搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用脉宽10 fs偏振控制脉冲获得孤立阿秒脉冲

宋浩 吕孝源 朱若碧 陈高

引用本文:
Citation:

利用脉宽10 fs偏振控制脉冲获得孤立阿秒脉冲

宋浩, 吕孝源, 朱若碧, 陈高

Isolated attosecond pulse generation from polarizationgating pulse with 10 fs duration

Song Hao, Lü Xiao-Yuan, Zhu Ruo-Bi, Chen Gao
PDF
HTML
导出引用
  • 利用强场近似理论开展了具有较长脉宽的偏振控制脉冲与氦原子相互作用产生高次谐波和阿秒脉冲发射的理论研究. 研究发现, 当具有10 fs脉冲宽度的偏振控制脉冲被用作驱动脉冲时, 只要恰当地调整两束反向旋转圆偏振脉冲峰值之间的时间延迟和强度比, 即使不附加二次谐波脉冲, 仍然可以得到效率较高且规则分布的高次谐波平台结构, 傅里叶变换后得到了175 as的孤立短脉冲. 该方案一方面通过调整两束脉冲峰值之间时间延迟突破了传统偏振控制方案中要求偏振门宽度为半个光学周期的限制, 另一方面通过调整两束脉冲峰值之间的强度比避免了偏振门前端多个光学周期电场引起气体介质电离不利于谐波相位匹配的弊端.
    Isolated attosecond pulses make it possible to study and control the ultrafast electron processes in atoms and molecules. High order harmonic generation (HHG) is the most promising way to generate such pulses, which is benefited from the broad plateau structure of the typical HHG spectrum. In previous HHG studies on the polarization gating pulse with longer pulse duration, one needs to dramatically increase the separation in time between the two counter-rotating circularly-polarized pulses to generate the nearly-linear half-cycle " polarization gate”. This leads to a low harmonic conversion efficiency because the field outside the polarization gate is much stronger than inside the polarization gate. In this paper, by using Lewenstein model, we theoretically simulate the high-order harmonic generation from helium atom subjected to the polarization gating pulse with 10 fs pulse duration. It is found that high-order harmonic spectra each with a higher efficiency and regular structure can still be obtained by reasonably adjusting the delay time ratio and the amplitude ratio of electric fields between the two counter-rotating pulses. Further, a single 175 as pulse in the time domain is obtained by Fourier transforming the 80th order harmonics into the 172nd order harmonic without compensating for the harmonic chirp. This scheme has two main advantages. First, the adjustment of the polarization gate width from half optical cycle into nearly one cycle ensures higher intensity of the synthesized electric field inside the polarization gate. Second, the suitable adjustment of the amplitude ratio between two electric fields ensures the low ionization probability before the polarization gate, and thus further fulfills the harmonic phase matching condition in the process of the propagation.
      通信作者: 陈高, chengao@cust.edu.cn
    • 基金项目: 吉林省基础研究计划基金(批准号: 20170101046JC)资助的课题
      Corresponding author: Chen Gao, chengao@cust.edu.cn
    • Funds: Project supported by the Basic Research Project of Jilin Province, China (Grant No. 20170101046JC)
    [1]

    Schultze M, Fiess M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y, Mercouris T, Nicolaides C A, Pazourek R, Nagele S, Feist J, Burgdörfer J, Azzeer A M, Ernstorfer R, Kienberger R, Kleineberg U, Goulielmakis E, Krausz F, Yakovlev V S 2010 Science 328 1658Google Scholar

    [2]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803Google Scholar

    [3]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, De Silvestri S, Nisoli M 2006 Science 314 443Google Scholar

    [4]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614Google Scholar

    [5]

    Vincenti H, Quéré F 2012 Phys. Rev. Lett. 108 113904Google Scholar

    [6]

    Chen J G, Yang Y J, Chen J, Wang B B 2015 Phys. Rev. A 91 043403Google Scholar

    [7]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [8]

    Agostini P, Dimauro L F 2004 Rep. Prog. Phys. 67 813Google Scholar

    [9]

    Yuan K J, Bandrauk A D 2013 Phys. Rev. Lett. 110 023003Google Scholar

    [10]

    Corkum P B, Burnett N H, Ivanov M Y 1994 Opt. Lett. 19 1870Google Scholar

    [11]

    Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 794Google Scholar

    [12]

    Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M 2010 Nat. Photonics 4 875Google Scholar

    [13]

    Lan P, Lu P, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 21801Google Scholar

    [14]

    Kormin D, Borot A, Ma G J, Dallari W, Bergues B, Aladi M, Földes I, Veisz L 2018 Nat. Commun. 9 4992Google Scholar

    [15]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506Google Scholar

    [16]

    Chang Z 2005 Phys. Rev. A 71 023813Google Scholar

    [17]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X W, Chang Z H 2012 Opt. Lett. 37 3891Google Scholar

    [18]

    Keldysh L V 1965 Sov. Phys. JETP 20 1307

    [19]

    Faisal F H M 1973 J. Phys. B 6 L89Google Scholar

    [20]

    Reiss H R 1980 Phys. Rev. A 22 1786Google Scholar

    [21]

    Lewenstein M, Salières P, L’Huillier A 1995 Phys. Rev. A 52 4747Google Scholar

    [22]

    Ammosov M V, Delone N B, Krainov V 1986 Proc. SPIE 664 1191Google Scholar

  • 图 1  偏振控制脉冲总电场(红色曲线)、控制场(绿色曲线)及驱动场(蓝色曲线)随时间变化三维图 (a) 5 fs脉宽和5 fs时间延迟; (c) 10 fs脉宽和22.5 fs时间延迟; (e) 10 fs脉宽和15 fs时间延迟; (b), (d), (f)显示了与(a), (c), (e)图相对应的驱动脉冲电场随时间变化曲线图(阴影部分是偏振门)

    Fig. 1.  Three dimensional diagrams for the total electric field (red), gating field (green), and driving field (blue) in polarization gating pulse as a function of time: (a) 5 fs pulse width and 5 fs time delay; (c) 10 fs pulse width and 22.5 fs time delay; (e) 10 fs pulse width and 15 fs time delay. Panels (b), (d), (f) correspond to the driving electric field versus time in panels (a), (c), (e), respectively (shaded portion is polarization gate).

    图 2  脉宽为10 fs的偏振控制脉冲与氦原子相互作用得到的高次谐波发射光谱, 其中黑线表示δtG = T0/2的偏振控制脉冲, 红线表示δtG = 0.82T0的偏振控制脉冲

    Fig. 2.  High order harmonic generation from helium atom in a polarization gating pulse with 10 fs pulse width. The black curve is from the polarization gate width ${\text{δ}}{t_{\rm{G}}} = \dfrac{{{T_0}}}{2}$, the red curve is from the polarization gate width δtG = 0.82T0.

    图 3  谐波阶次随电离时刻及复合时刻的变化关系图

    Fig. 3.  Evolution of the harmonics with ionization (black) and recombination (red) time.

    图 4  偏振门内原子电离概率(红线)、驱动脉冲电场(黑线)、椭偏率(蓝线)随时间变化曲线 (a)对称偏振控制方案δtG = 0.5T0; (b)对称偏振控制方案δtG = 0.82T0; (c)不对称偏振控制方案δtG = 0.82T0

    Fig. 4.  Atomic ionization probability (red line), electric field of driving pulse (black line), ellipticity (blue line) in the polarization gate as function of time: (a) Symmetric polarization gating scheme δtG = 0.5T0; (b) symmetric polarization gating scheme δtG = 0.82T0; (c) asymmetric polarization gating scheme δtG = 0.82T0.

    图 5  (a)不对称偏振控制脉冲总电场(红色曲线)、控制场(绿色曲线)及驱动场(蓝色曲线)随时间变化三维图; (b)高次谐波发射谱

    Fig. 5.  (a) Three-dimensional diagrams for the total electric field (red curve), gating field (green curve) and driving field (blue curve) in the asymmetric polarization gating pulse as a function of time; (b) high harmonic emission spectra.

    图 6  不对称偏振控制方案中谐波发射的时频分析图像

    Fig. 6.  Time-frequency analysis of harmonic emission in asymmetric polarization gating scheme.

    图 7  阿秒脉冲产生时域图 (a)不对称偏振控制方案; (b)对称偏振控制方案

    Fig. 7.  Attosecond pulse generation from (a) asymmetric polarization gating scheme and (b) symmetric polarization gating scheme.

  • [1]

    Schultze M, Fiess M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y, Mercouris T, Nicolaides C A, Pazourek R, Nagele S, Feist J, Burgdörfer J, Azzeer A M, Ernstorfer R, Kienberger R, Kleineberg U, Goulielmakis E, Krausz F, Yakovlev V S 2010 Science 328 1658Google Scholar

    [2]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803Google Scholar

    [3]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, De Silvestri S, Nisoli M 2006 Science 314 443Google Scholar

    [4]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614Google Scholar

    [5]

    Vincenti H, Quéré F 2012 Phys. Rev. Lett. 108 113904Google Scholar

    [6]

    Chen J G, Yang Y J, Chen J, Wang B B 2015 Phys. Rev. A 91 043403Google Scholar

    [7]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [8]

    Agostini P, Dimauro L F 2004 Rep. Prog. Phys. 67 813Google Scholar

    [9]

    Yuan K J, Bandrauk A D 2013 Phys. Rev. Lett. 110 023003Google Scholar

    [10]

    Corkum P B, Burnett N H, Ivanov M Y 1994 Opt. Lett. 19 1870Google Scholar

    [11]

    Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 794Google Scholar

    [12]

    Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M 2010 Nat. Photonics 4 875Google Scholar

    [13]

    Lan P, Lu P, Cao W, Li Y H, Wang X L 2007 Phys. Rev. A 76 21801Google Scholar

    [14]

    Kormin D, Borot A, Ma G J, Dallari W, Bergues B, Aladi M, Földes I, Veisz L 2018 Nat. Commun. 9 4992Google Scholar

    [15]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506Google Scholar

    [16]

    Chang Z 2005 Phys. Rev. A 71 023813Google Scholar

    [17]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X W, Chang Z H 2012 Opt. Lett. 37 3891Google Scholar

    [18]

    Keldysh L V 1965 Sov. Phys. JETP 20 1307

    [19]

    Faisal F H M 1973 J. Phys. B 6 L89Google Scholar

    [20]

    Reiss H R 1980 Phys. Rev. A 22 1786Google Scholar

    [21]

    Lewenstein M, Salières P, L’Huillier A 1995 Phys. Rev. A 52 4747Google Scholar

    [22]

    Ammosov M V, Delone N B, Krainov V 1986 Proc. SPIE 664 1191Google Scholar

  • [1] 陈高. 利用三色组合脉冲激光获得孤立阿秒脉冲发射. 物理学报, 2022, 71(5): 054204. doi: 10.7498/aps.71.20211502
    [2] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究. 物理学报, 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [3] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [4] 吕孝源, 朱若碧, 宋浩, 苏宁, 陈高. 基于正交偏振场的双光学控制方案获得孤立阿秒脉冲产生. 物理学报, 2019, 68(21): 214201. doi: 10.7498/aps.68.20190847
    [5] 唐蓉, 王国利, 李小勇, 周效信. 红外激光场中共振结构原子对极紫外光脉冲的压缩效应. 物理学报, 2016, 65(10): 103202. doi: 10.7498/aps.65.103202
    [6] 曾婷婷, 李鹏程, 周效信. 两束同色激光场和中红外场驱动氦原子在等离激元中产生的单个阿秒脉冲. 物理学报, 2014, 63(20): 203201. doi: 10.7498/aps.63.203201
    [7] 黄峰, 李鹏程, 周效信. 利用两色组合激光场驱动氦原子产生单个阿秒脉冲. 物理学报, 2012, 61(23): 233203. doi: 10.7498/aps.61.233203
    [8] 陈基根, 杨玉军, 陈漾. 附加谐波脉冲生成强的39阿秒孤立脉冲. 物理学报, 2011, 60(3): 033202. doi: 10.7498/aps.60.033202
    [9] 潘慧玲, 李鹏程, 周效信. 利用两束同色激光场和半周期脉冲驱动原子产生单个阿秒脉冲. 物理学报, 2011, 60(4): 043203. doi: 10.7498/aps.60.043203
    [10] 李伟, 王国利, 周效信. 啁啾激光与半周期脉冲形成的组合场驱动原子产生单个阿秒脉冲. 物理学报, 2011, 60(12): 123201. doi: 10.7498/aps.60.123201
    [11] 成春芝, 周效信, 李鹏程. 原子在红外激光场中产生高次谐波及阿秒脉冲随波长的变化规律. 物理学报, 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [12] 崔磊, 王小娟, 王帆, 曾祥华. 脉冲激光偏振方向对氧分子高次谐波的影响——基于含时密度泛函理论的模拟. 物理学报, 2010, 59(1): 317-321. doi: 10.7498/aps.59.317
    [13] 刘硕, 陈高, 陈基根, 朱颀人. 采用双脉冲提高谐波谱的谱线密度. 物理学报, 2009, 58(3): 1574-1578. doi: 10.7498/aps.58.1574
    [14] 叶小亮, 周效信, 赵松峰, 李鹏程. 原子在两色组合激光场中产生的单个阿秒脉冲. 物理学报, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [15] 洪伟毅, 杨振宇, 兰鹏飞, 陆培祥. 利用低频场控制轨道直接产生低于50阿秒的单个脉冲. 物理学报, 2008, 57(9): 5853-5858. doi: 10.7498/aps.57.5853
    [16] 张庆斌, 洪伟毅, 兰鹏飞, 杨振宇, 陆培祥. 利用调制的偏振态门控制阿秒脉冲的产生. 物理学报, 2008, 57(12): 7848-7854. doi: 10.7498/aps.57.7848
    [17] 郑颖辉, 曾志男, 李儒新, 徐至展. 极紫外阿秒脉冲在高次谐波产生过程中引起的非偶极效应. 物理学报, 2007, 56(4): 2243-2249. doi: 10.7498/aps.56.2243
    [18] 曹 伟, 兰鹏飞, 陆培祥. 利用43飞秒的强激光脉冲实现单个阿秒脉冲输出的新机理. 物理学报, 2007, 56(3): 1608-1612. doi: 10.7498/aps.56.1608
    [19] 崔 磊, 顾 斌, 滕玉永, 胡永金, 赵 江, 曾祥华. 脉冲激光偏振方向对氮分子高次谐波的影响--基于含时密度泛函理论的模拟. 物理学报, 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [20] 曾志男, 李儒新, 谢新华, 徐至展. 采用双脉冲驱动产生高次谐波阿秒脉冲. 物理学报, 2004, 53(7): 2316-2319. doi: 10.7498/aps.53.2316
计量
  • 文章访问数:  9604
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-19
  • 修回日期:  2019-06-10
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回