-
通过数值求解一维原子的含时薛定谔方程, 研究了具有共振结构的原子在双色场(红外激光(IR)+极紫外光(XUV)) 驱动下发射高次谐波的特征. 研究结果表明, 具有共振结构的原子所发射的高次谐波与无共振结构原子(简称为一般原子)发射的高次谐波有明显不同, 共振结构的原子除了在某一能量附近(原子的共振能量+电离能)高次谐波的强度有很大提高外, 它还对XUV光的响应较一般原子表现得更为敏感, 即使XUV光的强度较弱, 也能够明显提高XUV光脉冲中心频率附近的谐波强度, 更重要的是通过调节双色场的时间延迟, 能使输入的XUV光的脉宽得到明显的压缩, 通过时间-频率分析给出了发生这种现象的原因. 由此提出了通过滤波-连续反馈的方式可使XUV光的脉冲从200 as压缩至120 as左右.The short attosecond (as) pulse is a basic tool for probing the ultra-fast electronic dynamics in matter. High-order harmonic generation (HHG) of atoms exposed to intense laser field is the most promising method of producing the short attosecond pulses. Therefore, the generation of ultra-short attosecond pulses through HHG has been of great interest. How to obtain the ultra-short pulse from HHG has been a hot research subject in recent years. In the present paper, we investigate the characteristic of HHG from atoms with both resonant and non-resonant structure (for short, the general atom) by using numerically solving a one-dimensional time-dependent Schrodinger equation of atom driven by two-color field (infrared (IR) laser + extreme ultraviolet (XUV)). We find that the HHG spectra from resonant atom are obviously different from those of the general atom. For a resonant atom, besides the great increase of the intensity of HHG at some energy (resonant energy + ionized energy), the intensity of HHG at the central frequency of XUV pulse is sensitive to the intensity of XUV pulse. Even the intensity of XUV pulse is weak, the enhancement of HHG spectra from resonant atom is still significant, while the general atom does not has this feature. Only the strength of the XUV pulse is much stronger than that in the case of resonant atom, the spectra of HHG near the center frequency of XUV from atom with non-resonant structure can significantly be enhanced. More importantly, adjusting the time delay of two-color laser pulse makes the width of input XUV pulse compressed obviously in the case of the resonant atom. By performing the time-frequency analysis of Morlet transform, we explain the compression of the attosecond pulse. The reason is that the relation of the input XUV pulse frequency to the resonant frequency of HHG for resonant atom makes the bandwidth of HHG in the region of the center frequency of XUV wider than that of the input attosecond pulse during the emission. Thus, we can obtain shorter pulse by superposing several orders HHG among the enhanced regions. Finally, we propose a way to compress the width of the input XUV pulse by using filter-multi-feedback method. Based on our scheme, the width of the input XUV pulse can be compressed from 200 as to 120 as, thereby offering a new method of obtaining shorter attosecond pulse in experiment.
-
Keywords:
- atom with resonant structure /
- high-order harmonic generation /
- attosecond pulse /
- compression of extreme ultraviolet pulse
[1] Brabee T, Krausz F 2000 Rev. Mod. Phys. 72 545
[2] Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163
[3] Antoine P, LHuillier A, Lewenstein M 1996 Phys. Rev. Lett. 77 1234
[4] Li P C, Langhlin L, Chu S I 2014 Phys. Rev. A 89 023431
[5] Xiang Y, Niu Y, Gong S 2009 Phys. Rev. A 79 053419
[6] Du H, Hu B 2010 Opt. Express 18 25958
[7] Zou P, Li R X, Zeng Z N, Xiong H, Liu P, Leng Y X, Fan P Z, Xu Z Z 2010 Chin. Phys. B 19 019501
[8] Luo X Y, Ben S, Ge X L, Wang Q, Guo J, Liu X S 2015 Acta Phys. Sin. 64 193201 (in Chinese) [罗香怡, 贲帅, 葛鑫磊, 王群, 郭静, 刘学深 2015 物理学报 64 193201]
[9] Chen G, Yang Y J, Guo F M 2013 Acta Phys. Sin. 62 073203 (in Chinese) [陈高, 杨玉军, 郭福明 2013 物理学报 62 073203]
[10] Jiao Z H, Wang G L, Li P C, Zhou X X 2014 Phys. Rev. A 90 025401
[11] Qin Y F, Guo F M, Li S Y, Yang Y J, Chen G 2014 Chin. Phys. B 23 093205
[12] Xue S, Du H C, Xia Y, Hu B T 2015 Chin. Phys. B 24 054210
[13] Ge X L, Du H, Wang Q, Guo J, Liu X S 2015 Chin. Phys. B 24 023201
[14] Zhao K, Zhang Q, Chini M, et al. 2012 Opt. Lett. 37 3891
[15] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[16] Chen J, Zeng B, Liu X, Cheng Y, Xu Z Z 2009 New J. Phys. 11 113021
[17] Bandrauk A D, Shon N H 2002 Phys. Rev. A 66 031401
[18] Lan P, Lu P, Cao W, Wang X 2007 Phys. Rev. A 76 043808
[19] Strelkov V 2010 Phys. Rev. Lett. 104 123901
[20] Tudorovskaya M, Lein M 2011 Phys. Rev. A 84 013430
[21] Li P C, Zhou X X, Dong C Z, Zhao S F 2004 Acta Phys. Sin. 53 750 (in Chinese) [李鹏程, 周效信, 董晨钟, 赵松峰 2004 物理学报 53 750]
[22] Burnett K, Reed V C, Cooper J, Knight P L 1992 Phys. Rev. A 45 3347
[23] Serrat C 2013 Phys. Rev. A 87 013825
-
[1] Brabee T, Krausz F 2000 Rev. Mod. Phys. 72 545
[2] Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163
[3] Antoine P, LHuillier A, Lewenstein M 1996 Phys. Rev. Lett. 77 1234
[4] Li P C, Langhlin L, Chu S I 2014 Phys. Rev. A 89 023431
[5] Xiang Y, Niu Y, Gong S 2009 Phys. Rev. A 79 053419
[6] Du H, Hu B 2010 Opt. Express 18 25958
[7] Zou P, Li R X, Zeng Z N, Xiong H, Liu P, Leng Y X, Fan P Z, Xu Z Z 2010 Chin. Phys. B 19 019501
[8] Luo X Y, Ben S, Ge X L, Wang Q, Guo J, Liu X S 2015 Acta Phys. Sin. 64 193201 (in Chinese) [罗香怡, 贲帅, 葛鑫磊, 王群, 郭静, 刘学深 2015 物理学报 64 193201]
[9] Chen G, Yang Y J, Guo F M 2013 Acta Phys. Sin. 62 073203 (in Chinese) [陈高, 杨玉军, 郭福明 2013 物理学报 62 073203]
[10] Jiao Z H, Wang G L, Li P C, Zhou X X 2014 Phys. Rev. A 90 025401
[11] Qin Y F, Guo F M, Li S Y, Yang Y J, Chen G 2014 Chin. Phys. B 23 093205
[12] Xue S, Du H C, Xia Y, Hu B T 2015 Chin. Phys. B 24 054210
[13] Ge X L, Du H, Wang Q, Guo J, Liu X S 2015 Chin. Phys. B 24 023201
[14] Zhao K, Zhang Q, Chini M, et al. 2012 Opt. Lett. 37 3891
[15] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[16] Chen J, Zeng B, Liu X, Cheng Y, Xu Z Z 2009 New J. Phys. 11 113021
[17] Bandrauk A D, Shon N H 2002 Phys. Rev. A 66 031401
[18] Lan P, Lu P, Cao W, Wang X 2007 Phys. Rev. A 76 043808
[19] Strelkov V 2010 Phys. Rev. Lett. 104 123901
[20] Tudorovskaya M, Lein M 2011 Phys. Rev. A 84 013430
[21] Li P C, Zhou X X, Dong C Z, Zhao S F 2004 Acta Phys. Sin. 53 750 (in Chinese) [李鹏程, 周效信, 董晨钟, 赵松峰 2004 物理学报 53 750]
[22] Burnett K, Reed V C, Cooper J, Knight P L 1992 Phys. Rev. A 45 3347
[23] Serrat C 2013 Phys. Rev. A 87 013825
计量
- 文章访问数: 6318
- PDF下载量: 186
- 被引次数: 0