搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫掺杂氧化锌纳米线电子性质和光学性质的第一性原理研究

黄俊刚 方艺梅 江银河 郑凯 陈凯轩 程梅娟 林秋宝

引用本文:
Citation:

硫掺杂氧化锌纳米线电子性质和光学性质的第一性原理研究

黄俊刚, 方艺梅, 江银河, 郑凯, 陈凯轩, 程梅娟, 林秋宝

First-principles study of electronic and optical properties of sulfur-doped zinc oxide nanowires

HUANG Jungang, FANG Yimei, JIANG Yinhe, ZHENG Kai, CHEN Kaixuan, CHENG Meijuan, LIN Qiubao
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 基于密度泛函理论的第一性原理计算, 硫掺杂氧化锌纳米线的电子与光学性质研究揭示了掺杂对材料性能的调控机制. 硫的引入导致ZnO晶格发生局部畸变, 形成替位式掺杂结构, 显著改变了其本征能带结构, 费米能级向导带底偏移, 禁带宽度出现红移. 分轨道能带图表明, 硫的3p轨道在价带顶附近形成杂质能级, 增强了载流子浓度和迁移率. 硫原子的掺杂也诱导纳米线在光学性质方面发生显著变化, 比如, 介电函数实部和虚部展现了新的特征峰, 吸收系数显著提高, 且随着掺杂浓度的增大, 光学性质的变化更加显著. 该研究为硫掺杂氧化锌纳米线在光电探测器、发光二极管等器件中的性能优化提供了重要的理论支撑, 揭示了微观电子结构与宏观光学响应之间的内在关联机制.
    Based on first-principles calculations within the framework of density functional theory, the structural features, electronic and optical properties of sulfur-doped ZnO nanowires are systematically investigated in this work, revealing the regulation mechanism of doping on material performance. The results show that sulfur incorporation induces local lattice distortions in ZnO, resulting in a substitutional doping structure. These structural modifications significantly affect the electronic properties, causing the Fermi level to shift toward the bottom of the conduction band and a redshift in the band gap. Importantly, the orbital-projected band structures reveal that the 3p orbitals of sulfur generate impurity states near the top of the valence band, thereby enhancing both carrier concentration and mobility. Furthermore, sulfur doping leads to a notable change in the optical properties, including the emergence of new characteristic peaks in both the real and imaginary parts of the dielectric function, as well as considerable increases in optical parameters such as the absorption coefficient, extinction coefficient, and reflectivity. Moreover, as the doping concentration increases, the changes in optical properties become more pronounced. Overall, this investigation offers valuable theoretical insights into optimizing the performance of sulfur-doped ZnO nanowires in optoelectronic applications, such as photodetectors and light-emitting diodes, revealing the intrinsic correlation mechanism between the microscopic electronic structure and the macroscopic optical response.
  • 图 1  4种纳米线结构 (a) 六边形氧化锌纳米线结构; (b) 六角星形氧化锌纳米线结构; (c) 12个硫掺杂的六角星形纳米线结构(ZnSO); (d) 24个硫掺杂的六角星形纳米线结构(ZnSSO); 其中红球代表O原子, 灰球代表Zn原子, 黄球代表S原子

    Fig. 1.  Four nanowire configurations: (a) Hexagonal ZnO; (b) star-shaped ZnO; (c) 12 S-doped star ZnO (ZnSO); (d) 24 S-doped star ZnO (ZnSSO). Atomic colors: O (red); Zn (gray); S (yellow).

    图 2  各高对称点Γ, Z, R对应的布里渊区位置, 轴向方向为(0001)

    Fig. 2.  Locations within the Brillouin zone corresponding to the high-symmetry points Γ, Z, and R, with the axial direction along (0001).

    图 3  能带结构 (a) 六角星形氧化锌纳米线能带结构; (b) 12个硫掺杂的六角星形氧化锌纳米线结构(ZnSO); (c) 24个硫掺杂的六角星形氧化锌纳米线结构(ZnSSO); 高对称点Γ, Z, R对应的布里渊区位置分别为Γ(0, 0, 0), Z(0, 0, 0.5), R(0.5, 0.5, 0.5); s纳米线的轴向方向为(0001)

    Fig. 3.  Band structures: (a) Star-shaped ZnO nanowire; (b) 12 S-doped star-shaped nanowire (ZnSO); (c) 24 S-doped star-shaped nanowire (ZnSSO). The high-symmetry points Γ, Z, and R correspond to the following positions in the Brillouin zone: Γ (0, 0, 0), Z (0, 0, 0.5), and R (0.5, 0.5, 0.5). The axial direction of the nanowire is (0001).

    图 4  GGA+U计算的能带结构 (a) 六角星形氧化锌纳米线能带结构; (b) 12个硫掺杂的六角星形氧化锌纳米线结构(ZnSO); (c) 24个硫掺杂的六角星形氧化锌纳米线结构(ZnSSO); 高对称点Γ, Z, R对应的布里渊区位置分别为Γ(0, 0, 0), Z(0, 0, 0.5), R(0.5, 0.5, 0.5); 纳米线的轴向方向为(0001)

    Fig. 4.  Band structure of GGA+U calculations: (a) Star-shaped ZnO nanowire; (b) 12 S-doped star-shaped nanowire (ZnSO); (c) 24 S-doped star-shaped nanowire (ZnSSO). The high-symmetry points Γ, Z, and R correspond to the following positions in the Brillouin zone: Γ (0, 0, 0), Z (0, 0, 0.5), and R (0.5, 0.5, 0.5). The axial direction of the nanowire is (0001).

    图 5  六角星形ZnO纳米线的原子轨道投影能带结构, 其中(a)为总的, (b)为O原子, (c)为Zn原子; 六角星形ZnSO纳米线的原子轨道投影能带结构, 其中(d)为总的, (e)为O原子, (f)为Zn原子, (g)为S原子; 六角星形ZnSSO纳米线的原子轨道投影能带结构, 其中(h)为总的, (i)为O原子, (j)为Zn原子, (k)为S原子. 高对称点Γ, Z, R对应的布里渊区位置分别为 Γ(0, 0, 0), Z(0, 0, 0.5), R(0.5, 0.5, 0.5); 纳米线的轴向方向为(0001)

    Fig. 5.  Orbital-projected band structures of hexagonal star-shaped: (a)–(c) ZnO nanowire (total, O, Zn); (d)–(g) ZnSO nanowire (total, O, Zn, S); (h)–(k) ZnSSO nanowire (total, O, Zn, S). The high-symmetry points Γ, Z, and R correspond to the following positions in the Brillouin zone: Γ (0, 0, 0), Z (0, 0, 0.5), and R (0.5, 0.5, 0.5). The axial direction of the nanowire is (0001).

    图 6  介电函数 (a) 六边形氧化锌纳米线介电函数实部和虚部; (b) 六角星形氧化锌纳米线介电函数实部和虚部; (c) 12个硫掺杂的六角星形纳米线(ZnSO)介电函数实部和虚部; (d) 24个硫掺杂的六角星形纳米线(ZnSSO)介电函数实部和虚部

    Fig. 6.  Dielectric functions (real and imaginary parts): (a) Hexagonal ZnO nanowire; (b) hexagonal star-shaped ZnO nanowire; (c) 12 S-doped star-shaped nanowire (ZnSO); (d) 24 S-doped star-shaped nanowire (ZnSSO).

    图 7  六边形ZnO与六角星形ZnO, ZnSO, ZnSSO纳米线的折射率随入射光能量的变化

    Fig. 7.  Refractive indices of hexagonal ZnO nanowire, hexagonal star-shaped ZnO nanowire, 12 S-doped star-shaped nanowire (ZnSO), 24 S-doped star-shaped nanowire (ZnSSO) as a function of incident photon energy.

    图 8  六边形ZnO与六角星形ZnO, ZnSO, ZnSSO纳米线的消光系数随入射光能量的变化

    Fig. 8.  Extinction coefficients of hexagonal ZnO nanowire, star-shaped ZnO nanowire, 12 S-doped star-shaped nanowire (ZnSO), 24 S-doped star-shaped nanowire (ZnSSO) as a function of incident photon energy.

    图 9  六边形ZnO与六角星形ZnO, ZnSO, ZnSSO纳米线的吸收系数

    Fig. 9.  Absorption coefficients of hexagonal ZnO nanowire, star-shaped ZnO nanowire, 12 S-doped star-shaped nanowire (ZnSO), 24 S-doped star-shaped nanowire (ZnSSO).

    图 10  六边形ZnO与六角星形ZnO, ZnSO, ZnSSO纳米线的反射率

    Fig. 10.  Reflectance spectra of hexagonal ZnO nanowire, star-shaped ZnO nanowire, 12 S-doped star-shaped nanowire (ZnSO), 24 S-doped star-shaped nanowire (ZnSSO).

    表 1  星形氧化锌纳米线(ZnO Star)、12个硫掺杂的六角星形纳米线(ZnSO)以及24个硫掺杂的六角星形纳米线结构(ZnSSO)的结构参数

    Table 1.  Structural parameters for hexagonal star-shaped ZnO, 12 S-doped star ZnO(ZnSO) and 24 S-doped star ZnO(ZnSSO).

    Structural parameters ZnO Star ZnSO ZnSSO
    Lateral dimensions
    a, b
    33.0×33.0 33.0×33.0 30.0×30.0
    Axial dimension c 5.2065 5.2065 5.2065
    Unit cell volume/ų 5673.5 5673.5 4685.9
    Number of O atoms 102 90 78
    Number of S atoms 0 12 24
    Number of Zn atoms 102 102 102
    下载: 导出CSV
  • [1]

    Djurišić Dr A B, Leung Y H 2006 Small 2 944Google Scholar

    [2]

    Foreman J V, Li J Y, Peng H Y, Choi S, Everitt H O, Liu J 2006 Nano Lett. 6 1126Google Scholar

    [3]

    Foreman J V, Everitt H O, Yang J, Liu J J 2007 Appl. Phys. Lett. 91 011902Google Scholar

    [4]

    Özgür Ü, Alivov Y I, Liu C L, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J, Morkoç H 2005 J. Appl. Phys. 98 041301Google Scholar

    [5]

    Triboulet R, Perrière J 2003 Prog. Cryst. Growth Charact. Mater. 47 65Google Scholar

    [6]

    Greene L E, Law M, Tan D H, Montano M, Goldberger J, Somorjai G, Yang P D 2005 Nano Lett. 5 1231Google Scholar

    [7]

    Huang M H, Wu Y, Feick H, Tran N, Weber E, Yang P 2001 Adv. Mater. 13 113Google Scholar

    [8]

    Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R, Yang P D 2001 Science 292 1897Google Scholar

    [9]

    Li S Y, Lin P, Lee C Y, Tseng T Y 2004 J. Appl. Phys. 95 3711Google Scholar

    [10]

    Liu C H, Zapien J A, Yao Y, Meng X M, Lee C S, Fan S S, Lifshitz Y, Lee S T 2003 Adv. Mater. 15 838Google Scholar

    [11]

    Yao B D, Chan Y F, Wang N 2002 Appl. Phys. Lett. 81 757Google Scholar

    [12]

    Guo M, Diao P, Cai S M 2005 J. Solid State Chem. 178 1864Google Scholar

    [13]

    Hartanto A B, Ning X, Nakata Y, Okada T 2004 Appl. Phys. A: Mater. Sci. Process. 78 299Google Scholar

    [14]

    Liu B, Zeng H C 2003 J. Am. Chem. Soc. 125 4430Google Scholar

    [15]

    Park W, Jun Y, Jung S, Yi G C 2003 Appl. Phys. Lett. 82 964Google Scholar

    [16]

    Yu W D, Li X M, Gao X D 2004 Appl. Phys. Lett. 84 2658Google Scholar

    [17]

    Delin A, Ravindran P, Eriksson O, Wills J M 1998 Int. J. Quantum Chem. 69 349Google Scholar

    [18]

    Ravindran P, Delin A, Johansson B, Eriksson O, Wills J M 1999 Phys. Rev. B 59 1776Google Scholar

    [19]

    Lucarelli A, Lupi S, Calvani P, Maselli P, De Marzi G, Roy P, Saini N L, Bianconi A, Ito T, Oka K 2002 Phys. Rev. B 65 054551

    [20]

    Karazhanov S Z, Ravindran P, Kjekshus A, Fjellvåg H, Svensson B G 2007 Phys. Rev. B 75 155104Google Scholar

    [21]

    Kong F J, Jiang G 2009 Physica B 404 2340Google Scholar

    [22]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [23]

    Schmidt-Mende L, Macmanus-Driscoll J L 2007 Mater. Today 10 40

    [24]

    Choi A, Kim K, Jung H I, Lee S Y 2010 Sens. Actuat. B 148 577Google Scholar

    [25]

    Shi L H, Chen J, Zhang G, Li B W 2012 Phys. Lett. A 376 978Google Scholar

    [26]

    Zhao Q D, Xie T F, Peng L L, Lin Y H, Wang P, Peng L, Wang D J 2007 J. Phys. Chem. C 111 17136Google Scholar

    [27]

    Mousavi S H, Haratizadeh H, Kitai A H 2011 Mater. Lett. 65 2470Google Scholar

    [28]

    Cho J, Lin Q B, Yang S, Simmons J G, Cheng Y W, Lin E, Yang J Q, Foreman J V, Everitt H O, Yang W T, Kim J, Liu J 2012 Nano Res. 5 20Google Scholar

    [29]

    Lin Q B, Wu S Q, Zhu Z Z 2016 AIP Adv. 6 095219Google Scholar

    [30]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115Google Scholar

    [31]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [33]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [34]

    Ma Y, Yan H, Yu X X, Gong P, Li Y L, Ma W D, Fang X Y 2024 J. Appl. Phys. 135 054101Google Scholar

    [35]

    Goh E S, Mah J W, Yoon T L 2017 Comput. Mater. Sci. 138 111Google Scholar

    [36]

    Harun K, Salleh N A, Deghfel B, Yaakob M K, Mohamad A A 2020 Results Phys. 16 102829Google Scholar

    [37]

    Hu J Q, Xu L H, Wu S Q, Zhu Z Z 2019 Curr. Appl. Phys. 19 1222Google Scholar

    [38]

    Gajdoš M, Hummer K, Kresse G, Furthmueller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [39]

    Hu J Q, Shi X H, Wu S Q, Ho K M, Zhu Z Z 2019 Nanoscale Res. Lett. 14 288Google Scholar

    [40]

    Yang L Z, Liu W K, Yan H, Yu X X, Gong P, Li Y L, Fang X Y 2024 Eur. Phys. J. Plus 139 66Google Scholar

    [41]

    Ould Ne M L, El Hachimi A G, Boujnah M, Benyoussef A, El Kenz A 2018 Optik 158 693Google Scholar

  • [1] 陈光平, 杨金妮, 乔昌兵, 黄陆君, 虞静. Er3+掺杂TiO2的局域结构及电子性质的第一性原理研究. 物理学报, doi: 10.7498/aps.71.20221847
    [2] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, doi: 10.7498/aps.68.20191258
    [3] 徐大庆, 赵子涵, 李培咸, 王超, 张岩, 刘树林, 童军. 不同价态Mn掺杂InN电子结构、磁学和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.67.20172504
    [4] 唐士惠, 操秀霞, 何林, 祝文军. 空位缺陷和相变对冲击压缩下蓝宝石光学性质的影响. 物理学报, doi: 10.7498/aps.65.146201
    [5] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.65.014212
    [6] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.64.224218
    [7] 彭琼, 何朝宇, 李金, 钟建新. MoSi2薄膜电子性质的第一性原理研究. 物理学报, doi: 10.7498/aps.64.047102
    [8] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.62.073101
    [9] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.61.193102
    [10] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.61.036105
    [11] 王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生. 不同浓度Er掺杂Si纳米晶粒电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.60.127302
    [12] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, doi: 10.7498/aps.60.077104
    [13] 焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮. 闪锌矿GaN弹性性质、电子结构和光学性质外压力效应的理论研究. 物理学报, doi: 10.7498/aps.60.117103
    [14] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.59.8071
    [15] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.59.4930
    [16] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究. 物理学报, doi: 10.7498/aps.59.3426
    [17] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.58.1917
    [18] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.57.7800
    [19] 郭建云, 郑 广, 何开华, 陈敬中. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.57.3740
    [20] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.56.5359
计量
  • 文章访问数:  540
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-16
  • 修回日期:  2025-07-06
  • 上网日期:  2025-07-24

/

返回文章
返回