图 2  Cs+和Br不同掺杂比例前后能量的变化∆E和2 × 2 × 2超胞体积.

    Fig. 2.  Calculated total energy change ∆E and 2 × 2 × 2 supercell volume for different doping ratio of Cs and Br.

    图 3  禁带宽度、电子和空穴有效质量

    Fig. 3.  Band gap and effective masses of electron and hole versus different Bromine content.

    图 4  FA1–xCsxPbI3–yBry的能带结构、总态密度和分态密度 (a), (d) FA0.875Cs0.125PbI3; (b), (e) FAPbI2.96Br0.04; (c), (f) FA0.875Cs0.125PbI2.96Br0.04

    Fig. 4.  Band structure, total and partial density of states of α perovskite phase: (a), (d) FA0.875Cs0.125PbI3; (b), (e) FAPbI2.96Br0.04; (c), (f) FA0.875Cs0.125PbI2.96Br0.04.

    图 5  FA1–xCsxPbI3–yBry的光吸收谱

    Fig. 5.  Absorption spectra of FA1–xCsxPbI3–yBry.

    图 6  FAPbI3钙钛矿太阳电池的光电性能参数 (a) 吸收系数和AM1.5 G光谱; (b) 不同厚度的FAPbI3的吸收率; (c) 由FAPbI3的吸收系数α(ω)计算不同载流子收集长度(ΔZ)下载流子的收集效率H(λ); (d) 外量子效率; (e) 积分电流密度; (f) J-V特性

    Fig. 6.  Photovoltaic performance parameters of FAPbI3 perovskite solar cell: (a) Absorption coefficient and AM1.5 G illumination; (b) absorptance spectra of the FAPbI3 layer; (c) carrier collection efficiency H(λ) calculated from the α(ω) of the FAPbI3 using different values of carrier collection length (ΔZ); (d) external quantum efficiency spectrum; (e) integrated current density; (f) J-V curves

    图 7  短路电流密度随FA1–xCsxPbI3–yBry厚度的变化

    Fig. 7.  Variation of the short circuit current density with the perovskite film thickness.

    表 1  FA1–xCsxPbI3–yBry太阳电池的电学参数

    Table 1.  Photovoltaic parameters of the pure FA and the dopes Cs and Br perovskite solar cells.

    CompositionJsc/(mA·cm–2)Voc/VFF/%η/%
    FAPbI3 (experiment)24.71.0677.520.3
    FAPbI325.21.0681.221.7
    FA0.875Cs0.125PbI323.61.0682.220.6
    FAPbI2.96Br0.0425.31.0678.821.1
    FA0.875Cs0.125PbI2.96Br0.0424.71.0682.421.6
    下载: 导出CSV
  • [1]

    Burschka J, Pellet N, Moon S J, Humphry B R, Gao P, Nazeeruddin M K, Gratzel M 2013 Nature 499 316Google Scholar

    [2]

    Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L, Huang J S 2015 Science 347 967Google Scholar

    [3]

    Wang C H, Zhang C J, Tong S C, Shen J Q, Wang C, Li Y Z, Xiao S, He J, Zhang J, Gao Y L, Yang J L 2017 J. Phys. Chem. C 121 6575Google Scholar

    [4]

    Zhang W H, Xiong J, Jiang L, Wang J Y, Mei T, Wang X B, Gu H S, Daoud W A, Li J H 2017 Appl. Mater. Interfaces 9 38467Google Scholar

    [5]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [6]

    Park N G, Zhu K 2020 Nat. Rev. Mater. 5 333Google Scholar

    [7]

    Green M A, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M, Ho-Baillie A W Y 2019 Prog. Photovolt. Res. Appl. 27 565Google Scholar

    [8]

    Chen H, Ye F, Tang W T, He J J, Yin M S, Wang Y B, Xie F X, Bi E B, Yang X D, Gratzel M, Han L Y 2017 Nature 550 92Google Scholar

    [9]

    Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z G, You J B 2019 Nat. Photonics 13 460Google Scholar

    [10]

    Mellouhi F E, Bentria E T, Rashkeev S N, Kais S, Alharbi F H 2016 Sci. Rep. 6 30305Google Scholar

    [11]

    Lin R X, Xiao K, Qin Z Y, Han Q L, Zhang C F, Wei M Y, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A D, Zhu J, Sargent E H, Tan H R 2019 Nat. Energy 4 864Google Scholar

    [12]

    Lee J W, Dai Z Z, Lee C, Lee H M, Han T H, Marco N D, Lin O, Choi C S, Dunn B S, Koh J, Carlo D D, Ko J H, Maynard H D, Yang Y 2018 J. Am. Chem. Soc. 140 6317Google Scholar

    [13]

    毕富珍, 郑晓, 任志勇 2019 物理化学学报 35 69Google Scholar

    Bi F Z, Zheng X, Reng Z Y 2019 Acta Phys.-Chim. Sin. 35 69Google Scholar

    [14]

    Huang Y, Li L, Liu Z H, Jiao H Y, He Y Q, Wang X G, Zhu R, Wang D, Sun J L, Chen Q, Zhou H P 2017 J. Mater. Chem. A 5 8537Google Scholar

    [15]

    Li L, Liu N, Xu Z Q, Chen Q, Wang X D, Zhou H P 2017 ACS Nano 11 8804Google Scholar

    [16]

    Li N X, Luo Y Q, Chen Z H, Niu X X, Zhang X, Lu J Z, Kumar R S, Jiang J K, Liu H F, Guo X, Lai B, Brocks G, Chen Q, Tao S X, Fenning D P, Zhou H P 2020 Joule 4 1Google Scholar

    [17]

    Yi C Y, Luo J S, Meloni S, Boziki A, Astani N A, Gratzel C, Zakeeruddin S M, Rothlisberger U, Gratzel M 2016 Energy Environ. Sci. 9 656Google Scholar

    [18]

    Wang L G, Zhou H P, Hu J N, Huang B L, Sun M Z, Dong B W, Zheng J G H, Huang Y, Chen Y H, LI L, Xu Z Q, Li N G, Liu Z, Chen Q, Sun L D, Yan C H 2019 Science 363 265Google Scholar

    [19]

    Liu W, Liu N J, Ji S L, Hua H F, Ma Y H, Hu R Y, Zhang J, Chu L, Li X A, Huang W 2020 Nano-Micro Lett. 12 119Google Scholar

    [20]

    Correa-Baena J B, Luo Y Q, Brenner T M, Snaider J, Sun S J, Li X Y, Jensen M A, Hartono N P T, Nienhaus L, Wieghold S, Poindexter J R, Wang S, Meng Y S, Wang T, Lai B, Holt M V, Cai Z H, Bawendi M G, Huang L B, Buonassisi T, Fenning D P 2019 Science 363 627Google Scholar

    [21]

    Charles B, Weller M T, Rieger S, Hatcher L E, Henry P F, Feldmann J, Wolverson D, Wilson C C 2020 Chem. Mater. 32 2282Google Scholar

    [22]

    Nakane A, Tampo H, Tamakoshi M, Fujimoto S, Kim K M, Kim S, Shibata H, Niki S, Fujiwara H 2016 J. Appl. Phys. 120 064505Google Scholar

    [23]

    Dewan R, Vasilev I, Jovanov V, Knipp D 2011 J. Appl. Phys. 110 013101Google Scholar

    [24]

    石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波 2015 物理学报 64 038402Google Scholar

    Shi J J, Wei H Y, Zhu L F, Xu X, Xu Y Z, Lü S T, Wu H J, Luo Y H, Li D M, Bo M Q 2015 Acta Phys. Sin. 64 038402Google Scholar

    [25]

    Kato Y, Fujimoto S, Kozawa M, Fujiwara H 2019 Phys. Rev. Appl. 12 024039Google Scholar

    [26]

    Weller M T, Weber O J, Frost J M, Walsh A 2015 J. Phys. Chem. Lett. 6 3209Google Scholar

    [27]

    Kato M, Fujiseki T, Miyadera T, Sugita T, Fujimoto S, Tamakoshi M, Chikamatsu M, Fujiwara H 2017 J. Appl. Phys. 121 115501Google Scholar

    [28]

    Eperon G E, Stranks S D, Menelaou S, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar

    [29]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [30]

    柴磊, 钟敏 2016 物理学报 65 237902Google Scholar

    Chai L, Zhong M 2016 Acta Phys. Sin. 65 237902Google Scholar

    [31]

    王福芝, 谭占鳌, 戴松元, 李永舫 2015 物理学报 64 038401Google Scholar

    Wang F Z, Tan Z A, Dai S Y, Li Y F 2015 Acta Phys. Sin. 64 038401Google Scholar

    [32]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234Google Scholar

    [33]

    Pham N D, Zhang C M, Tiong V T, Zhang S L, Will G, Bou A, Bisquert J, Shaw P E, Du A J, Wilson G J, Wang H X 2019 Adv. Funct. Mater. 29 1806479Google Scholar

    [34]

    Tavakoli M M, Yadav P, Tavakoli R, Kong J 2018 Adv. Energy Mater. 1800794

    [35]

    Nazarenko O, Yakunin S, Morad V, Cherniukh I, Kovalenko V 2017 NPG Asia Mater. 9 e373Google Scholar

    [36]

    刘娜, 危阳, 马新国, 祝林, 徐国旺, 楚亮, 黄楚云 2017 物理学报 66 057103Google Scholar

    Liu N, Wei Y, Ma X G, Xu G W, Chu L, Huang C Y 2017 Acta Phys. Sin. 66 057103Google Scholar

    [37]

    蒋泵, 陈思良, 崔晓磊, 胡紫婷, 李跃, 张笑铮, 吴康敬, 王文贞, 蒋最敏, 洪峰, 马忠权, 赵磊, 徐飞, 徐闰, 詹义强 2019 物理学报 68 246801Google Scholar

    Jiang B, Chen S L, Cui X L, Hu Z T, Li Y, Zhang X Z, Wu K J, Wang W Z, Jiang Z M, Hong F, Ma Z Q, Zhao L, Xu F, Xu R, Zhan Y Q 2019 Acta Phys. Sin. 68 246801Google Scholar

  • [1] 张英楠, 张敏, 张派, 胡文博. 基于第一性原理GGA+U方法研究Si掺杂β-Ga2O3电子结构和光电性质. 物理学报, 2024, 73(1): 017102. doi: 10.7498/aps.73.20231147
    [2] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [3] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [4] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算. 物理学报, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [5] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军. 肖特基钙钛矿太阳电池结构设计与优化. 物理学报, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [6] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [7] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算. 物理学报, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [8] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [9] 程超群, 李刚, 张文栋, 李朋伟, 胡杰, 桑胜波, 邓霄. B, P掺杂β-Si3N4的电子结构和光学性质研究. 物理学报, 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [10] 石彦立, 韩伟, 卢铁城, 陈军. 含羟基结构熔石英光电性质的第一性原理研究. 物理学报, 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [11] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [12] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [13] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算. 物理学报, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [14] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [15] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [16] 余本海, 刘墨林, 陈东. 第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质. 物理学报, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [17] 苏锐, 何捷, 陈家胜, 郭英杰. 金红石相VO2电子结构与光电性质的第一性原理研究. 物理学报, 2011, 60(10): 107101. doi: 10.7498/aps.60.107101
    [18] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算. 物理学报, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [19] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [20] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
计量
  • 文章访问数:  8451
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 修回日期:  2020-09-24
  • 上网日期:  2021-01-26
  • 刊出日期:  2021-02-05

/

返回文章
返回