搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe, Co, Ni掺杂GaSb的电子结构和光学性质

潘凤春 林雪玲 曹志杰 李小伏

引用本文:
Citation:

Fe, Co, Ni掺杂GaSb的电子结构和光学性质

潘凤春, 林雪玲, 曹志杰, 李小伏

Electronic structures and optical properties of Fe, Co, and Ni doped GaSb

Pan Feng-Chun, Lin Xue-Ling, Cao Zhi-Jie, Li Xiao-Fu
PDF
HTML
导出引用
  • 运用第一性原理LDA+U方法(考虑了交换关联项的Hubbard U修正的局域密度近似方法)研究了过渡族金属X (X = Fe, Co, Ni)掺杂GaSb的电子结构和光学性质. 研究结果表明: X掺杂均能提升GaSb半导体材料对红外光区光子的吸收幅度, 并能有效提高GaSb材料的光催化性能; 过渡金属X在GaSb材料中主要以X替代Ga缺陷(X@Ga)的形式存在, X的电荷布居和键布居表明, X的掺入容易引起体系的晶格畸变, 由此产生的电偶极矩有利于光生电子-空穴对的分离, 从而提高材料的光催化性能; X掺杂引入的杂质能级位于0点费米能级附近, 因而掺杂体系复介电函数虚部在光子能量为0时就会有响应, 同时掺杂体系的静介电常数也得到了很大的提升; X的掺杂对GaSb体系的光学性能都有很大的改善, 但Ni掺入对改善GaSb材料的光催化特性最有利; 最佳Ni原子的掺杂摩尔浓度为10.94%, 均匀掺杂可以避免光生电子-空穴复合中心的形成, 此时光学吸收范围和吸收峰值都达到最大, 对材料的光催化性能最有利.
    The electronic structures and optical properties of transition metal (TM, TM refers to Fe, Co, and Ni, respectively) doped GaSb are studied by the LDA+U method of the first-principles calculation. The results indicate that these TMs can enhance the absorption amplitudes of GaSb semiconductors in the infrared region, and improve the photocatalytic performances of GaSbs effectively. For the doped systems, TMs tend to substitute for Ga and form TM@Ga defect. The charge layout and bond population of TMs imply that the electric dipole moment induced by lattice distortion separates photoelectrons from holes to some degree, and consequently enhancing the photocatalytic performance. The impurity levels induced by TMs are close to the Fermi level, which illustrates that the imaginary part of complex dielectric function has the capability of response when the energy of photon is zero. Meanwhile, the static dielectric constant of the doped system is also enhanced compared with that of the un-doped system. The doped TMs can improve the optical properties of GaSb systems for three dopants effectively, but the Ni dopant is the best for the photocatalysis properties of GaSb in the three dopants. The further analysis shows that the uniform Ni can hinder the recombination of electron-hole pairs, and the optical absorption range and absorption peak are both biggest when Ni molar concentration is 10.94%, which is favorable for photocatalytic performance. Our results will extend the applications of GaSb to the fields of infrared thermal photovoltaic cells, infrared light detector, and infrared semiconductor laser.
      通信作者: 林雪玲, nxulxl@163.com
    • 基金项目: 国家自然科学基金(批准号: 11764032, 51801107)、宁夏大学自然科学基金(批准号: ZR18008)和西部一流大学重大创新项目(批准号: ZKZD2017006)资助的课题.
      Corresponding author: Lin Xue-Ling, nxulxl@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11764032, 51801107), the Natural Science Foundation of Ningxia University, China (Grant No. ZR18008), and the Important Innovation Projects for Building First-class University in China’s Western Region (Grant No. ZKZD2017006).
    [1]

    Qiu K, Hayden A C S 2006 Energy Convers. Manage 47 365Google Scholar

    [2]

    Bitnar, Bernd 2003 Semicond. Sci. Technol. 18 S221Google Scholar

    [3]

    Ferrari C, Melino F, Bosi M 2013 Sol. Energy Mater. Sol. Cells 113 20Google Scholar

    [4]

    Attolini G, Bosi M, Ferrari C, Melino F 2013 Appl. Energy 103 618Google Scholar

    [5]

    王跃, 刘国军, 李俊承, 安宁, 李占国, 王玉霞, 魏志鹏 2012 中国激光 39 0102010

    Wang Y, Liu G J, Li J C, An N, Li Z G, Wang Y X, Wei Z P 2012 Chin. J. Lasers 39 0102010

    [6]

    Klipstein P C, Livneh Y, Glozman A, Grossman S, Klin O, Snapi N, Weiss E 2014 J. Electron. Mater. 43 2984Google Scholar

    [7]

    del Alamo J A 2011 Nature 479 317Google Scholar

    [8]

    Klipstein P C, Livneh Y, Klin O, Grossman S, Snapi N, Glozman A, Weiss E 2013 Infrared Phys. Technol. 59 53Google Scholar

    [9]

    Baril N, Bandara S, Hoeglund L, Henry N, Brown A, Billman C, Maloney P, Nallon E, Tidrow M, Pellegrino J 2015 Infrared Phys. Technol. 70 58Google Scholar

    [10]

    Delmas M, Rossignol R, Rodriguez J B, Christol P 2017 Superlattices Microstruct. 104 402Google Scholar

    [11]

    Henry N C, Brown A, Knorr D B, Baril N, Nallon E, Lenhart J, Tidrow M, Bandara S 2016 Appl. Phys. Lett. 108 011606Google Scholar

    [12]

    Huang Y, Xiong M, Wu Q, Dong X, Zhao Y C, Shi W H, Miao X H, Zhang B S 2017 IEEE J. Quantum Electron. 53 1

    [13]

    Zhang Z K, Pan W W, Liu J L, Lei W 2019 Chin. Phys. B 28 018103Google Scholar

    [14]

    魏相飞, 何锐, 张刚, 刘向远 2018 物理学报 67 187301Google Scholar

    Wei X F, He R, Zhang G, Liu X Y 2018 Acta Phys. Sin. 67 187301Google Scholar

    [15]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815Google Scholar

    [16]

    Khvostikov V P, Khvostikova O A, Gazaryan P Y, Sorokina S V, Potapovich N S, Malevskaya A V, Kaluzhniy N A, Shvarts M, Andreev V M 2007 J. Energy Eng. 129 291Google Scholar

    [17]

    Vlasov A S, Khvostikov V P, Karlina L B, et al. 2013 Technol. Phys. 58 1034Google Scholar

    [18]

    Wang Y, Chen N F, Zhang X W, Huang T M, Yin Z G, Wang Y S, Zhang H 2010 Sol. Energy Mater. Sol. Cells 94 1704Google Scholar

    [19]

    Kim J M, Dutta P S, Brown E, Borrego J M, Greiff P 2013 Semicond. Sci. Technol. 28 065002Google Scholar

    [20]

    Cederberg J G, Blaich J D, Girard G R, Lee S R, Nelson D P, Murray C S 2008 J. Cryst. Growth 310 3453Google Scholar

    [21]

    Krier A, Yin M, Marshall A R J, Krier S E 2016 J. Electron. Mater. 45 1Google Scholar

    [22]

    Qiu K, Hayden A C S 2014 Energy Convers. Manage. 79 54Google Scholar

    [23]

    Qiu K, Hayden A C S, Mauk M G, Sulima O V 2006 Sol. Energy Mater. Sol. Cells 90 68Google Scholar

    [24]

    Liu Z, Qiu K 2017 Energy 141 892

    [25]

    Peng X, Zhang B, Li G, Zou J, Zhu Z, Cai Z 2011 Infrared Phys. Technol. 54 454Google Scholar

    [26]

    Lou Y Y, Zhang X L, Huang A B, Wang Y 2017 Sol. Energy Mater. Sol. Cells 172 124Google Scholar

    [27]

    Tang L, Fraas L M, Liu Z, Xu C, Chen X 2016 IEEE Trans. Electron Devices 63 3591Google Scholar

    [28]

    Li M Z, Chen X L, Li H L, Zhang X H, Qi Z Y, Wang X X, Fan P, Zhang Q L, Zhu X L, Zhuang X J 2018 Chin. Phys. B 27 078101Google Scholar

    [29]

    Ye H, Tang L, Li K 2013 Semicond. Sci. Technol. 28 015001Google Scholar

    [30]

    潘凤春, 林雪玲, 陈焕铭 2015 物理学报 64 224218Google Scholar

    Pan F C, Lin X L, Chen H M 2015 Acta Phys. Sin. 64 224218Google Scholar

    [31]

    张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能 2019 物理学报 68 017401Google Scholar

    Zhang L L, Xia T, Liu G A, Lei B C, Zhao X C, Wang S X, Huang Y N 2019 Acta Phys. Sin. 68 017401Google Scholar

    [32]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [33]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [34]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748Google Scholar

    [35]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [36]

    林雪玲, 潘凤春, 孙建军 2018 山东师范大学学报(自然科学版) 33 328Google Scholar

    Lin X L, Pan F C, Sun J J 2018 J. Shandong Normal Univ. (Nat. Sci.) 33 328Google Scholar

    [37]

    Zota C B, Kim S H, Yokoyama M, Takenaka M, Takagi S 2012 Appl. Phys. Express 5 071201Google Scholar

    [38]

    Yokoyama M, Nishi K, Kim S, Yokoyama H, Takenaka M, Takagi S 2014 Appl. Phys. Lett. 104 093509Google Scholar

    [39]

    Tu N T, Hai P N, Anh L D, Tanaka M 2014 Appl. Phys. Lett. 105 132402Google Scholar

    [40]

    Tu N T, Hai P N, Anh L D, Tanaka M 2016 Appl. Phys. Lett. 108 192401Google Scholar

    [41]

    Lin X L, Pan F C 2019 Mater. Res. Express 6 015901

    [42]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [43]

    黄昆 1988 固体物理学 (北京: 高等教育出版社) 第437−452页

    Huang K 1988 Solid State Physics (Beijing: Higher Education Press) pp437−452 (in Chinese)

    [44]

    Abdellatif S, Ghannam R, Khalil A S G 2014 Appl. Opt. 53 3294Google Scholar

    [45]

    李丹之 1999 物理学报 42 2349Google Scholar

    Li D Z 1999 Acta Phys. Sin. 42 2349Google Scholar

    [46]

    Ordal M A, Bell R J, Alexander R W, Long L L, Querry M R 1985 Appl. Opt. 24 4493Google Scholar

    [47]

    刘恩科, 朱秉升, 罗晋生, 亢润民, 屠善洁 1997 半导体物理学 (北京: 国防工业出版社) 第259页

    Liu K E, Zhu B S, Luo J S, Kang R M, Tu S J 1997 Semiconductor Physics (Beijing: National Defense Industry Press) p259 (in Chinese)

  • 图 1  GaSb超晶胞结构

    Fig. 1.  Structure of GaSb supercell.

    图 2  包含(a) X@Ga和(b) X@Sb体系的光学吸收谱

    Fig. 2.  Absorption spectra of (a) X@Ga and (b) X@Sb, respectively.

    图 3  X@Ga和未掺杂GaSb体系的能带结构

    Fig. 3.  Band structure of X@Ga and undoped GaSb systems, respectively.

    图 4  介电函数实部

    Fig. 4.  Real part of the dielectric function.

    图 5  介电函数虚部

    Fig. 5.  Virtual part of the dielectric function.

    图 6  反射光谱

    Fig. 6.  Reflectivity of GaSb and X-doped systems.

    图 7  不同浓度Ni掺杂的光学吸收谱

    Fig. 7.  Optical absorption spectra of different Ni-doped density.

    图 8  S1, S2, S3和S4结构体系的光学吸收谱

    Fig. 8.  Optical absorption spectrum of S1, S2, S3 and S4 configuration.

    表 1  X@Ga和X@Sb缺陷的形成能

    Table 1.  Formation energy of X@Ga and X@Sb defects.

    Defects
    Fe@GaCo@GaNi@GaFe@SbCo@SbNi@Sb
    Eformation /eV3.03522.65610.14274.10553.37731.0454
    下载: 导出CSV

    表 2  GaSb和X掺杂体系的Mulliken布居分析

    Table 2.  Mulliken population of GaSb and X-doped systems.

    AtomicChargeBondPopulationLength
    GaSbGa0.03Ga—Sb0.512.6297
    Sb–0.03
    Fe dopedFe0.45Fe—Sb0.832.3936
    Co dopedCo0.56Co—Sb0.802.3972
    Ni dopedNi0.58Ni—Sb0.782.4344
    下载: 导出CSV

    表 3  S1, S2, S3和S4掺杂结构优化后体系的总能量

    Table 3.  Total energies of relaxed S1, S2, S3 and S4 configurations.

    结构
    S1S2S3S4
    总能量
    E/eV
    –65569.778–65669.549–65669.235–65669.152
    下载: 导出CSV
  • [1]

    Qiu K, Hayden A C S 2006 Energy Convers. Manage 47 365Google Scholar

    [2]

    Bitnar, Bernd 2003 Semicond. Sci. Technol. 18 S221Google Scholar

    [3]

    Ferrari C, Melino F, Bosi M 2013 Sol. Energy Mater. Sol. Cells 113 20Google Scholar

    [4]

    Attolini G, Bosi M, Ferrari C, Melino F 2013 Appl. Energy 103 618Google Scholar

    [5]

    王跃, 刘国军, 李俊承, 安宁, 李占国, 王玉霞, 魏志鹏 2012 中国激光 39 0102010

    Wang Y, Liu G J, Li J C, An N, Li Z G, Wang Y X, Wei Z P 2012 Chin. J. Lasers 39 0102010

    [6]

    Klipstein P C, Livneh Y, Glozman A, Grossman S, Klin O, Snapi N, Weiss E 2014 J. Electron. Mater. 43 2984Google Scholar

    [7]

    del Alamo J A 2011 Nature 479 317Google Scholar

    [8]

    Klipstein P C, Livneh Y, Klin O, Grossman S, Snapi N, Glozman A, Weiss E 2013 Infrared Phys. Technol. 59 53Google Scholar

    [9]

    Baril N, Bandara S, Hoeglund L, Henry N, Brown A, Billman C, Maloney P, Nallon E, Tidrow M, Pellegrino J 2015 Infrared Phys. Technol. 70 58Google Scholar

    [10]

    Delmas M, Rossignol R, Rodriguez J B, Christol P 2017 Superlattices Microstruct. 104 402Google Scholar

    [11]

    Henry N C, Brown A, Knorr D B, Baril N, Nallon E, Lenhart J, Tidrow M, Bandara S 2016 Appl. Phys. Lett. 108 011606Google Scholar

    [12]

    Huang Y, Xiong M, Wu Q, Dong X, Zhao Y C, Shi W H, Miao X H, Zhang B S 2017 IEEE J. Quantum Electron. 53 1

    [13]

    Zhang Z K, Pan W W, Liu J L, Lei W 2019 Chin. Phys. B 28 018103Google Scholar

    [14]

    魏相飞, 何锐, 张刚, 刘向远 2018 物理学报 67 187301Google Scholar

    Wei X F, He R, Zhang G, Liu X Y 2018 Acta Phys. Sin. 67 187301Google Scholar

    [15]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815Google Scholar

    [16]

    Khvostikov V P, Khvostikova O A, Gazaryan P Y, Sorokina S V, Potapovich N S, Malevskaya A V, Kaluzhniy N A, Shvarts M, Andreev V M 2007 J. Energy Eng. 129 291Google Scholar

    [17]

    Vlasov A S, Khvostikov V P, Karlina L B, et al. 2013 Technol. Phys. 58 1034Google Scholar

    [18]

    Wang Y, Chen N F, Zhang X W, Huang T M, Yin Z G, Wang Y S, Zhang H 2010 Sol. Energy Mater. Sol. Cells 94 1704Google Scholar

    [19]

    Kim J M, Dutta P S, Brown E, Borrego J M, Greiff P 2013 Semicond. Sci. Technol. 28 065002Google Scholar

    [20]

    Cederberg J G, Blaich J D, Girard G R, Lee S R, Nelson D P, Murray C S 2008 J. Cryst. Growth 310 3453Google Scholar

    [21]

    Krier A, Yin M, Marshall A R J, Krier S E 2016 J. Electron. Mater. 45 1Google Scholar

    [22]

    Qiu K, Hayden A C S 2014 Energy Convers. Manage. 79 54Google Scholar

    [23]

    Qiu K, Hayden A C S, Mauk M G, Sulima O V 2006 Sol. Energy Mater. Sol. Cells 90 68Google Scholar

    [24]

    Liu Z, Qiu K 2017 Energy 141 892

    [25]

    Peng X, Zhang B, Li G, Zou J, Zhu Z, Cai Z 2011 Infrared Phys. Technol. 54 454Google Scholar

    [26]

    Lou Y Y, Zhang X L, Huang A B, Wang Y 2017 Sol. Energy Mater. Sol. Cells 172 124Google Scholar

    [27]

    Tang L, Fraas L M, Liu Z, Xu C, Chen X 2016 IEEE Trans. Electron Devices 63 3591Google Scholar

    [28]

    Li M Z, Chen X L, Li H L, Zhang X H, Qi Z Y, Wang X X, Fan P, Zhang Q L, Zhu X L, Zhuang X J 2018 Chin. Phys. B 27 078101Google Scholar

    [29]

    Ye H, Tang L, Li K 2013 Semicond. Sci. Technol. 28 015001Google Scholar

    [30]

    潘凤春, 林雪玲, 陈焕铭 2015 物理学报 64 224218Google Scholar

    Pan F C, Lin X L, Chen H M 2015 Acta Phys. Sin. 64 224218Google Scholar

    [31]

    张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能 2019 物理学报 68 017401Google Scholar

    Zhang L L, Xia T, Liu G A, Lei B C, Zhao X C, Wang S X, Huang Y N 2019 Acta Phys. Sin. 68 017401Google Scholar

    [32]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [33]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [34]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748Google Scholar

    [35]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [36]

    林雪玲, 潘凤春, 孙建军 2018 山东师范大学学报(自然科学版) 33 328Google Scholar

    Lin X L, Pan F C, Sun J J 2018 J. Shandong Normal Univ. (Nat. Sci.) 33 328Google Scholar

    [37]

    Zota C B, Kim S H, Yokoyama M, Takenaka M, Takagi S 2012 Appl. Phys. Express 5 071201Google Scholar

    [38]

    Yokoyama M, Nishi K, Kim S, Yokoyama H, Takenaka M, Takagi S 2014 Appl. Phys. Lett. 104 093509Google Scholar

    [39]

    Tu N T, Hai P N, Anh L D, Tanaka M 2014 Appl. Phys. Lett. 105 132402Google Scholar

    [40]

    Tu N T, Hai P N, Anh L D, Tanaka M 2016 Appl. Phys. Lett. 108 192401Google Scholar

    [41]

    Lin X L, Pan F C 2019 Mater. Res. Express 6 015901

    [42]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [43]

    黄昆 1988 固体物理学 (北京: 高等教育出版社) 第437−452页

    Huang K 1988 Solid State Physics (Beijing: Higher Education Press) pp437−452 (in Chinese)

    [44]

    Abdellatif S, Ghannam R, Khalil A S G 2014 Appl. Opt. 53 3294Google Scholar

    [45]

    李丹之 1999 物理学报 42 2349Google Scholar

    Li D Z 1999 Acta Phys. Sin. 42 2349Google Scholar

    [46]

    Ordal M A, Bell R J, Alexander R W, Long L L, Querry M R 1985 Appl. Opt. 24 4493Google Scholar

    [47]

    刘恩科, 朱秉升, 罗晋生, 亢润民, 屠善洁 1997 半导体物理学 (北京: 国防工业出版社) 第259页

    Liu K E, Zhu B S, Luo J S, Kang R M, Tu S J 1997 Semiconductor Physics (Beijing: National Defense Industry Press) p259 (in Chinese)

  • [1] 潘凤春, 林雪玲, 王旭明. 应变对(Ga, Mo)Sb磁学和光学性质影响的理论研究. 物理学报, 2022, 71(9): 096103. doi: 10.7498/aps.71.20212316
    [2] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [3] 熊子谦, 张鹏程, 康文斌, 方文玉. 一种新型二维TiO2的电子结构与光催化性质. 物理学报, 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [4] 王闯, 赵永红, 刘永. Ga1–xCrxSb (x = 0.25, 0.50, 0.75) 磁学和光学性质的第一性原理研究. 物理学报, 2019, 68(17): 176301. doi: 10.7498/aps.68.20182305
    [5] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究. 物理学报, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [6] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [7] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算. 物理学报, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [8] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [9] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [10] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [11] 潘磊, 卢铁城, 苏锐, 王跃忠, 齐建起, 付佳, 张燚, 贺端威. -AlON晶体电子结构和光学性质研究. 物理学报, 2012, 61(2): 027101. doi: 10.7498/aps.61.027101
    [12] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [13] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算. 物理学报, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [14] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [15] 崔冬萌, 谢泉, 陈茜, 赵凤娟, 李旭珍. Si基外延Ru2Si3电子结构及光学性质研究. 物理学报, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [16] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究. 物理学报, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [17] 周凯, 李辉, 王柱. 正电子湮没谱和光致发光谱研究掺锌GaSb质子辐照缺陷. 物理学报, 2010, 59(7): 5116-5121. doi: 10.7498/aps.59.5116
    [18] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究. 物理学报, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [19] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [20] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
计量
  • 文章访问数:  9576
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-04
  • 修回日期:  2019-05-27
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回