搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe掺杂对二维CuI电子结构及光学性质的影响

张竺立 张凡 王凯雷 李超 王锦涛

引用本文:
Citation:

Fe掺杂对二维CuI电子结构及光学性质的影响

张竺立, 张凡, 王凯雷, 李超, 王锦涛

Effect of Fe doping on the electronic structure and optical properties of two-dimensional CuI

Zhang Zhu-li, Zhang Fan, Wang Kai-lei, Li Chao, Wang Jin-tao
PDF
导出引用
  • 基于第一性原理计算方法研究不同浓度Fe掺杂对二维CuI半导体光电性质的影响。研究结果表明,本征二维CuI和Fe掺杂的二维CuI均为直接带隙半导体;不同浓度Fe掺杂的二维CuI的总态密度和分波态密度图可知费米能级处能带数目增多是由于Fe元素掺杂后Fe-d和Fe-p轨道贡献所影响,可以提高二维CuI的导电性。随着Fe掺杂浓度的增大,ε1峰值逐渐减小,且在能量相对较高的3eV和6eV附近的峰值向高能端移动,浓度越大移动越明显;这些均表明Fe掺杂可以增强二维CuI的耐高温性质;当少量Fe掺杂时ε2峰值增大,表明材料吸收电磁波的能力增强,可以激发更多导电电子,且随着Fe掺杂浓度的增加,吸收能力下降,因此二维CuI的导电性受到抑制。本征二维CuI和Fe掺杂后二维CuI的吸收系数表明该半导体在紫外区域均具有强的光子吸收能力。掺杂Fe原子的二维CuI反射系数随掺杂元素金属性增加逐渐增大。本文研究为二维半导体材料及二维CuI在光电子器件中的应用提供理论参考。
    The effects of different concentrations of Fe doping on the photoelectric properties of two-dimensional(2D) CuI semiconductor were studied based on the first-principles calculation method. The results show that both intrinsic 2D CuI and Fe-doped 2D CuI are direct band gap semiconductors. The total state density and partial wave state density of two-dimensional CuI doped with different concentrations of Fe can be seen that the increase in the number of energy bands at Fermi level is due to the influence of Fe-d and Fe-p orbital contributions after Fe doping, which can improve the conductivity of two-dimensional CuI. With the increase of Fe doping concentration, the peak value of ε1 decreases gradually, and the peak value moves to the high energy end in near the relatively high energy 3eV and 6eV, and the greater the concentration, the more obvious the shift. These results indicate that Fe doping can enhance the high temperature resistance of two-dimensional CuI. When a small amount of Fe is doped, the ε2 peak value increases, indicating that the material's ability to absorb electromagnetic waves is enhanced, which can stimulate more conductive electrons, and with the increase of Fe doping concentration, the absorption ability decreases, so the conductivity of two-dimensional CuI is inhibited. The absorption coefficients of intrinsic two-dimensional CuI and Fe-doped two-dimensional CuI indicate that the semiconductor has strong photon absorption capacity in the ultraviolet region. The two-dimensional CuI reflection coefficient of doped Fe atoms increases gradually with the increase of metallic properties of doped elements. This study provides theoretical reference for the application of two-dimensional semiconductor materials and two-dimensional CuI in optoelectronic devices.
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004Science 306 666-669

    [2]

    Liu A, Zhu H, Kim M G, Kim J, Noh Y Y 2021Adv. Sci. 8 2100546.

    [3]

    Yang J L, Wang L J, Ruan S Y, Jiang X L, Yang C 2024Int. J. Inorg. Mater. 9 1063(in Chinese) [杨佳霖,王亮君,阮丝园,蒋秀林,杨长2024无机材料学报91063]

    [4]

    Su H T, Zhao Y X, Ding J, Dong K X, Yu W J, He Y 2017JUSTC 47 621(in Chinese) [苏和堂,赵玉霞,丁健,董可秀,于文娟,何烨2017中国科学技术大学学报47621]

    [5]

    Wu H J 2021Master's Thesis (Zhejiang: Ningbo University) (in Chinese)[吴海娟2021硕士学位论文(浙江:宁波大学)]

    [6]

    Zhang L, Liu X L, Hao S T, Gu M, Li Q L, Huang S M, Zhang J N 2019J Synth Cryst 48 1405(in Chinese) [张蕾,刘小林,郝书童,顾牡,李乾利,黄世明,张娟楠2019人工晶体学报481405]

    [7]

    Kumar S, Battabyal M, Sethupathi K, Satapathy D K 2022Phys. Chem. Chem. Phys. 39 24228

    [8]

    Li Y W, Sun J F, Singh DJ 2018 Phys. Rev. Mater. 2 035003.

    [9]

    Ali SM, Almohammedi A, AlGarawi MS, AlGhamdi SS, Kassim H, Almutairi FN, Mahmood A, Saeed K 2023J. Mater. Sci.: Mater. Electron. 34 125

    [10]

    Yamada N, Ino R, Ninomiya Y 2016Chem. Mater. 28 4971

    [11]

    Tilemachou A, Zervos M, Othonos A, Pavloudis T, Kioseoglou J 2022Electron. Mater. 3 15

    [12]

    Ayhan ME, Shinde M, Todankar B, Desai P, Ranade AK, Tanemura M, Kalita G 2020Mater. Lett. 262 127074

    [13]

    Annadi A, Zhang N, Lim D B K, Gong H 2019 ACS Appl. Electron. Mater. 11029

    [14]

    Wang MX, Wei H M, Wu Y Q, Yang C, Han P G, Juan F Y, Chen Y, Xu F, Cao B Q 2019Phys. B 573 45

    [15]

    Chinnakutti K K, Panneerselvam V, Govindarajan D, Soman AK, Parasuraman K, Salammal S T 2019 Prog. Nat. Sci.: Mater. Int. 29 533

    [16]

    Li M, Zhang Z, Zhao Q, Huang M, Ouyang X 2023RSC Adv. 13 9615

    [17]

    Yao K K, Chen P, Zhang Z W, Li J, Ai R Q, Ma H F, Zhao B, Sun G Z, Wu R X, Tang X W, Hu J W, Duan X D 2018npj 2D Mater. Appl. 2 16

    [18]

    Xu J Y, Chen A L, Yu L F, Wei D H, Tian Q K, Wang H M, Qin Z Z, Qin G Z 2022Nanoscale 14 17401

    [19]

    Lee G, Lee Y J, Palotás K, Lee T, Soon A 2020J.Phys.Chem. C 124 16362

    [20]

    Huang L, Liu W L, Deng C S 2018Acta Phys. Sin. 67 341(in Chinese)[黄蕾,刘文亮,邓超生2018物理学报67341]

    [21]

    Li J H, Hao Z R, Xue R X, Kan H M,Guan Y Q 2025J. At. Mol. Phys. 42137(in Chinese) [李佳宏,郝增瑞,薛瑞鑫,阚红梅,关玉琴2025原子与分子物理学报42137]

    [22]

    Ye J F, Qing M Z, Xiao Q Q, Wang A S, He A N, Xie Q 2021Acta Phys. Sin. 70 227301(in Chinese) [ 叶建峰, 秦铭哲, 肖清泉, 王傲霜, 何安娜, 谢泉2021物理学报70227301]

    [23]

    Hao S, Liu X, Gu M, Li Q 2021In Tenth International Symposium on Ultrafast Phenomena and Terahertz Waves, September, 2021 p64

    [24]

    Hao S, Liu X, Gu M, Zhu J 2021Results Phys. 26 104461

    [25]

    Krishnaiah M, Kuma A, Mishra D, Kumar N, Song J, Jin SH 2023Mater. Lett. 340 134112

    [26]

    Taunk M, Kumar S, Aherwar A, Seo Y 2024J. Phys. Chem. Solids 184 111703

    [27]

    Song J, He T 2019J. At. Mol. Phys. 39 74(in Chinese) [宋娟,贺腾2019原子与分子物理学报3974]

    [28]

    Wang Y, Song J, Huang Z C, Jiang Y Q, Luo J Q, Guo X 2021Electron. Compon. Mater. 40 1202(in Chinese)[王一,宋娟,黄泽琛,江玉琪,罗珺茜,郭祥2021电子元件与材料401202]

    [29]

    Wang Y, Yao D L, Song J, Wang J H, Luo Z J, Ding, Guo X 2022Funct. Mater. 53 1112(in Chinese) [王一,姚登浪,宋娟,王继红,罗子江,丁召,郭祥2022功能材料531112]

    [30]

    Li B, Xing T, Zhong M Z, Huang L, Lei N, Zhang J, Li J B, Wei Z M 2017Nat. Commun. 8 1958

    [31]

    Mishra N, Pandey B P, Kumar S 2022IEEE Trans. Electron Devices 69 1553

    [32]

    Wang S X, Zhao X C, Pan D Q, Pang G W, Liu C X, Shi L Q, Liu G A, Lei B C, Huang Y N, Zhang L L 2020Acta Phys. Sin. 19 197101

    [33]

    Zhou Y G, Xiao-Dong J, Wang Z G, Xiao H Y, Gao F, Zu X T 2010Phys. Chem. Chem. Phys. 12 7588

    [34]

    Sevinçli H, Topsakal M, Durgun E, Ciraci S 2008Phys Rev B. 77 3107

  • [1] 张英楠, 张敏, 张派, 胡文博. 基于第一性原理GGA+U方法研究Si掺杂β-Ga2O3电子结构和光电性质. 物理学报, doi: 10.7498/aps.73.20231147
    [2] 陈光平, 杨金妮, 乔昌兵, 黄陆君, 虞静. Er3+掺杂TiO2的局域结构及电子性质的第一性原理研究. 物理学报, doi: 10.7498/aps.71.20221847
    [3] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, doi: 10.7498/aps.71.20220544
    [4] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20210268
    [5] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, doi: 10.7498/aps.70.20201636
    [6] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20201939
    [7] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算. 物理学报, doi: 10.7498/aps.70.20210134
    [8] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20202043
    [9] 高立科, 赵先豪, 刁心峰, 唐天宇, 唐延林. 第一性原理对CsSnBr3施加静水压力后光电性质的探究. 物理学报, doi: 10.7498/aps.70.20210397
    [10] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, doi: 10.7498/aps.68.20191258
    [11] 程超群, 李刚, 张文栋, 李朋伟, 胡杰, 桑胜波, 邓霄. B, P掺杂β-Si3N4的电子结构和光学性质研究. 物理学报, doi: 10.7498/aps.64.067102
    [12] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, doi: 10.7498/aps.62.246301
    [13] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, doi: 10.7498/aps.62.083102
    [14] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.61.036105
    [15] 刘越颖, 周铁戈, 路远, 左旭. 第一主族元素(Li,Na,K)和第二主族元素(Be,Mg,Ca) 掺杂二维六方氮化硼单层的第一性原理计算研究. 物理学报, doi: 10.7498/aps.61.236301
    [16] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, doi: 10.7498/aps.60.077104
    [17] 苏锐, 何捷, 陈家胜, 郭英杰. 金红石相VO2电子结构与光电性质的第一性原理研究. 物理学报, doi: 10.7498/aps.60.107101
    [18] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, doi: 10.7498/aps.59.515
    [19] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, doi: 10.7498/aps.57.7794
    [20] 孙 博, 刘绍军, 段素青, 祝文军. Fe的结构与物性及其压力效应的第一性原理计算. 物理学报, doi: 10.7498/aps.56.1598
计量
  • 文章访问数:  73
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-10

/

返回文章
返回