搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe掺杂对二维CuI电子结构及光学性质的影响

张竺立 张凡 王凯雷 李超 王锦涛

引用本文:
Citation:

Fe掺杂对二维CuI电子结构及光学性质的影响

张竺立, 张凡, 王凯雷, 李超, 王锦涛
cstr: 32037.14.aps.74.20241325

Effect of Fe doping on electronic structure and optical properties of two-dimensional CuI

ZHANG Zhuli, ZHANG Fan, WANG Kailei, LI Chao, WANG Jintao
cstr: 32037.14.aps.74.20241325
PDF
HTML
导出引用
  • 基于第一性原理计算方法研究不同浓度Fe掺杂对二维CuI半导体光电性质的影响. 研究结果表明, 本征二维CuI和Fe掺杂的二维CuI均为直接带隙半导体; 不同浓度Fe掺杂的二维CuI的总态密度和分波态密度图可知, 费米能级处能带数目增多是由于Fe元素掺杂后Fe-d和Fe-p轨道贡献所影响, 可以提高二维CuI的导电性. 随着Fe掺杂浓度的增大, ε1峰值逐渐减小, 且在能量相对较高的3 eV和6 eV附近的峰值向高能端移动, 浓度越大移动越明显; 这些均表明Fe掺杂可以增强二维CuI的耐高温性质; 当少量Fe掺杂时ε2峰值增大, 表明材料吸收电磁波的能力增强, 可以激发更多导电电子, 且随着Fe掺杂浓度的增加, 吸收能力下降, 因此二维CuI的导电性受到抑制. 本征二维CuI和Fe掺杂后二维CuI的吸收系数表明该半导体在紫外区域均具有强的光子吸收能力. 掺杂Fe原子的二维CuI反射系数随掺杂元素金属性增加逐渐增大. 本文研究为二维半导体材料及二维CuI在光电子器件中的应用提供理论参考. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00060中访问获取.
    The effects of different concentrations of Fe doping on the photoelectric properties of two-dimensional (2D) CuI semiconductor are studied based on the first-principles calculation method. The results show that both intrinsic 2D CuI and Fe-doped 2D CuI are direct band gap semiconductors. The total state density and partial wave state density of 2D CuI doped with different concentrations of Fe show that the increase in the number of energy bands at Fermi level is due to the influence of Fe-d and Fe-p orbital contributions after Fe doping, which can improve the conductivity of 2D CuI. With the increase of Fe doping concentration, the peak value of ε1 decreases gradually, and the peak value moves toward the high-energy end near the relatively high energy 3 eV and 6 eV, and the greater the concentration, the more obvious the shift is. These results indicate that Fe doping can enhance the high temperature resistance of 2D CuI. When a small amount of Fe is doped, the ε2 peak value increases, indicating that the ability of material to absorb electromagnetic waves is enhanced, which can stimulate more conductive electrons, and with the increase of Fe doping concentration, the absorption capability decreases, so the conductivity of 2D CuI is inhibited. The absorption coefficient of intrinsic 2D CuI and Fe-doped 2D CuI indicate that the semiconductor has strong ability to absorb photons in the ultraviolet region. The 2D CuI reflection coefficient of doped Fe atoms increases gradually with the increase of metallic properties of doped elements. This study provides theoretical reference for applying the 2D semiconductor materials and 2D CuI to optoelectronic devices. All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00060.
      通信作者: 张竺立, zlzhang2023@163.com
    • 基金项目: 山西省科技重大专项计划“揭榜挂帅”项目(批准号: 202201030201008)资助的课题.
      Corresponding author: ZHANG Zhuli, zlzhang2023@163.com
    • Funds: Project supported by the Major Science and Technology Special Program “Unveiling the List and Leading the Way” Project of Shanxi Province, China (Grant No. 202201030201008).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Liu A, Zhu H, Kim M G, Kim J, Noh Y Y 2021 Adv. Sci. 8 2100546Google Scholar

    [3]

    杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长 2024 无机材料学报 39 1063Google Scholar

    Yang J L, Wang L J, Ruan S Y, Jiang X L, Yang C 2024 J. Inorg. Mater. 39 1063Google Scholar

    [4]

    苏和堂, 赵玉霞, 丁健, 董可秀, 于文娟, 何烨 2017 中国科学技术大学学报 47 621Google Scholar

    Su H T, Zhao Y X, Ding J, Dong K X, Yu W J, He Y 2017 J. Univ. Sci. Technol. Chin. 47 621Google Scholar

    [5]

    吴海娟 2021 硕士学位论文 (浙江: 宁波大学)

    Wu H J 2021 M. S. Thesis (Zhejiang: Ningbo University

    [6]

    张蕾, 刘小林, 郝书童, 顾牡, 李乾利, 黄世明, 张娟楠 2019 人工晶体学报 48 1405

    Zhang L, Liu X L, Hao S T, Gu M, Li Q L, Huang S M, Zhang J N 2019 J. Synth. Cryst. 48 1405

    [7]

    Kumar S, Battabyal M, Sethupathi K, Satapathy D K 2022 Phys. Chem. Chem. Phys. 39 24228

    [8]

    Li Y W, Sun J F, Singh D J 2018 Phys. Rev. Mater. 2 035003Google Scholar

    [9]

    Ali S M, Almohammedi A, AlGarawi M S, AlGhamdi S S, Kassim H, Almutairi F N, Mahmood A, Saeed K 2023 J. Mater. Sci. -Mater. Electron. 34 125Google Scholar

    [10]

    Yamada N, Ino R, Ninomiya Y 2016 Chem. Mater. 28 4971Google Scholar

    [11]

    Tilemachou A, Zervos M, Othonos A, Pavloudis T, Kioseoglou J 2022 Electron. Mater. 3 15Google Scholar

    [12]

    Ayhan M E, Shinde M, Todankar B, Desai P, Ranade A K, Tanemura M, Kalita G 2020 Mater. Lett. 262 127074Google Scholar

    [13]

    Annadi A, Zhang N, Lim D B K , Gong H 2019 ACS Appl. Electron. Mater. 1 1029

    [14]

    Wang M X, Wei H M, Wu Y Q, Yang C , Han P G, Juan F Y, Chen Y, Xu F, Cao B Q 2019 Physica B 573 45

    [15]

    Chinnakutti K K, Panneerselvam V, Govindarajan D, Soman A K, Parasuraman K, Salammal S T 2019 Prog. Nat. Sci. Mater. Int. 29 533Google Scholar

    [16]

    Li M, Zhang Z , Zhao Q, Huang M, Ouyang X 2023 RSC Adv. 13 9615

    [17]

    Yao K K, Chen P, Zhang Z W, Li J, Ai R Q, Ma H F, Zhao B, Sun G Z, Wu R X, Tang X W, Hu J W, Duan X D 2018 npj 2D Mater. Appl. 2 16Google Scholar

    [18]

    Xu J Y, Chen A L, Yu L F, Wei D H, Tian Q K, Wang H M, Qin Z Z, Qin G Z 2022 Nanoscale 14 17401Google Scholar

    [19]

    Lee G, Lee Y J, Palotás K, Lee T, Soon A 2020 J. Phys. Chem. C 124 16362Google Scholar

    [20]

    黄蕾, 刘文亮, 邓超生 2018 物理学报 67 136101Google Scholar

    Huang L, Liu W L, Deng C S 2018 Acta Phys. Sin. 67 136101Google Scholar

    [21]

    李佳宏, 郝增瑞, 薛瑞鑫, 阚红梅, 关玉琴 2025 原子与分子物理学报 42 046002

    Li J H, Hao Z R, Xue R X, Kan H M, Guan Y Q 2025 J. At. Mol. Phys. 42 046002

    [22]

    叶建峰, 秦铭哲, 肖清泉, 王傲霜, 何安娜, 谢泉 2021 物理学报 70 227301Google Scholar

    Ye J F, Qing M Z, Xiao Q Q, Wang A S, He A N, Xie Q 2021 Acta Phys. Sin. 70 227301Google Scholar

    [23]

    Hao S, Liu X, Gu M, Li Q 2021 The Tenth International Symposium on Ultrafast Phenomena and Terahertz Waves Chengdu, China, September, 2021 p64

    [24]

    Hao S, Liu X, Gu M, Zhu J 2021 Results Phys. 26 104461Google Scholar

    [25]

    Krishnaiah M, Kuma A, Mishra D, Kumar N, Song J, Jin S H 2023 Mater. Lett. 340 134112Google Scholar

    [26]

    Taunk M, Kumar S, Aherwar A, Seo Y 2024 J. Phys. Chem. Solids 184 111703Google Scholar

    [27]

    宋娟, 贺腾 2019 原子与分子物理学报 39 032003

    Song J, He T 2019 J. At. Mol. Phys. 39 032003

    [28]

    王一, 宋娟, 黄泽琛, 江玉琪, 罗珺茜, 郭祥 2021 电子元件与材料 40 1202

    Wang Y, Song J, Huang Z C, Jiang Y Q, Luo J Q, Guo X 2021 Electron. Compon. Mater. 40 1202

    [29]

    王一, 姚登浪, 宋娟, 王继红, 罗子江, 丁召, 郭祥 2022 功能材料 53 1112Google Scholar

    Wang Y, Yao D L, Song J, Wang J H, Luo Z J, Ding Z, Guo X 2022 Funct. Mater. 53 1112Google Scholar

    [30]

    Li B, Xing T, Zhong M Z, Huang L, Lei N, Zhang J, Li J B, Wei Z M 2017 Nat. Commun. 8 1958Google Scholar

    [31]

    Mishra N, Pandey B P, Kumar S 2022 IEEE Trans. Electron Devices 69 1553Google Scholar

    [32]

    王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽 2020 物理学报 19 197101Google Scholar

    Wang S X, Zhao X C, Pan D Q, Pang G W, Liu C X, Shi L Q, Liu G A, Lei B C, Huang Y N, Zhang L L 2020 Acta Phys. Sin. 19 197101Google Scholar

    [33]

    Zhou Y G , Xiao-Dong J, Wang Z G , Xiao H Y, Gao F, Zu X T 2010 Phys. Chem. Chem. Phys. 12 7588Google Scholar

    [34]

    Sevinçli H, Topsakal M, Durgun E, Ciraci S 2008 Phys. Rev. B 77 3107

  • 图 1  体CuI晶体结构示意图

    Fig. 1.  Schematic crystal structure of CuI.

    图 2  二维CuI及不同浓度Fe掺杂后的计算结构图 (a) 本征二维CuI; (b) 6.25% Fe:CuI; (c) 12.5% Fe:CuI; (d) 25%Fe:CuI

    Fig. 2.  Calculation structure of two-dimensional CuI and Fe doping with different concentrations: (a) Intrinsic two-dimensional CuI; (b) 6.25% Fe:CuI; (c) 12.5% Fe:CuI; (d) 25%Fe:CuI.

    图 3  二维CuI及不同浓度Fe掺杂后的能带结构图 (a)本征二维CuI; (b) 25%Fe:CuI; (c) 12.5%Fe:CuI; (d) 6.25%Fe:CuI

    Fig. 3.  Band structure of 2D CuI and Fe doping with different concentrations: (a) Intrinsic two-dimensional CuI; (b) 25%Fe:CuI; (c) 12.5%Fe:CuI; (d) 6.25%Fe:CuI.

    图 4  本征二维CuI及不同浓度Fe掺杂的二维CuI结构的总态密度和分波态密度图 (a)本征二维CuI; (b) 6.25% Fe:CuI; (c) 12.5% Fe:CuI; (d) 25%Fe:CuI

    Fig. 4.  Total state density and fractional state density of intrinsic two-dimensional CuI and two-dimensional CuI structures doped with different concentrations of Fe: (a) Intrinsic two-dimensional CuI; (b) 6.25% Fe:CuI; (c) 12.5% Fe:CuI; (d) 25%Fe:CuI.

    图 5  本征二维CuI与不同浓度Fe掺杂后二维CuI的介电函数 (a) 介电函数实部; (b) 介电函数虚部

    Fig. 5.  Dielectric function of intrinsic two-dimensional CuI doped with different concentrations of Fe: (a) Real part of the dielectric function; (b) imaginary part of the dielectric function.

    图 6  本征二维CuI与不同浓度下Fe掺杂后二维CuI的吸收和反射系数 (a) 吸收系数; (b) 反射系数

    Fig. 6.  Absorption and reflection coefficients of intrinsic two-dimensional CuI doped with Fe at different concentrations: (a) Absorption coefficient; (b) reflection coefficient.

    表 1  本征二维CuI及不同浓度Fe掺杂的二维CuI的键长与键布居

    Table 1.  Bond length and bond population of intrinsic two-dimensional CuI and Fe-doped two-dimensional CuI with different concentrations.

    不同结构 键型 键长/Å 键布居
    2D-CuICu—I2.5411.25
    25% Fe-2D-CuICu—I2.5620.38
    Fe—I2.4960.50
    12.5% Fe-2D-CuICu—I2.5480.39
    Fe—I2.4980.44
    6.25% Fe-2D-CuICu—I2.5560.39
    Fe—I2.5350.44
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Liu A, Zhu H, Kim M G, Kim J, Noh Y Y 2021 Adv. Sci. 8 2100546Google Scholar

    [3]

    杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长 2024 无机材料学报 39 1063Google Scholar

    Yang J L, Wang L J, Ruan S Y, Jiang X L, Yang C 2024 J. Inorg. Mater. 39 1063Google Scholar

    [4]

    苏和堂, 赵玉霞, 丁健, 董可秀, 于文娟, 何烨 2017 中国科学技术大学学报 47 621Google Scholar

    Su H T, Zhao Y X, Ding J, Dong K X, Yu W J, He Y 2017 J. Univ. Sci. Technol. Chin. 47 621Google Scholar

    [5]

    吴海娟 2021 硕士学位论文 (浙江: 宁波大学)

    Wu H J 2021 M. S. Thesis (Zhejiang: Ningbo University

    [6]

    张蕾, 刘小林, 郝书童, 顾牡, 李乾利, 黄世明, 张娟楠 2019 人工晶体学报 48 1405

    Zhang L, Liu X L, Hao S T, Gu M, Li Q L, Huang S M, Zhang J N 2019 J. Synth. Cryst. 48 1405

    [7]

    Kumar S, Battabyal M, Sethupathi K, Satapathy D K 2022 Phys. Chem. Chem. Phys. 39 24228

    [8]

    Li Y W, Sun J F, Singh D J 2018 Phys. Rev. Mater. 2 035003Google Scholar

    [9]

    Ali S M, Almohammedi A, AlGarawi M S, AlGhamdi S S, Kassim H, Almutairi F N, Mahmood A, Saeed K 2023 J. Mater. Sci. -Mater. Electron. 34 125Google Scholar

    [10]

    Yamada N, Ino R, Ninomiya Y 2016 Chem. Mater. 28 4971Google Scholar

    [11]

    Tilemachou A, Zervos M, Othonos A, Pavloudis T, Kioseoglou J 2022 Electron. Mater. 3 15Google Scholar

    [12]

    Ayhan M E, Shinde M, Todankar B, Desai P, Ranade A K, Tanemura M, Kalita G 2020 Mater. Lett. 262 127074Google Scholar

    [13]

    Annadi A, Zhang N, Lim D B K , Gong H 2019 ACS Appl. Electron. Mater. 1 1029

    [14]

    Wang M X, Wei H M, Wu Y Q, Yang C , Han P G, Juan F Y, Chen Y, Xu F, Cao B Q 2019 Physica B 573 45

    [15]

    Chinnakutti K K, Panneerselvam V, Govindarajan D, Soman A K, Parasuraman K, Salammal S T 2019 Prog. Nat. Sci. Mater. Int. 29 533Google Scholar

    [16]

    Li M, Zhang Z , Zhao Q, Huang M, Ouyang X 2023 RSC Adv. 13 9615

    [17]

    Yao K K, Chen P, Zhang Z W, Li J, Ai R Q, Ma H F, Zhao B, Sun G Z, Wu R X, Tang X W, Hu J W, Duan X D 2018 npj 2D Mater. Appl. 2 16Google Scholar

    [18]

    Xu J Y, Chen A L, Yu L F, Wei D H, Tian Q K, Wang H M, Qin Z Z, Qin G Z 2022 Nanoscale 14 17401Google Scholar

    [19]

    Lee G, Lee Y J, Palotás K, Lee T, Soon A 2020 J. Phys. Chem. C 124 16362Google Scholar

    [20]

    黄蕾, 刘文亮, 邓超生 2018 物理学报 67 136101Google Scholar

    Huang L, Liu W L, Deng C S 2018 Acta Phys. Sin. 67 136101Google Scholar

    [21]

    李佳宏, 郝增瑞, 薛瑞鑫, 阚红梅, 关玉琴 2025 原子与分子物理学报 42 046002

    Li J H, Hao Z R, Xue R X, Kan H M, Guan Y Q 2025 J. At. Mol. Phys. 42 046002

    [22]

    叶建峰, 秦铭哲, 肖清泉, 王傲霜, 何安娜, 谢泉 2021 物理学报 70 227301Google Scholar

    Ye J F, Qing M Z, Xiao Q Q, Wang A S, He A N, Xie Q 2021 Acta Phys. Sin. 70 227301Google Scholar

    [23]

    Hao S, Liu X, Gu M, Li Q 2021 The Tenth International Symposium on Ultrafast Phenomena and Terahertz Waves Chengdu, China, September, 2021 p64

    [24]

    Hao S, Liu X, Gu M, Zhu J 2021 Results Phys. 26 104461Google Scholar

    [25]

    Krishnaiah M, Kuma A, Mishra D, Kumar N, Song J, Jin S H 2023 Mater. Lett. 340 134112Google Scholar

    [26]

    Taunk M, Kumar S, Aherwar A, Seo Y 2024 J. Phys. Chem. Solids 184 111703Google Scholar

    [27]

    宋娟, 贺腾 2019 原子与分子物理学报 39 032003

    Song J, He T 2019 J. At. Mol. Phys. 39 032003

    [28]

    王一, 宋娟, 黄泽琛, 江玉琪, 罗珺茜, 郭祥 2021 电子元件与材料 40 1202

    Wang Y, Song J, Huang Z C, Jiang Y Q, Luo J Q, Guo X 2021 Electron. Compon. Mater. 40 1202

    [29]

    王一, 姚登浪, 宋娟, 王继红, 罗子江, 丁召, 郭祥 2022 功能材料 53 1112Google Scholar

    Wang Y, Yao D L, Song J, Wang J H, Luo Z J, Ding Z, Guo X 2022 Funct. Mater. 53 1112Google Scholar

    [30]

    Li B, Xing T, Zhong M Z, Huang L, Lei N, Zhang J, Li J B, Wei Z M 2017 Nat. Commun. 8 1958Google Scholar

    [31]

    Mishra N, Pandey B P, Kumar S 2022 IEEE Trans. Electron Devices 69 1553Google Scholar

    [32]

    王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽 2020 物理学报 19 197101Google Scholar

    Wang S X, Zhao X C, Pan D Q, Pang G W, Liu C X, Shi L Q, Liu G A, Lei B C, Huang Y N, Zhang L L 2020 Acta Phys. Sin. 19 197101Google Scholar

    [33]

    Zhou Y G , Xiao-Dong J, Wang Z G , Xiao H Y, Gao F, Zu X T 2010 Phys. Chem. Chem. Phys. 12 7588Google Scholar

    [34]

    Sevinçli H, Topsakal M, Durgun E, Ciraci S 2008 Phys. Rev. B 77 3107

  • [1] 张英楠, 张敏, 张派, 胡文博. 基于第一性原理GGA+U方法研究Si掺杂β-Ga2O3电子结构和光电性质. 物理学报, 2024, 73(1): 017102. doi: 10.7498/aps.73.20231147
    [2] 陈光平, 杨金妮, 乔昌兵, 黄陆君, 虞静. Er3+掺杂TiO2的局域结构及电子性质的第一性原理研究. 物理学报, 2022, 71(24): 246102. doi: 10.7498/aps.71.20221847
    [3] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [4] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [5] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [6] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [7] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算. 物理学报, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [8] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [9] 高立科, 赵先豪, 刁心峰, 唐天宇, 唐延林. 第一性原理对CsSnBr3施加静水压力后光电性质的探究. 物理学报, 2021, 70(15): 158801. doi: 10.7498/aps.70.20210397
    [10] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [11] 程超群, 李刚, 张文栋, 李朋伟, 胡杰, 桑胜波, 邓霄. B, P掺杂β-Si3N4的电子结构和光学性质研究. 物理学报, 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [12] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [13] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [14] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [15] 刘越颖, 周铁戈, 路远, 左旭. 第一主族元素(Li,Na,K)和第二主族元素(Be,Mg,Ca) 掺杂二维六方氮化硼单层的第一性原理计算研究. 物理学报, 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [16] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [17] 苏锐, 何捷, 陈家胜, 郭英杰. 金红石相VO2电子结构与光电性质的第一性原理研究. 物理学报, 2011, 60(10): 107101. doi: 10.7498/aps.60.107101
    [18] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [19] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [20] 孙 博, 刘绍军, 段素青, 祝文军. Fe的结构与物性及其压力效应的第一性原理计算. 物理学报, 2007, 56(3): 1598-1602. doi: 10.7498/aps.56.1598
计量
  • 文章访问数:  273
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-22
  • 修回日期:  2024-11-14
  • 上网日期:  2024-12-10

/

返回文章
返回