-
基于第一性原理计算方法研究不同浓度Fe掺杂对二维CuI半导体光电性质的影响。研究结果表明,本征二维CuI和Fe掺杂的二维CuI均为直接带隙半导体;不同浓度Fe掺杂的二维CuI的总态密度和分波态密度图可知费米能级处能带数目增多是由于Fe元素掺杂后Fe-d和Fe-p轨道贡献所影响,可以提高二维CuI的导电性。随着Fe掺杂浓度的增大,ε1峰值逐渐减小,且在能量相对较高的3eV和6eV附近的峰值向高能端移动,浓度越大移动越明显;这些均表明Fe掺杂可以增强二维CuI的耐高温性质;当少量Fe掺杂时ε2峰值增大,表明材料吸收电磁波的能力增强,可以激发更多导电电子,且随着Fe掺杂浓度的增加,吸收能力下降,因此二维CuI的导电性受到抑制。本征二维CuI和Fe掺杂后二维CuI的吸收系数表明该半导体在紫外区域均具有强的光子吸收能力。掺杂Fe原子的二维CuI反射系数随掺杂元素金属性增加逐渐增大。本文研究为二维半导体材料及二维CuI在光电子器件中的应用提供理论参考。The effects of different concentrations of Fe doping on the photoelectric properties of two-dimensional(2D) CuI semiconductor were studied based on the first-principles calculation method. The results show that both intrinsic 2D CuI and Fe-doped 2D CuI are direct band gap semiconductors. The total state density and partial wave state density of two-dimensional CuI doped with different concentrations of Fe can be seen that the increase in the number of energy bands at Fermi level is due to the influence of Fe-d and Fe-p orbital contributions after Fe doping, which can improve the conductivity of two-dimensional CuI. With the increase of Fe doping concentration, the peak value of ε1 decreases gradually, and the peak value moves to the high energy end in near the relatively high energy 3eV and 6eV, and the greater the concentration, the more obvious the shift. These results indicate that Fe doping can enhance the high temperature resistance of two-dimensional CuI. When a small amount of Fe is doped, the ε2 peak value increases, indicating that the material's ability to absorb electromagnetic waves is enhanced, which can stimulate more conductive electrons, and with the increase of Fe doping concentration, the absorption ability decreases, so the conductivity of two-dimensional CuI is inhibited. The absorption coefficients of intrinsic two-dimensional CuI and Fe-doped two-dimensional CuI indicate that the semiconductor has strong photon absorption capacity in the ultraviolet region. The two-dimensional CuI reflection coefficient of doped Fe atoms increases gradually with the increase of metallic properties of doped elements. This study provides theoretical reference for the application of two-dimensional semiconductor materials and two-dimensional CuI in optoelectronic devices.
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004Science 306 666-669
[2] Liu A, Zhu H, Kim M G, Kim J, Noh Y Y 2021Adv. Sci. 8 2100546.
[3] Yang J L, Wang L J, Ruan S Y, Jiang X L, Yang C 2024Int. J. Inorg. Mater. 9 1063(in Chinese) [杨佳霖,王亮君,阮丝园,蒋秀林,杨长2024无机材料学报91063]
[4] Su H T, Zhao Y X, Ding J, Dong K X, Yu W J, He Y 2017JUSTC 47 621(in Chinese) [苏和堂,赵玉霞,丁健,董可秀,于文娟,何烨2017中国科学技术大学学报47621]
[5] Wu H J 2021Master's Thesis (Zhejiang: Ningbo University) (in Chinese)[吴海娟2021硕士学位论文(浙江:宁波大学)]
[6] Zhang L, Liu X L, Hao S T, Gu M, Li Q L, Huang S M, Zhang J N 2019J Synth Cryst 48 1405(in Chinese) [张蕾,刘小林,郝书童,顾牡,李乾利,黄世明,张娟楠2019人工晶体学报481405]
[7] Kumar S, Battabyal M, Sethupathi K, Satapathy D K 2022Phys. Chem. Chem. Phys. 39 24228
[8] Li Y W, Sun J F, Singh DJ 2018 Phys. Rev. Mater. 2 035003.
[9] Ali SM, Almohammedi A, AlGarawi MS, AlGhamdi SS, Kassim H, Almutairi FN, Mahmood A, Saeed K 2023J. Mater. Sci.: Mater. Electron. 34 125
[10] Yamada N, Ino R, Ninomiya Y 2016Chem. Mater. 28 4971
[11] Tilemachou A, Zervos M, Othonos A, Pavloudis T, Kioseoglou J 2022Electron. Mater. 3 15
[12] Ayhan ME, Shinde M, Todankar B, Desai P, Ranade AK, Tanemura M, Kalita G 2020Mater. Lett. 262 127074
[13] Annadi A, Zhang N, Lim D B K, Gong H 2019 ACS Appl. Electron. Mater. 11029
[14] Wang MX, Wei H M, Wu Y Q, Yang C, Han P G, Juan F Y, Chen Y, Xu F, Cao B Q 2019Phys. B 573 45
[15] Chinnakutti K K, Panneerselvam V, Govindarajan D, Soman AK, Parasuraman K, Salammal S T 2019 Prog. Nat. Sci.: Mater. Int. 29 533
[16] Li M, Zhang Z, Zhao Q, Huang M, Ouyang X 2023RSC Adv. 13 9615
[17] Yao K K, Chen P, Zhang Z W, Li J, Ai R Q, Ma H F, Zhao B, Sun G Z, Wu R X, Tang X W, Hu J W, Duan X D 2018npj 2D Mater. Appl. 2 16
[18] Xu J Y, Chen A L, Yu L F, Wei D H, Tian Q K, Wang H M, Qin Z Z, Qin G Z 2022Nanoscale 14 17401
[19] Lee G, Lee Y J, Palotás K, Lee T, Soon A 2020J.Phys.Chem. C 124 16362
[20] Huang L, Liu W L, Deng C S 2018Acta Phys. Sin. 67 341(in Chinese)[黄蕾,刘文亮,邓超生2018物理学报67341]
[21] Li J H, Hao Z R, Xue R X, Kan H M,Guan Y Q 2025J. At. Mol. Phys. 42137(in Chinese) [李佳宏,郝增瑞,薛瑞鑫,阚红梅,关玉琴2025原子与分子物理学报42137]
[22] Ye J F, Qing M Z, Xiao Q Q, Wang A S, He A N, Xie Q 2021Acta Phys. Sin. 70 227301(in Chinese) [ 叶建峰, 秦铭哲, 肖清泉, 王傲霜, 何安娜, 谢泉2021物理学报70227301]
[23] Hao S, Liu X, Gu M, Li Q 2021In Tenth International Symposium on Ultrafast Phenomena and Terahertz Waves, September, 2021 p64
[24] Hao S, Liu X, Gu M, Zhu J 2021Results Phys. 26 104461
[25] Krishnaiah M, Kuma A, Mishra D, Kumar N, Song J, Jin SH 2023Mater. Lett. 340 134112
[26] Taunk M, Kumar S, Aherwar A, Seo Y 2024J. Phys. Chem. Solids 184 111703
[27] Song J, He T 2019J. At. Mol. Phys. 39 74(in Chinese) [宋娟,贺腾2019原子与分子物理学报3974]
[28] Wang Y, Song J, Huang Z C, Jiang Y Q, Luo J Q, Guo X 2021Electron. Compon. Mater. 40 1202(in Chinese)[王一,宋娟,黄泽琛,江玉琪,罗珺茜,郭祥2021电子元件与材料401202]
[29] Wang Y, Yao D L, Song J, Wang J H, Luo Z J, Ding, Guo X 2022Funct. Mater. 53 1112(in Chinese) [王一,姚登浪,宋娟,王继红,罗子江,丁召,郭祥2022功能材料531112]
[30] Li B, Xing T, Zhong M Z, Huang L, Lei N, Zhang J, Li J B, Wei Z M 2017Nat. Commun. 8 1958
[31] Mishra N, Pandey B P, Kumar S 2022IEEE Trans. Electron Devices 69 1553
[32] Wang S X, Zhao X C, Pan D Q, Pang G W, Liu C X, Shi L Q, Liu G A, Lei B C, Huang Y N, Zhang L L 2020Acta Phys. Sin. 19 197101
[33] Zhou Y G, Xiao-Dong J, Wang Z G, Xiao H Y, Gao F, Zu X T 2010Phys. Chem. Chem. Phys. 12 7588
[34] Sevinçli H, Topsakal M, Durgun E, Ciraci S 2008Phys Rev B. 77 3107
计量
- 文章访问数: 73
- PDF下载量: 2
- 被引次数: 0