-
反钙钛矿Li3OCl作为极具潜力的新一代固态电解质候选材料,凭借其优异的离子传导性能与宽电化学窗口,近年来成为材料领域的研究热点。然而,其光电性能的应变调控机制仍未得到充分阐释。本研究运用第一性原理计算方法,系统地探究双轴应变和单轴应变分别对Li3OCl材料电子结构及光学性质的调控规律。研究发现,相较于本征态,施加2%双轴拉伸应变时,材料导带底能量显著降低,间接带隙从6.26 eV减小至6.02 eV,光吸收边发生红移;而2%双轴压缩应变作用下,带隙增大至6.38 eV,且间接带隙转变为直接带隙,光吸收边出现蓝移现象。通过态密度分析进一步表明,应变会引发Li-p与O-p/Cl-p轨道杂化程度增强,显著优化了光激发载流子的跃迁路径。此外,拉伸应变致使介电函数虚部峰值红移,消光系数起始阈值降至6.02 eV,有效拓宽了材料的光响应范围;压缩应变则导致光学响应蓝移,并增强了材料在特定能量区间的光吸收强度。本研究揭示了应变调控晶格常数与轨道杂化来优化光电性能的微观作用机制,为基于光-力协同策略设计高性能固态电解质提供了重要理论依据。
-
关键词:
- 反钙钛矿,第一性原理计算 /
- 电子结构 /
- 光电性质 /
- 双轴/单轴应变
The lithium-rich anti-perovskite Li3OCl has emerged as an ideal candidate for next-generation lithium-ion batteries (LIBs) due to its excellent ionic conductivity and wide electrochemical stability window. However, achieving ionic conductivity that meets practical application requirements remains challenging. Strain engineering and opto-ionic effects offer new pathways for performance optimization, but there is currently a lack of research on the quantitative regulatory mechanisms by which strain influences the electronic structure and optical properties of Li3OCl (both of which are critical for ionic transport and optoelectronic integration). In this study, first-principles calculations were performed using the HSE06 hybrid functional to systematically investigate the effects of biaxial and uniaxial strains (-2% to +2%) on electronic structure and optical properties of Li3OCl.
The study found that strain-free Li3OCl exhibits an indirect bandgap of 6.263 eV. Biaxial tensile strain caused a significant downward shift in the energy of the conduction band minimum (Γ point), reducing the bandgap to 6.023 eV (+2% strain) and reinforcing the indirect bandgap characteristics. Biaxial compressive strain (-2%) expanded the bandgap to 6.380 eV and triggered an upward shift in the Γ-point energy level, leading to a transition from an indirect to a direct bandgap. Uniaxial strain exhibited similar trends but with a smaller regulatory magnitude compared to biaxial strain. Density of states analysis shows that tensile strain reduced the Li-p state density near the conduction band minimum while enhancing the hybridization of Li-p with O-p/Cl-p orbitals, optimizing carrier transition channels. Compressive strain increased the electron state density near the Fermi level, enhancing the probability of optical transitions. In terms of optical response, tensile strain induced an overall redshift in the dielectric function (ε1(ω) and ε1(ω)), absorption coefficient, and extinction coefficient. Compressive strain caused a systematic blueshift in optical parameters. Despite the expanded bandgap, the optical absorption intensity was significantly enhanced in the ultraviolet region due to the direct bandgap characteristics and increased state density at the band edges.
This study provides new ideas for the application research of Li3OCl in optoelectronic devices and solid-state batteries. By precisely regulating its bandgap and light absorption properties through strain engineering, Li3OCl can be adapted to the light excitation requirements of different wavelengths. For example, in light-controlled solid-state batteries, Li3OCl optimized by tensile strain has a wider light response range (red-shifted to lower energy), which can effectively utilize lower-energy photons (such as near-ultraviolet or the edge of visible light) to excite carriers. On the other hand, Li3OCl optimized by compressive strain has higher light absorption efficiency in specific ultraviolet bands, potentially increasing the concentration of carriers excited by photons in these bands. The strain-optimized Li3OCl can synergistically utilize the light field and stress field to enhance ionic conductivity. In addition, its red-shifted light absorption edge makes it promising as an ultraviolet-visible light conversion layer, expanding the range of light energy utilization. However, in practical applications, further research is needed on the synergistic mechanisms of non-uniform strain, temperature effects, and light-force coupling. Moreover, experimental verification of its interfacial stability and cycle performance is required to promote the practical application of high-performance all-solid-state batteries.-
Keywords:
- anti-perovskite /
- first-principles calculations /
- electronic structure /
- optoelectronic properties
-
[1] Lü X, Wu G, Howard J W, Chen A, Zhao Y, Daemen L L, Jia Q 2014 Chem Commun 50 11520
[2] Luo X, Li Y, Zhao X 2024 ENERGY Environ. Mater. 7 e12627
[3] Wang Q, Liu B, Shen Y, Wu J, Zhao Z, Zhong C, Hu W 2021 Adv. Sci. 8 2101111
[4] Zhu J, Li S, Zhang Y, Howard J W, Lü X, Li Y, Wang Y, Kumar R S, Wang L, Zhao Y 2016 Appl. Phys. Lett. 109 101904
[5] Yu Q P, Liu Q, Wang Z Q, Li B H 2020 Acta Phys. Sin. 69 228805[余启鹏,刘琦,王自强,李宝华2020 物理学报69 228805]
[6] Lu J, Li Y 2021 J. Mater. Sci. Mater. Electron. 32 9736
[7] Wang Y, Chen D, Zhuang Y, Chen W, Long H, Chen H, Xie R 2021 Adv. Opt. Mater. 9 2100624
[8] Zhao Y, Daemen L L 2012 J. Am. Chem. Soc. 134 15042
[9] Abdulchalikova N R, Aliev A E 1995 Synth. Met. 71 1929
[10] Aliev A É, Krivorotov V F, Khabibullaev P K 1997 Phys. Solid State 39 1378
[11] Bachman J C, Muy S, Grimaud A, Chang H H, Pour N, Lux S F, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y 2016 Chem. Rev. 116 140
[12] Tsymbalov E, Shi Z, Dao M, Suresh S, Li J, Shapeev A 2021 Npj Comput. Mater. 7 76
[13] Kahlaoui S, Belhorma B, Labrim H, Boujnah M, Regragui M 2020 Heliyon 6 e03713
[14] Itoh M, Inaguma Y, Jung W, Chen L, Nakamura T 1994 Solid State Ion. 70–71 203
[15] Wei J, Ogawa D, Fukumura T, Hirose Y, Hasegawa T 2015 Cryst. Growth Des. 15 2187
[16] Shen H, Wang Q, Chen Z, Rong C, Chao D 2023 Materials 16 4266
[17] Li F, Li J, Zhu F, Liu T, Xu B, Kim T H, Kramer M J, Ma C, Zhou L, Nan C W 2019 Matter 1 1001
[18] Zuo X, Zhu J, Müller-Buschbaum P, Cheng Y J 2017 Nano Energy 31 113
[19] Tippens J, Miers J C, Afshar A, Lewis J A, Cortes F J Q, Qiao H, Marchese T S, Di Leo C V, Saldana C, McDowell M T 2019 ACS Energy Lett. 4 1475
[20] Defferriere T, Klotz D, Gonzalez-Rosillo J C, Rupp J L M, Tuller H L 2022 Nat. Mater. 21 438
[21] Wu M, Xu B, Lei X, Huang K, Ouyang C 2018 J. Mater. Chem. A 6 1150
[22] Emly A, Kioupakis E, Van Der Ven A 2013 Chem. Mater. 25 4663
[23] Pegolo P, Baroni S, Grasselli F 2022 Npj Comput. Mater. 8 24
[24] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15
[25] Kresse G, Furthmüller J, Hafner J 1994 Phys. Rev. B 50 13181
[26] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[28] Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207
[29] Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106
[30] Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, Ángyán J G 2006 J. Chem. Phys. 124 154709
[31] Qin H, Zuo Y, Jin J, Wang W, Xu Y, Cui L, Dang H 2019 RSC Adv. 9 24483
[32] Li L, Guo X, Lu X, Ren J, La P 2023 Mater. Sci. Semicond. Process. 154 107189
[33] Tignon J, Voisin P, Delalande C, Voos M, Houdré R, Oesterle U, Stanley R P 1995 Phys. Rev. Lett. 74 3967
[34] Silveirinha M G 2011 Phys. Rev. B 83 165119
[35] Ou Y, Hou W, Zhu D, Li C, Zhou P, Song X, Xia Y, Lu Y, Yan S, Zhou H, Cao Q, Zhou H, Liu H, Ma X, Liu Z, Xu H, Liu K 2025 Energy Environ. Sci. 18 1464
[36] Xiao Y, Miara L J, Wang Y, Ceder G 2019 Joule 3 1252
计量
- 文章访问数: 35
- PDF下载量: 2
- 被引次数: 0