搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层缺陷碲烯电子结构与光学性质的第一性原理研究

李发云 杨志雄 程雪 甄丽营 欧阳方平

引用本文:
Citation:

单层缺陷碲烯电子结构与光学性质的第一性原理研究

李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平

First-principles study of electronic structure and optical properties of monolayer defective tellurene

Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping
PDF
HTML
导出引用
  • 碲烯是性质优异的新型二维半导体材料, 研究缺陷碲烯的电子结构有助于理解载流子掺杂、散射等效应, 对其在电子和光电器件中的应用有重要意义. 本文采用基于密度泛函理论的第一性原理计算, 研究了常见点缺陷对单层β相碲烯电子结构和光学性质的影响, 包括单空位、双空位及Stone Wales缺陷. 研究发现, 单层β相碲烯中单空位、双空位和Stone Wales缺陷的形成能在0.83—2.06 eV范围, 低于石墨烯、硅烯、磷烯和砷烯中对应缺陷的形成能, 说明实验上单层β相碲烯中容易形成点缺陷. 点缺陷出现后, 单层β相碲烯带隙宽度少有变化, 禁带中出现依赖于缺陷类型的局域能级, 部分双空位缺陷和Stone Wales缺陷使其由直接带隙变为间接带隙. 同时我们发现, 单层β相碲烯的光吸收性质与缺陷类型密切相关. 部分缺陷能增大其静态介电常数, 使它的复介电函数的实部、虚部及吸收系数在0—3 eV能量范围内出现新的峰, 增强它在低能区的光响应、极化能力及光吸收. 本文研究可为碲烯在电子和光电子器件中的应用提供理论参考.
    Monolayer tellurene is a novel two-dimensional semiconductor with excellent intrinsic properties. It is helpful in understanding doping and scattering mechanism to study the electronic structure of defective tellurene, thus it is important for the application of tellurene in electronic and photo-electronic devices. Using first-principles calculation based on the density functional theory, we investigate the effects of commonly seen point defects on the electronic structure and optical properties of monolayer β-Te. Seven kinds of point defects that may be present in β-Te are designed according to the lattice symmetry, including two single vacancies (SV-1, SV-2), two double vacancies (DV-1, DV-2) and three Stone-Wales (SW) defects (SW-1, SW-2, SW-3). It is found that the defect formation energies of these defects are 0.83–2.06 eV, which are lower than that in graphene, silicene, phosphorene and arsenene, suggesting that they are easy to introduce into monolayer β-Te. The two most stable defects are SV-2 and SW-1 where no dangling bond emerges after optimization. The calculated band structures show that all seven defects have little effect on the band gap width of monolayer β-Te, but they can introduce different numbers of impurity energy levels into the forbidden band. Among them, the SV-1, SV-2, DV-1 and SW-2 each act as deep level impurities which can be recombination centers and scattering centers of carriers, SW-1 acts as a shallow level impurity, DV-2 and SW-3 act as both deep level impurity and shallow level impurity. Besides, SW-1, SW-2 and DV-1 can change the band gap of monolayer β-Te from direct band gap to indirect band gap, which may result in the increase of the lifetime of carriers and decrease of photoluminescence of monolayer β-Te. The optical properties of monolayer β-Te, which are sensitive to the change in band structure, are also affected by the presence of defects. New peaks are found in the complex dielectric function and the absorption coefficient of defective monolayer β-Te in an energy range of 0–3 eV, of which the number and the position are dependent on the type of defect. The SV-1, DV-1, DV-2 and SW-2 can enhance the light response, polarization ability and light absorption in the low energy region of monolayer β-Te. This research can provide useful guidance for the applications of β-Te in the electronic and optoelectronic devices.
      通信作者: 欧阳方平, oyfp@csu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52073308, 11804395)、湖南省杰出青年基金(批准号: 2015JJ1020)和中南大学升华学者计划基金(批准号: 502033019)资助的课题
      Corresponding author: Ouyang Fang-Ping, oyfp@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52073308, 11804395), the Distinguished Young Scholar Foundation of Hunan Province, China (Grant No. 2015JJ1020), and the Central South University Research Fund for Sheng-Hua Scholars, China (Grant No. 502033019)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [3]

    秦志辉 2017 物理学报 66 216802Google Scholar

    Qin Z J 2017 Acta Phys. Sin. 66 216802Google Scholar

    [4]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [5]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [6]

    Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W, Ni Z, Hao Y, Zeng H 2016 Nat. Commun. 7 13352Google Scholar

    [7]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [8]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [9]

    顾品超, 张楷亮, 冯玉林, 王芳, 苗银萍, 韩叶梅, 张韩霞 2016 物理学报 65 018102Google Scholar

    Gu P C, Zhang K L, Feng Y L, Wang F, Miao Y P, Han Y M, Zhang H X 2016 Acta Phys. Sin. 65 018102Google Scholar

    [10]

    Zhu Z, Cai X, Yi S, Chen J, Dai Y, Niu C, Guo Z, Xie M, Liu F, Cho J H, Jia Y, Zhang Z 2017 Phys. Rev. Lett. 119 106101Google Scholar

    [11]

    Apte A, Bianco E, Krishnamoorthy A, Yazdi S, Rao R, Glavin N, Kumazoe H, Varshney V, Roy A, Shimojo F, Ringe E, Kalia R K, Nakano A, Tiwary C S, Vashishta P, Kochat V, Ajayan P M 2018 2D Mater. 6 015013

    [12]

    Wang Y X, Qiu G, Wang R X, et al. 2018 Nat. Electron. 1 228Google Scholar

    [13]

    Wang Q, Safdar M, Xu K, Mirza M, Wang Z, He J 2014 ACS Nano 8 7497Google Scholar

    [14]

    Chen J, Dai Y, Ma Y, Dai X, Ho W, Xie M 2017 Nanoscale 9 15945Google Scholar

    [15]

    Xie Z, Xing C, Huang W, et al. 2018 Adv. Funct. Mater. 28 1705833Google Scholar

    [16]

    He Q, Liu Y, Tan C, Zhai W, Nam G-h, Zhang H 2019 ACS Nano 13 12294Google Scholar

    [17]

    Shi Z, Cao R, Khan K, et al. 2020 Nano-Micro Lett. 12 99Google Scholar

    [18]

    Qiao J, Pan Y, Yang F, Wang C, Chai Y, Ji W 2018 Sci. Bull. 63 159Google Scholar

    [19]

    Xu Y, Shi Z, Shi X, Zhang K, Zhang H 2019 Nanoscale 11 14491Google Scholar

    [20]

    Lim D, Kannan E S, Lee I, Rathi S, Li L, Lee Y, Khan M A, Kang M, Park J, Kim G-H 2016 Nanotechnology 27 225201Google Scholar

    [21]

    Hong S, Im H, Hong Y K, Liu N, Kim S, Park J H 2018 Adv. Electron. Mater. 4 1800308Google Scholar

    [22]

    Lv Y W, Liu Y, Qin W J, Chang S, Jiang C Z, Liu Y Y, Liao L 2019 IEEE T. Electron. Dev. 66 2365Google Scholar

    [23]

    Sharma S, Singh N, Schwingenschlogl U 2018 ACS Appl. Energ. Mater. 1 1950Google Scholar

    [24]

    Stone A J, Wales D J 1986 Chem. Phys. Lett. 128 501Google Scholar

    [25]

    Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A 2008 Nano. Lett. 8 3582Google Scholar

    [26]

    Zhou W, Zou X, Najmaei S, et al. 2013 Nano. Lett. 13 2615Google Scholar

    [27]

    刘南舒, 周思, 赵纪军 2019 物理化学学报 35 1142Google Scholar

    Liu N S, Zhou S, Zhao J J 2019 Acta Phys. -Chim. Sin. 35 1142Google Scholar

    [28]

    杨绍斌, 李思南, 沈丁, 唐树伟, 孙闻, 陈跃辉 2017 物理化学学报 33 520Google Scholar

    Yang S B, Li S N, Shen D, Tang S W, Sun W, Chen Y H 2017 Acta Phys. -Chim. Sin. 33 520Google Scholar

    [29]

    Zheng H L, Yang B S, Wang D D, Han R L, Du X B, Yan Y 2014 Appl. Phys. Lett. 104 132403Google Scholar

    [30]

    Cai Y Q, Zhou H B, Zhang G, Zhang Y W 2016 Chem. Mater. 28 8611Google Scholar

    [31]

    Li A, Pan J, Yang Z, Zhou L, Xiong X, Ouyang F 2018 J. Magn. Magn. Mater. 451 520Google Scholar

    [32]

    Dai X, Yang Z, Li A, Yang J, Ouyang F 2019 Superlattice Microst. 130 528Google Scholar

    [33]

    Wang X H, Wang D W, Yang A J, Koratkar N, Chu J F, Lv P L, Rong M Z 2018 Phys. Chem. Chem. Phys. 20 4058Google Scholar

    [34]

    Gao J, Zhang J, Liu H, Zhang Q, Zhao J 2013 Nanoscale 5 9785Google Scholar

    [35]

    Hu W, Yang J L 2015 J. Phys. Chem. C 119 20474Google Scholar

    [36]

    Liu X X, Liu L Z, Yang L, Wu X L, Chu P K 2016 J.Phys. Chem. C 120 24917Google Scholar

    [37]

    Gao J F, Zhang J F, Liu H S, Zhang Q F, Zhao J J 2013 Nanoscale. 5 9785

    [38]

    Hu W, Yang J 2015 Phys. Chem. C 119 20474

    [39]

    Liu X, Liu L, Yang L, Wu X, Chu P K 2016 J. Phys. Chem. C 120 24917

    [40]

    Soler J M, Artacho E, Gale J D, et al. 2002 J. Phys.-Condens. Mat. 14 2745Google Scholar

    [41]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993Google Scholar

    [42]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [43]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [44]

    Reed M B 2009 Int. J. Comput. Math. 86 606Google Scholar

    [45]

    Ma J, Alfè D, Michaelides A, Wang E 2009 Phys. Rev. B 80 033407

    [46]

    Banhart F, Kotakoski J, Krasheninnikov A V 2011 ACS Nano 5 26Google Scholar

    [47]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [48]

    Toll J S 1956 Phys. Rev. 104 1760Google Scholar

    [49]

    Wang V, Xiao W, Ma D M, Liu R J, Yang C M 2014 J. Appl. Phys. 115 043708Google Scholar

  • 图 1  优化后单层β-Te的俯视图和侧视图 (a) Perfect; (b) SV-1; (c) SV-2; (d) DV-1; (e) DV-2; (f) SW-1; (g) SW-2; (h) SW-3. 红色虚线矩形表示晶格常数为ab的原胞, 黑色矩形表示第一布里渊区, 绿色标记缺陷附近的原子, 红色标记SW缺陷结构中的旋转键

    Fig. 1.  Top and side views of optimized monolayer β-Te: (a) Perfect; (b) SV-1; (c) SV-2; (d) DV-1; (e) DV-2; (f) SW-1; (g) SW-2; (h) SW-3. The red dotted rectangle represents the unit cell with lattice constants a and b, and dark rectangle represents the first Brillouin zone. Green marks the atoms at the vicinity of defects, and red marks the rotating bonds in SW defects.

    图 2  能带和态密度 (a) Perfect; (b) SV-1; (c) SV-2; (d) DV-1; (e) DV-2; (f) SW-1; (g) SW-2; (h) SW-3, 字母“f ”和红色数字分别标记缺陷能级和带隙

    Fig. 2.  Band structure and density of states: (a) Perfect; (b) SV-1; (c) SV-2; (d) DV-1; (e) DV-2; (f) SW-1; (g) SW-2; (h) SW-3. The defect-induced energy levels and band gaps are marked by the label “f ” and red numbers, respectively.

    图 3  缺陷能级中的布洛赫态 (a) SV-1; (b) SV-2; (c) DV-1; (d) DV-2; (e) SW-1; (f) SW-2; (g) SW-3. f1, f2, f3表示图2中对应的能级

    Fig. 3.  The Bloch states in defect-induced levels: (a) SV-1; (b) SV-2; (c) DV-1; (d) DV-2; (e) SW-1; (f) SW-2; (g) SW-3. f1, f2, f3 indicate the corresponding levels in Fig.2.

    图 4  复介电函数实部 (a) Perfect; (b) SV-1; (c) SV-2; (d) DV-1; (e) DV-2; (f) SW-1; (g) SW-2; (h) SW-3, 蓝色和深青色分别表示xy方向, A标记主峰, B标记缺陷峰, 虚线是完整单层的复介电函数实部

    Fig. 4.  The real part of dielectric function: (a) Perfect; (b) SV-1; (c) SV-2; (d) DV-1; (e) DV-2; (f) SW-1; (g) SW-2; (h) SW-3. The blue and dark cyan curves represent x and y directions, respectively. The main peaks are marked by A and the defect-induced peaks are marked by B, and the dotted lines are the real part of dielectric function of perfect monolayer.

    图 5  复介电函数虚部 (a) Perfect; (b) SV-1; (c) SV-2; (d) DV-1; (e) DV-2; (f) SW-1; (g) SW-2; (h) SW-3, 蓝色和深青色分别表示xy方向, A标记主峰, B标记缺陷峰, 虚线是无缺陷的单层β-Te的复介电函数虚部

    Fig. 5.  The imaginary part of dielectric function: (a) Perfect; (b) SV-1; (c) SV-2; (d) SW-1; (e) SW-2; (f) SW-3; (g) DV-1; (h) DV-2. The main peaks are marked by A and the defect-induced peaks are marked by B, and the dotted lines are the imaginary part of dielectric function of perfect monolayer.

    图 6  单层β-Te光学吸收系数 (a) Perfect; (b) SV-1; (c) SV-2; (d) DV-1; (e) DV-2; (f) SW-1; (g) SW-2; (h) SW-3. 蓝色和深青色分别表示xy方向, A标记主峰, B标记缺陷峰, 虚线是完整单层的光学吸收系数

    Fig. 6.  The optical absorption coefficient of monolayer β-Te: (a) Perfect; (b) SV-1; (c) SV-2; (d) DV-1; (e) DV-2; (f) SW-1; (g) SW-2; (h) SW-3. The main peaks are marked by A and the defect-induced peaks are marked by B, and the dotted lines are the optical absorption coefficient of perfect monolayer.

    表 1  点缺陷形成能在单层β-Te与其他二维单质材料中的对比. 能量单位为eV.*

    Table 1.  The comparison of formation energies of various point defects in monolayer β-Te and other two-dimensional monoelemental materials. The unit of energy is eV.*

    单质材料SV-1SV-2SV-3DV-1DV-2DV-3SW-1SW-2SW-3
    单层β-Te(本文)1.370.852.061.590.831.501.53
    石墨烯(本文)8.157.406.117.175.41
    石墨烯(Ref. [45,46])7.30—7.507.20—7.906.40—7.5074.50—5.30
    硅烯(Ref.[34])3.013.773.702.842.09
    磷烯(Ref. [35])1.632.031.91—3.042.08—2.612.131.01—1.32
    砷烯(Ref. [36])2.06—2.382.05—2.322.03—2.281.94—2.401.82—2.521.07—1.29
    *注: 由于晶体结构不同, 各二维晶体中点缺陷的种类以及缺陷周围的原子排列存在差异. 表中的缺陷名称不代表唯一的结构, 具体缺陷结构需参考对应文献.
    下载: 导出CSV

    表 2  静态介电常数和复介电函数实部中缺陷峰的能量

    Table 2.  Static dielectric constant and defect peak energy coordinate of the real part curve.

    perfectSV-1SV-2DV-1DV-2SW-1SW-2SW-3
    静态介电常数x方向2.503.412.712.962.832.622.982.52
    y方向2.753.602.983.273.292.813.622.84
    缺陷峰坐标/eVx方向0.281.020.48, 1.011.210.19, 0.46
    y方向0.281.020.580.38, 0.69, 1.010.19, 0.46
    下载: 导出CSV

    表 3  复介电函数虚部中缺陷峰的能量坐标

    Table 3.  Energies coordinates of defect-induced peaks in the imaginary part of dielectric function.

    SV-1SV-2DV-1DV-2SW-2
    x方向/eV0.09, 0.391.120.060.71, 1.150.22, 0.55
    y方向/eV0.521.120.660.830.22, 0.55
    下载: 导出CSV

    表 4  光学吸收系数中缺陷峰的能量坐标和对应的跃迁

    Table 4.  Energies coordinates of defect-induced peaks in absorption coefficient and corresponding transition between energy levels.



    x方向 y方向
    能量/eV对应跃迁能量/eV对应跃迁
    SV-10.38f1f2 0.63价带顶→f2
    SV-21.12价带顶→ f1、f2
    DV-10.72价带顶→f2
    SW-20.62f1f2, 价带顶→f2
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G 2012 Phys. Rev. Lett. 108 155501Google Scholar

    [3]

    秦志辉 2017 物理学报 66 216802Google Scholar

    Qin Z J 2017 Acta Phys. Sin. 66 216802Google Scholar

    [4]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [5]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [6]

    Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W, Ni Z, Hao Y, Zeng H 2016 Nat. Commun. 7 13352Google Scholar

    [7]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [8]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [9]

    顾品超, 张楷亮, 冯玉林, 王芳, 苗银萍, 韩叶梅, 张韩霞 2016 物理学报 65 018102Google Scholar

    Gu P C, Zhang K L, Feng Y L, Wang F, Miao Y P, Han Y M, Zhang H X 2016 Acta Phys. Sin. 65 018102Google Scholar

    [10]

    Zhu Z, Cai X, Yi S, Chen J, Dai Y, Niu C, Guo Z, Xie M, Liu F, Cho J H, Jia Y, Zhang Z 2017 Phys. Rev. Lett. 119 106101Google Scholar

    [11]

    Apte A, Bianco E, Krishnamoorthy A, Yazdi S, Rao R, Glavin N, Kumazoe H, Varshney V, Roy A, Shimojo F, Ringe E, Kalia R K, Nakano A, Tiwary C S, Vashishta P, Kochat V, Ajayan P M 2018 2D Mater. 6 015013

    [12]

    Wang Y X, Qiu G, Wang R X, et al. 2018 Nat. Electron. 1 228Google Scholar

    [13]

    Wang Q, Safdar M, Xu K, Mirza M, Wang Z, He J 2014 ACS Nano 8 7497Google Scholar

    [14]

    Chen J, Dai Y, Ma Y, Dai X, Ho W, Xie M 2017 Nanoscale 9 15945Google Scholar

    [15]

    Xie Z, Xing C, Huang W, et al. 2018 Adv. Funct. Mater. 28 1705833Google Scholar

    [16]

    He Q, Liu Y, Tan C, Zhai W, Nam G-h, Zhang H 2019 ACS Nano 13 12294Google Scholar

    [17]

    Shi Z, Cao R, Khan K, et al. 2020 Nano-Micro Lett. 12 99Google Scholar

    [18]

    Qiao J, Pan Y, Yang F, Wang C, Chai Y, Ji W 2018 Sci. Bull. 63 159Google Scholar

    [19]

    Xu Y, Shi Z, Shi X, Zhang K, Zhang H 2019 Nanoscale 11 14491Google Scholar

    [20]

    Lim D, Kannan E S, Lee I, Rathi S, Li L, Lee Y, Khan M A, Kang M, Park J, Kim G-H 2016 Nanotechnology 27 225201Google Scholar

    [21]

    Hong S, Im H, Hong Y K, Liu N, Kim S, Park J H 2018 Adv. Electron. Mater. 4 1800308Google Scholar

    [22]

    Lv Y W, Liu Y, Qin W J, Chang S, Jiang C Z, Liu Y Y, Liao L 2019 IEEE T. Electron. Dev. 66 2365Google Scholar

    [23]

    Sharma S, Singh N, Schwingenschlogl U 2018 ACS Appl. Energ. Mater. 1 1950Google Scholar

    [24]

    Stone A J, Wales D J 1986 Chem. Phys. Lett. 128 501Google Scholar

    [25]

    Meyer J C, Kisielowski C, Erni R, Rossell M D, Crommie M F, Zettl A 2008 Nano. Lett. 8 3582Google Scholar

    [26]

    Zhou W, Zou X, Najmaei S, et al. 2013 Nano. Lett. 13 2615Google Scholar

    [27]

    刘南舒, 周思, 赵纪军 2019 物理化学学报 35 1142Google Scholar

    Liu N S, Zhou S, Zhao J J 2019 Acta Phys. -Chim. Sin. 35 1142Google Scholar

    [28]

    杨绍斌, 李思南, 沈丁, 唐树伟, 孙闻, 陈跃辉 2017 物理化学学报 33 520Google Scholar

    Yang S B, Li S N, Shen D, Tang S W, Sun W, Chen Y H 2017 Acta Phys. -Chim. Sin. 33 520Google Scholar

    [29]

    Zheng H L, Yang B S, Wang D D, Han R L, Du X B, Yan Y 2014 Appl. Phys. Lett. 104 132403Google Scholar

    [30]

    Cai Y Q, Zhou H B, Zhang G, Zhang Y W 2016 Chem. Mater. 28 8611Google Scholar

    [31]

    Li A, Pan J, Yang Z, Zhou L, Xiong X, Ouyang F 2018 J. Magn. Magn. Mater. 451 520Google Scholar

    [32]

    Dai X, Yang Z, Li A, Yang J, Ouyang F 2019 Superlattice Microst. 130 528Google Scholar

    [33]

    Wang X H, Wang D W, Yang A J, Koratkar N, Chu J F, Lv P L, Rong M Z 2018 Phys. Chem. Chem. Phys. 20 4058Google Scholar

    [34]

    Gao J, Zhang J, Liu H, Zhang Q, Zhao J 2013 Nanoscale 5 9785Google Scholar

    [35]

    Hu W, Yang J L 2015 J. Phys. Chem. C 119 20474Google Scholar

    [36]

    Liu X X, Liu L Z, Yang L, Wu X L, Chu P K 2016 J.Phys. Chem. C 120 24917Google Scholar

    [37]

    Gao J F, Zhang J F, Liu H S, Zhang Q F, Zhao J J 2013 Nanoscale. 5 9785

    [38]

    Hu W, Yang J 2015 Phys. Chem. C 119 20474

    [39]

    Liu X, Liu L, Yang L, Wu X, Chu P K 2016 J. Phys. Chem. C 120 24917

    [40]

    Soler J M, Artacho E, Gale J D, et al. 2002 J. Phys.-Condens. Mat. 14 2745Google Scholar

    [41]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993Google Scholar

    [42]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [43]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [44]

    Reed M B 2009 Int. J. Comput. Math. 86 606Google Scholar

    [45]

    Ma J, Alfè D, Michaelides A, Wang E 2009 Phys. Rev. B 80 033407

    [46]

    Banhart F, Kotakoski J, Krasheninnikov A V 2011 ACS Nano 5 26Google Scholar

    [47]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [48]

    Toll J S 1956 Phys. Rev. 104 1760Google Scholar

    [49]

    Wang V, Xiao W, Ma D M, Liu R J, Yang C M 2014 J. Appl. Phys. 115 043708Google Scholar

  • [1] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231956
    [2] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [3] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展. 物理学报, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [4] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质. 物理学报, 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [5] 程秋振, 黄引, 李玉辉, 张凯, 冼国裕, 刘鹤元, 车冰玉, 潘禄禄, 韩烨超, 祝轲, 齐琦, 谢耀锋, 潘金波, 陈海龙, 李永峰, 郭辉, 杨海涛, 高鸿钧. 准一维层状半导体Nb4P2S21单晶的面内光学各向异性. 物理学报, 2023, 72(21): 218102. doi: 10.7498/aps.72.20231539
    [6] 刘远峰, 李斌成, 赵斌兴, 刘红. SiC光学材料亚表面缺陷的光热辐射检测. 物理学报, 2023, 72(2): 024208. doi: 10.7498/aps.72.20221303
    [7] 袁永浩, 薛其坤, 李渭. FeSe/SrTiO3高温超导体中的电子条纹相. 物理学报, 2022, 71(12): 127304. doi: 10.7498/aps.71.20220118
    [8] 李靖, 刘运全. 基于相对论自由电子的量子物理. 物理学报, 2022, 71(23): 233302. doi: 10.7498/aps.71.20221289
    [9] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [10] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [11] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [12] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [13] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [14] 张超江, 许洪光, 徐西玲, 郑卫军. ${\bf Ta_4C}_{ n}^{\bf -/0}$ (n = 0—4)团簇的电子结构、成键性质及稳定性. 物理学报, 2021, 70(2): 023601. doi: 10.7498/aps.70.20201351
    [15] 徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究. 物理学报, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
    [16] 吴飞, 黄威, 陈文渊, 肖勇, 郁殿龙, 温激鸿. 基于微孔板与折曲通道的亚波长宽带吸声结构设计. 物理学报, 2020, 69(13): 134303. doi: 10.7498/aps.69.20200368
    [17] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [18] 罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿. 超紧凑型飞秒电子衍射仪的设计. 物理学报, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [19] 翟泽辉, 郝温静, 刘建丽, 段西亚. 用于光学薛定谔猫态制备的滤波设计与滤波腔腔长测量. 物理学报, 2020, 69(18): 184204. doi: 10.7498/aps.69.20200589
    [20] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计. 物理学报, 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
计量
  • 文章访问数:  4680
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-05
  • 修回日期:  2021-03-27
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回