搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算

邓娇娇 刘波 顾牡 刘小林 黄世明 倪晨

引用本文:
Citation:

伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算

邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨

First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I)

Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen
PDF
导出引用
  • 基于第一性原理赝势平面波方法对伽马晶体CuCl, CuBr, CuI的体模量、体模量对压强的一阶偏导 数、电子结构、折射率等光学性质进行了计算.计算结果表明,广义梯度近似(GGA)下CuX(X = Cl, Br, I) 晶体的晶格常数与体模量的计算值与实验相差较小.与局域密度近似(LDA)相比, GGA更适合于 CuX(X = Cl, Br, I)晶体 的计算.这三者的价带都来源于Cu的3d态,导带部分主要来自Cu和卤素的s电子贡献,很少部分来自卤素的p电子 贡献.计算得到CuCl, CuBr, CuI的折射率分别为1.887, 2.015, 2.199,与应用Gladstone-Dale半经验关系得到 的结果符合得很好.
    We use first-principles calculation with pseudo-potential and plane wave method to study the bulk meduli, electronic structures and optical properties of copper halides CuX (X = Cl, Br, I). A comparison of the calculation results with the available experimental results show that it is more suitable using the generalized gradient approximation to study these properties than using the local density approximation. The results show that valence bands of CuXX(X = Cl, Br, I) are dominated by the d bands of Cu. Conduction bands are mainly from s bands of Cu and halide atoms, as well as from p bands of halide atoms. The calculated refractive indices of CuX(X = Cl, Br, I) are 1.887, 2.015, and 2.199, respectively. These results are in good agreement with the those calculated from the Gladstone-Dale relationship.
    • 基金项目: 国家自然科学基金(批准号: 11044011, 91022002)、上海市教委科研创新项目(批准号: 11ZZ29)和上海市自然科学基金(批准号: 11ZR1440500)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11044011, 91022002), the Research and Innovation of Educational Committee in Shanghai, China (Grant No. 11ZZ29), and the Natural Science Foundation of Shanghai of China (Grant No. 11ZR1440500).
    [1]

    Ves S, Glotzel D, Cardona M, Overhof H 1981 Phys. Rev. B 24 3073

    [2]

    Gross J G, Lewonczuk S, Khan M A, Rengeissen J 1980 Solid State Commun. 36 907

    [3]

    Lewonczuk S, Ringeissen J 1994 Phys. Rev. B 49 2344

    [4]

    Cardona M 1963 Phys. Rev. 129 69

    [5]

    Derenzo S E, Moses W W 1992 Proceedings of the Crystal 2000 International Workgroup on Heavy Scintillators for Scientific and Industrial Applications Chamonix, France, Sept 22-26, 1992 p125

    [6]

    Amrani B, Benmessabih T, Tahiri M, Chiboub I, Hiadsi S, Hamdache F 2006 Physica B 381 179

    [7]

    Gonze X, Beuken J, Caracas R, Detraux F, Fuchs M, Rignanese G, Sindic L, Verstraete M, Zerah G, Jollet F 2002 Comput. Mater. Sci. 25 478

    [8]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [9]

    Kohn W, Sham L J 1965 Phys. Rev. 140 1133

    [10]

    Zhang Y K, Yang W T 1998 Phys. Rev. Lett. 80 890

    [11]

    Hammer B, Hansen L B, Norskov J K 1999 Phys. Rev. B 59 7413

    [12]

    Fuchs M, Scheffler M 1999 Comput. Phys. Commun. 119 67

    [13]

    Press W H, Flannery B P, Teukolsky S A, Vetterling W T 1986 Numerical Recipes, the Art of Scientific Computing (Cambridge: Cambridge University Press)p308

    [14]

    Hull S, Keen D A 1994 Phys. Rev. B 50 5868

    [15]

    Hanson R C, Hallberg J R, Schwab C 1972 Appl. Phys. Lett. 21 490

    [16]

    Hoffman M, Hull S, Keen D A 1995 Phys. Rev. B 51 12022

    [17]

    Weber M J 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 527 9

    [18]

    Zhang J H, Ding J W, Lu Z H 2009 Acta Phys. Sin. 58 1901 (in Chinese)[张计划, 丁建文, 卢章辉 2009 物理学报 58 1901]

    [19]

    Karazhanov S Z, Ravindran P, Kjekshus A, Fjellvag H, Svensson B G 2007 Phys. Rev. B 75 155104

    [20]

    Mandarino J A 1976 Can. Mineral. 14 498

    [21]

    Mandarino J A 1979 Can. Mineral. 17 71

  • [1]

    Ves S, Glotzel D, Cardona M, Overhof H 1981 Phys. Rev. B 24 3073

    [2]

    Gross J G, Lewonczuk S, Khan M A, Rengeissen J 1980 Solid State Commun. 36 907

    [3]

    Lewonczuk S, Ringeissen J 1994 Phys. Rev. B 49 2344

    [4]

    Cardona M 1963 Phys. Rev. 129 69

    [5]

    Derenzo S E, Moses W W 1992 Proceedings of the Crystal 2000 International Workgroup on Heavy Scintillators for Scientific and Industrial Applications Chamonix, France, Sept 22-26, 1992 p125

    [6]

    Amrani B, Benmessabih T, Tahiri M, Chiboub I, Hiadsi S, Hamdache F 2006 Physica B 381 179

    [7]

    Gonze X, Beuken J, Caracas R, Detraux F, Fuchs M, Rignanese G, Sindic L, Verstraete M, Zerah G, Jollet F 2002 Comput. Mater. Sci. 25 478

    [8]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [9]

    Kohn W, Sham L J 1965 Phys. Rev. 140 1133

    [10]

    Zhang Y K, Yang W T 1998 Phys. Rev. Lett. 80 890

    [11]

    Hammer B, Hansen L B, Norskov J K 1999 Phys. Rev. B 59 7413

    [12]

    Fuchs M, Scheffler M 1999 Comput. Phys. Commun. 119 67

    [13]

    Press W H, Flannery B P, Teukolsky S A, Vetterling W T 1986 Numerical Recipes, the Art of Scientific Computing (Cambridge: Cambridge University Press)p308

    [14]

    Hull S, Keen D A 1994 Phys. Rev. B 50 5868

    [15]

    Hanson R C, Hallberg J R, Schwab C 1972 Appl. Phys. Lett. 21 490

    [16]

    Hoffman M, Hull S, Keen D A 1995 Phys. Rev. B 51 12022

    [17]

    Weber M J 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 527 9

    [18]

    Zhang J H, Ding J W, Lu Z H 2009 Acta Phys. Sin. 58 1901 (in Chinese)[张计划, 丁建文, 卢章辉 2009 物理学报 58 1901]

    [19]

    Karazhanov S Z, Ravindran P, Kjekshus A, Fjellvag H, Svensson B G 2007 Phys. Rev. B 75 155104

    [20]

    Mandarino J A 1976 Can. Mineral. 14 498

    [21]

    Mandarino J A 1979 Can. Mineral. 17 71

计量
  • 文章访问数:  5422
  • PDF下载量:  499
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-17
  • 修回日期:  2011-06-10
  • 刊出日期:  2012-03-15

伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算

  • 1. 同济大学上海市特殊人工微结构材料与技术重点实验室, 同济大学物理系, 上海 200092
    基金项目: 国家自然科学基金(批准号: 11044011, 91022002)、上海市教委科研创新项目(批准号: 11ZZ29)和上海市自然科学基金(批准号: 11ZR1440500)资助的课题.

摘要: 基于第一性原理赝势平面波方法对伽马晶体CuCl, CuBr, CuI的体模量、体模量对压强的一阶偏导 数、电子结构、折射率等光学性质进行了计算.计算结果表明,广义梯度近似(GGA)下CuX(X = Cl, Br, I) 晶体的晶格常数与体模量的计算值与实验相差较小.与局域密度近似(LDA)相比, GGA更适合于 CuX(X = Cl, Br, I)晶体 的计算.这三者的价带都来源于Cu的3d态,导带部分主要来自Cu和卤素的s电子贡献,很少部分来自卤素的p电子 贡献.计算得到CuCl, CuBr, CuI的折射率分别为1.887, 2.015, 2.199,与应用Gladstone-Dale半经验关系得到 的结果符合得很好.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回