-
基于密度泛函理论的第一性原理计算,硫掺杂氧化锌纳米线的电子与光学性质研究揭示了掺杂对材料性能的调控机制。硫的引入导致ZnO晶格发生局部畸变,形成替位式掺杂结构,显著改变了其本征能带结构,费米能级向导带底偏移,禁带宽度出现红移。分轨道能带图表明,硫的3p轨道在价带顶附近形成杂质能级,增强了载流子浓度和迁移率。硫原子的掺杂也诱导纳米线在光学性质方面发生显著变化,比如,介电函数实部和虚部展现了新的特征峰,吸收系数显著提高,且随着掺杂浓度的增加,光学性质的变化更加显著。该研究为硫掺杂氧化锌纳米线在光电探测器、发光二极管等器件中的性能优化提供了重要的理论支撑,揭示了微观电子结构与宏观光学响应之间的内在关联机制。Based on first-principles calculations within the framework of density functional theory, this study systematically investigated the structural features, electronic and optical properties of sulfur-doped ZnO nanowires, revealing the regulation mechanism of doping on material performance. The results demonstrated that sulfur incorporation induces local lattice distortions in ZnO, resulting in a substitutional doping structure. These structural modifications significantly influence the electronic properties, causing a shift of the Fermi level toward the bottom of the conduction band and a redshift in the band gap. Importantly, the orbital-projected band structures reveal that the 3p orbitals of sulfur generate impurity states near the top of the valence band, thereby enhancing both carrier concentration and mobility. Furthermore, sulfur doping leads to notable alterations in the optical properties, including the emergence of new characteristic peaks in both the real and imaginary parts of the dielectric function, as well as considerable increases in optical parameters such as the absorption coefficient, extinction coefficient, and reflectivity. Moreover, as the doping concentration increases, the changes in optical properties become more pronounced. Overall, this investigation offers valuable theoretical insights for optimizing the performance of sulfur-doped ZnO nanowires in optoelectronic applications, such as photodetectors and light-emitting diodes, revealing the intrinsic correlation mechanism between the microscopic electronic structure and the macroscopic optical response.
-
Keywords:
- Sulfur-doped zinc oxide /
- Electronic properties /
- Optical properties /
- First-principles calculations
-
[1] Djurišić Dr A B, Leung Y H 2006Small 2 944
[2] Foreman J V, Li J Y, Peng H Y, Choi S, Everitt H O, Liu J 2006Nano Lett. 6 1126
[3] Foreman J V, Everitt H O, Yang J, Liu J J 2007Appl. Phys. Lett. 91 011902
[4] Özgür Ü, Alivov Y I, Liu C L, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J, Morkoç H 2005J. Appl. Phys. 98 041301
[5] Triboulet R, Perrière J 2003Prog. Cryst. Growth Charact. Mater. 47 65
[6] Greene L E, Law M, Tan D H, Montano M, Goldberger J, Somorjai G, Yang P D 2005Nano Lett. 5 1231
[7] Huang M H, Wu Y, Feick H, Tran N, Weber E, Yang P 2001Adv. Mater. 13 113
[8] Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R, Yang P D 2001Science 292 1897
[9] Li S Y, Lin P, Lee C Y, Tseng T Y 2004J. Appl. Phys. 95 3711
[10] Liu C H, Zapien J A, Yao Y, Meng X M, Lee C S, Fan S S, Lifshitz Y, Lee S T 2003Adv. Mater. 15 838
[11] Yao B, Chan Y, Wang N 2002Appl. Phys. Lett. 81 757
[12] Guo M, Diao P, Cai S M 2005J. Solid State Chem. 178 1864
[13] Hartanto A B, Ning X, Nakata Y, Okada T 2004Appl. Phys. A:Mater. Sci. Process. 78 299
[14] Liu B, Zeng H C 2003J. Am. Chem. Soc. 125 4430
[15] Park W, Jun Y, Jung S, Yi G-C 2003Appl. Phys. Lett. 82 964
[16] Yu W D, Li X M, Gao X D 2004Appl. Phys. Lett. 84 2658
[17] Delin A, Ravindran P, Eriksson O, Wills J M 1998Int. J. Quantum Chem. 69 349
[18] Ravindran P, Delin A, Johansson B, Eriksson O, Wills J M 1999Phys. Rev. B 59 1776
[19] Lucarelli A, Lupi S, Calvani P, Maselli P, De Marzi G, Roy P, Saini N L, Bianconi A, Ito T, Oka K 2002Phys. Rev. B 65 054551
[20] Karazhanov S Z, Ravindran P, Kjekshus A, Fjellvåg H, Svensson B G 2007Phys. Rev. B 75 155104
[21] Kong F J, Jiang G 2009Physica B 404 2340
[22] Monkhorst H J, Pack J D 1976Phys. Rev. B 13 5188
[23] Schmidt-Mende L, Macmanus-Driscoll J L 2007Mater. Today 10 40
[24] Choi A, Kim K, Jung H-I, Lee S Y 2010Sens. Actuators, B 148 577
[25] Shi L H, Chen J, Zhang G, Li B W 2012Phys. Lett. A 376 978
[26] Zhao Q D, Xie T F, Peng L L, Lin Y H, Wang P, Peng L, Wang D J 2007J. Phys. Chem. C 111 17136
[27] Mousavi S H, Haratizadeh H, Kitai A H 2011Mater. Lett. 65 2470
[28] Cho J, Lin Q B, Yang S, Simmons J G, Cheng Y W, Lin E, Yang J Q, Foreman J V, Everitt H O, Yang W T, Kim J, Liu J 2012Nano Res. 5 20
[29] Lin Q B, Wu S Q, Zhu Z Z 2016AIP Adv. 6 095219
[30] Kresse G, Hafner J 1993Phys. Rev. B 48 13115
[31] Kresse G, Furthmüller J 1996Comput. Mater. Sci. 6 15
[32] Perdew J P, Burke K, Ernzerhof M 1996Phys. Rev. Lett. 77 3865
[33] Perdew J P, Wang Y 1992Phys. Rev. B 45 13244
[34] Ma Y, Yan H, Yu X X, Gong P, Li Y L, Ma W D, Fang X Y 2024J. Appl. Phys. 135 054101
[35] Goh E S, Mah J W, Yoon T L 2017Comput. Mater. Sci. 138 111
[36] Harun K, Salleh N A, Deghfel B, Yaakob M K, Mohamad A A 2020Results Phys. 16 102829
[37] Hu J Q, Xu L H, Wu S Q, Zhu Z Z 2019Curr. Appl. Phys. 19 1222
[38] Gajdoš M, Hummer K, Kresse G, Furthmueller J, Bechstedt F 2006Phys. Rev. B 73 045112
[39] Hu J Q, Shi X H, Wu S Q, Ho K M, Zhu Z Z 2019Nanoscale Res. Lett. 14 288
[40] Yang L Z, Liu W K, Yan H, Yu X X, Gong P, Li Y L, Fang X Y 2024Eur. Phys. J. Plus 139 66
[41] Ould Ne M L, El Hachimi A G, Boujnah M, Benyoussef A, El Kenz A 2018Optik 158 693
计量
- 文章访问数: 28
- PDF下载量: 0
- 被引次数: 0