搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外激光场中共振结构原子对极紫外光脉冲的压缩效应

唐蓉 王国利 李小勇 周效信

引用本文:
Citation:

红外激光场中共振结构原子对极紫外光脉冲的压缩效应

唐蓉, 王国利, 李小勇, 周效信

Compression of extreme ultraviolet pulse for atom with resonant structure exposed to an infrared laser field

Tang Rong, Wang Guo-Li, Li Xiao-Yong, Zhou Xiao-Xin
PDF
导出引用
  • 通过数值求解一维原子的含时薛定谔方程, 研究了具有共振结构的原子在双色场(红外激光(IR)+极紫外光(XUV)) 驱动下发射高次谐波的特征. 研究结果表明, 具有共振结构的原子所发射的高次谐波与无共振结构原子(简称为一般原子)发射的高次谐波有明显不同, 共振结构的原子除了在某一能量附近(原子的共振能量+电离能)高次谐波的强度有很大提高外, 它还对XUV光的响应较一般原子表现得更为敏感, 即使XUV光的强度较弱, 也能够明显提高XUV光脉冲中心频率附近的谐波强度, 更重要的是通过调节双色场的时间延迟, 能使输入的XUV光的脉宽得到明显的压缩, 通过时间-频率分析给出了发生这种现象的原因. 由此提出了通过滤波-连续反馈的方式可使XUV光的脉冲从200 as压缩至120 as左右.
    The short attosecond (as) pulse is a basic tool for probing the ultra-fast electronic dynamics in matter. High-order harmonic generation (HHG) of atoms exposed to intense laser field is the most promising method of producing the short attosecond pulses. Therefore, the generation of ultra-short attosecond pulses through HHG has been of great interest. How to obtain the ultra-short pulse from HHG has been a hot research subject in recent years. In the present paper, we investigate the characteristic of HHG from atoms with both resonant and non-resonant structure (for short, the general atom) by using numerically solving a one-dimensional time-dependent Schrodinger equation of atom driven by two-color field (infrared (IR) laser + extreme ultraviolet (XUV)). We find that the HHG spectra from resonant atom are obviously different from those of the general atom. For a resonant atom, besides the great increase of the intensity of HHG at some energy (resonant energy + ionized energy), the intensity of HHG at the central frequency of XUV pulse is sensitive to the intensity of XUV pulse. Even the intensity of XUV pulse is weak, the enhancement of HHG spectra from resonant atom is still significant, while the general atom does not has this feature. Only the strength of the XUV pulse is much stronger than that in the case of resonant atom, the spectra of HHG near the center frequency of XUV from atom with non-resonant structure can significantly be enhanced. More importantly, adjusting the time delay of two-color laser pulse makes the width of input XUV pulse compressed obviously in the case of the resonant atom. By performing the time-frequency analysis of Morlet transform, we explain the compression of the attosecond pulse. The reason is that the relation of the input XUV pulse frequency to the resonant frequency of HHG for resonant atom makes the bandwidth of HHG in the region of the center frequency of XUV wider than that of the input attosecond pulse during the emission. Thus, we can obtain shorter pulse by superposing several orders HHG among the enhanced regions. Finally, we propose a way to compress the width of the input XUV pulse by using filter-multi-feedback method. Based on our scheme, the width of the input XUV pulse can be compressed from 200 as to 120 as, thereby offering a new method of obtaining shorter attosecond pulse in experiment.
      通信作者: 周效信, zhouxx@nwnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11264036,11364038,11564033)资助的课题.
      Corresponding author: Zhou Xiao-Xin, zhouxx@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11264036, 11364038, 11564033).
    [1]

    Brabee T, Krausz F 2000 Rev. Mod. Phys. 72 545

    [2]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [3]

    Antoine P, LHuillier A, Lewenstein M 1996 Phys. Rev. Lett. 77 1234

    [4]

    Li P C, Langhlin L, Chu S I 2014 Phys. Rev. A 89 023431

    [5]

    Xiang Y, Niu Y, Gong S 2009 Phys. Rev. A 79 053419

    [6]

    Du H, Hu B 2010 Opt. Express 18 25958

    [7]

    Zou P, Li R X, Zeng Z N, Xiong H, Liu P, Leng Y X, Fan P Z, Xu Z Z 2010 Chin. Phys. B 19 019501

    [8]

    Luo X Y, Ben S, Ge X L, Wang Q, Guo J, Liu X S 2015 Acta Phys. Sin. 64 193201 (in Chinese) [罗香怡, 贲帅, 葛鑫磊, 王群, 郭静, 刘学深 2015 物理学报 64 193201]

    [9]

    Chen G, Yang Y J, Guo F M 2013 Acta Phys. Sin. 62 073203 (in Chinese) [陈高, 杨玉军, 郭福明 2013 物理学报 62 073203]

    [10]

    Jiao Z H, Wang G L, Li P C, Zhou X X 2014 Phys. Rev. A 90 025401

    [11]

    Qin Y F, Guo F M, Li S Y, Yang Y J, Chen G 2014 Chin. Phys. B 23 093205

    [12]

    Xue S, Du H C, Xia Y, Hu B T 2015 Chin. Phys. B 24 054210

    [13]

    Ge X L, Du H, Wang Q, Guo J, Liu X S 2015 Chin. Phys. B 24 023201

    [14]

    Zhao K, Zhang Q, Chini M, et al. 2012 Opt. Lett. 37 3891

    [15]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [16]

    Chen J, Zeng B, Liu X, Cheng Y, Xu Z Z 2009 New J. Phys. 11 113021

    [17]

    Bandrauk A D, Shon N H 2002 Phys. Rev. A 66 031401

    [18]

    Lan P, Lu P, Cao W, Wang X 2007 Phys. Rev. A 76 043808

    [19]

    Strelkov V 2010 Phys. Rev. Lett. 104 123901

    [20]

    Tudorovskaya M, Lein M 2011 Phys. Rev. A 84 013430

    [21]

    Li P C, Zhou X X, Dong C Z, Zhao S F 2004 Acta Phys. Sin. 53 750 (in Chinese) [李鹏程, 周效信, 董晨钟, 赵松峰 2004 物理学报 53 750]

    [22]

    Burnett K, Reed V C, Cooper J, Knight P L 1992 Phys. Rev. A 45 3347

    [23]

    Serrat C 2013 Phys. Rev. A 87 013825

  • [1]

    Brabee T, Krausz F 2000 Rev. Mod. Phys. 72 545

    [2]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [3]

    Antoine P, LHuillier A, Lewenstein M 1996 Phys. Rev. Lett. 77 1234

    [4]

    Li P C, Langhlin L, Chu S I 2014 Phys. Rev. A 89 023431

    [5]

    Xiang Y, Niu Y, Gong S 2009 Phys. Rev. A 79 053419

    [6]

    Du H, Hu B 2010 Opt. Express 18 25958

    [7]

    Zou P, Li R X, Zeng Z N, Xiong H, Liu P, Leng Y X, Fan P Z, Xu Z Z 2010 Chin. Phys. B 19 019501

    [8]

    Luo X Y, Ben S, Ge X L, Wang Q, Guo J, Liu X S 2015 Acta Phys. Sin. 64 193201 (in Chinese) [罗香怡, 贲帅, 葛鑫磊, 王群, 郭静, 刘学深 2015 物理学报 64 193201]

    [9]

    Chen G, Yang Y J, Guo F M 2013 Acta Phys. Sin. 62 073203 (in Chinese) [陈高, 杨玉军, 郭福明 2013 物理学报 62 073203]

    [10]

    Jiao Z H, Wang G L, Li P C, Zhou X X 2014 Phys. Rev. A 90 025401

    [11]

    Qin Y F, Guo F M, Li S Y, Yang Y J, Chen G 2014 Chin. Phys. B 23 093205

    [12]

    Xue S, Du H C, Xia Y, Hu B T 2015 Chin. Phys. B 24 054210

    [13]

    Ge X L, Du H, Wang Q, Guo J, Liu X S 2015 Chin. Phys. B 24 023201

    [14]

    Zhao K, Zhang Q, Chini M, et al. 2012 Opt. Lett. 37 3891

    [15]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [16]

    Chen J, Zeng B, Liu X, Cheng Y, Xu Z Z 2009 New J. Phys. 11 113021

    [17]

    Bandrauk A D, Shon N H 2002 Phys. Rev. A 66 031401

    [18]

    Lan P, Lu P, Cao W, Wang X 2007 Phys. Rev. A 76 043808

    [19]

    Strelkov V 2010 Phys. Rev. Lett. 104 123901

    [20]

    Tudorovskaya M, Lein M 2011 Phys. Rev. A 84 013430

    [21]

    Li P C, Zhou X X, Dong C Z, Zhao S F 2004 Acta Phys. Sin. 53 750 (in Chinese) [李鹏程, 周效信, 董晨钟, 赵松峰 2004 物理学报 53 750]

    [22]

    Burnett K, Reed V C, Cooper J, Knight P L 1992 Phys. Rev. A 45 3347

    [23]

    Serrat C 2013 Phys. Rev. A 87 013825

  • [1] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231956
    [2] 蒋驰, 耿滔. 角向偏振涡旋光的紧聚焦特性研究以及超长超分辨光针的实现. 物理学报, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [3] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [4] 赖赣平, 张晓卫. 考虑原子亚稳态的镥金属蒸发过程模拟研究. 物理学报, 2023, 72(18): 184702. doi: 10.7498/aps.72.20230602
    [5] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [6] 王思远, 梁添寿, 时朋朋. 金属磁记忆应变诱导磁性变化的原子尺度作用机理. 物理学报, 2022, 71(19): 197502. doi: 10.7498/aps.71.20220745
    [7] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收. 物理学报, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [8] 李盈傧, 秦玲玲, 陈红梅, 李怡涵, 何锦锦, 史璐珂, 翟春洋, 汤清彬, 刘爱华, 余本海. 强激光场下原子超快动力学过程中的能量交换. 物理学报, 2022, 71(4): 043201. doi: 10.7498/aps.71.20211703
    [9] 王凯楠, 徐晗, 周寅, 许云鹏, 宋微, 汤鸿志, 王巧薇, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 程冰, 李德钊, 乔中坤, 吴彬, 林强. 基于车载原子重力仪的外场绝对重力快速测绘研究. 物理学报, 2022, 71(15): 159101. doi: 10.7498/aps.71.20220267
    [10] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性. 物理学报, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [11] Xiaoyin Xu, shengshuai liu, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211324
    [12] 张超江, 许洪光, 徐西玲, 郑卫军. ${\bf Ta_4C}_{ n}^{\bf -/0}$ (n = 0—4)团簇的电子结构、成键性质及稳定性. 物理学报, 2021, 70(2): 023601. doi: 10.7498/aps.70.20201351
    [13] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [14] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [15] 姚春霞, 何其利, 张锦, 付天宇, 吴朝, 王山峰, 黄万霞, 袁清习, 刘鹏, 王研, 张凯. 免分析光栅一次曝光相位衬度成像方法. 物理学报, 2021, 70(2): 028701. doi: 10.7498/aps.70.20201170
    [16] 吴飞, 黄威, 陈文渊, 肖勇, 郁殿龙, 温激鸿. 基于微孔板与折曲通道的亚波长宽带吸声结构设计. 物理学报, 2020, 69(13): 134303. doi: 10.7498/aps.69.20200368
    [17] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [18] 罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿. 超紧凑型飞秒电子衍射仪的设计. 物理学报, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [19] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计. 物理学报, 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [20] 王庆玲, 迪拉热·哈力木拉提, 沈玉玲, 艾尔肯·斯地克. 多面体共替代对Sr2(Al1–xMgx)(Al1–xSi1+x)O7: Eu2+晶体结构和发光颜色的影响. 物理学报, 2019, 68(10): 100701. doi: 10.7498/aps.68.20182272
计量
  • 文章访问数:  5026
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-05
  • 修回日期:  2016-03-02
  • 刊出日期:  2016-05-05

/

返回文章
返回