-
混合阴离子硫卤化物凭借其独特的晶格动力学和可调电子结构,在热电与光电材料领域备受关注。本文基于密度泛函理论的第一性原理计算,结合玻尔兹曼输运方程、声子重整化模型,研究了AgBiSCl2的光电、热电性能。结果表明,AgBiSCl2为直接带隙半导体且带隙为1.72 eV,紫外区光吸收系数达到1×106 cm-1,3 μm厚度下光谱极限最大效率为28.06%。AgBiSCl2中Ag原子离域引起的rattling振动引发强非谐声子散射,导致极低的晶格热导率,在300 K时平均热导率中kp和kc分别为0.246 W/mK和0.132W/mK。700 K时p型最大ZT为0.77和n型为0.69;由此表明AgBiSCl2在高效热电能量转换与紫外光电探测器领域具有重要应用潜力,为设计多功能材料提供了理论参考。
-
关键词:
- 非谐晶格动力学 /
- 热电材料 /
- 混合阴离子卤化物-硫族化物
This study systematically investigates the potential of the hybrid anion semiconductor AgBiSCl2 for photovoltaic and thermoelectric applications, aiming to provide theoretical guidance for high-performance energy conversion devices. Structural analysis reveals favorable ductility and a relatively low Debye temperature (219 K). Electronic structure calculations show that AgBiSCl2 is a direct band gap semiconductor, with a gap of approximately 1.72 eV after including spin–orbit coupling effects. The conduction band is mainly derived from Bi 6p orbitals, while the valence band is dominated by contributions from Ag 4d, Cl 3p, and S 3p orbitals.
Analysis of interatomic interactions indicates that Ag–S and Ag–Cl bonds are relatively weak, resulting in local structural softness and enhanced lattice anharmonicity. These weak bonds facilitate phonon scattering and give rise to low-frequency localized "rattling" vibrations primarily associated with Ag atoms, contributing to reduced lattice thermal conductivity. In contrast, Bi–S bonds exhibit stronger, more directional interactions, which help stabilize the overall structure. The coexistence of weak bonding and strong lattice coupling enables favorable modulation of thermal transport properties.
Optically, AgBiSCl2 possesses a high static dielectric constant (ε1 (0) = 5.60) and exhibits strong absorption in the ultraviolet region, with absorption coefficients rapidly exceeding 1×106 cm-1. A theoretical solar conversion efficiency of up to 28.06% is predicted for a 3 μm-thick absorber layer , highlighting its potential as a highperformance photovoltaic material.
In terms of thermal transport, phonon spectra exhibit mode hardening with increasing temperature, while flat optical branches in the 30–70 cm-1 range enhance phonon scattering. The localized Ag vibrations intensify the anharmonicity, reducing phonon lifetimes and group velocities. As a result, at 300 K, the lattice thermal conductivities via the Peierls and coherent channels are calculated to be 0.246 W·m-1·K-1 and 0.132 W·m-1·K-1, respectively. For electronic transport, the p-type material maintains a higher Seebeck coefficient than the n-type, while the latter shows greater electrical conductivity. At 700 K, the thermoelectric figure of merit (ZT) reaches 0.77 for p-type and 0.69 for n-type AgBiSCl2, indicating promising high-temperature thermoelectric performance.
In summary, AgBiSCl2 exhibits excellent potential for dual photovoltaic and thermoelectric applications. Its unique bonding features and lattice response mechanisms provide valuable insights for the design of multifunctional energy conversion materials. -
[1] Kato D, Hongo K, Maezono R, Higashi M, Kunioku H, Yabuuchi M, Suzuki H, Okajima H, Zhong C, Nakano K, Abe R, Kageyama H 2017 J. Am. Chem. Soc. 13918725
[2] Luu S D N, Vaqueiro P 2016 Journal of Materiomics 2131
[3] Ghorpade U V, Suryawanshi M P, Green M A, Wu T, Hao X, Ryan K M 2023 Chem. Rev. 123327
[4] Kageyama H, Hayashi K, Maeda K, Attfield J P, Hiroi Z, Rondinelli J M, Poeppelmeier K R 2018 Nat Commun 9772
[5] Gibson Q D, Zhao T, Daniels L M, Walker H C, Daou R, Hébert S, Zanella M, Dyer M S, Claridge J B, Slater B, Gaultois M W, Corà F, Alaria J, Rosseinsky M J 2021 Science 3731017
[6] Majhi K, Pal K, Lohani H, Banerjee A, Mishra P, Yadav A K, Ganesan R, Sekhar B R, Waghmare U V, Anil Kumar P S 2017 Applied Physics Letters 110162102
[7] Qiu W, Xi L, Wei P, Ke X, Yang J, Zhang W 2014 Proceedings of the National Academy of Sciences 11115031
[8] Xie L, Feng J H, Li R, He J Q 2020 Phys. Rev. Lett. 125245901
[9] Ruck M, Poudeu Poudeu P F, Söhnel T 2004 Zeitschrift für anorganische und allgemeine Chemie 63063
[10] Quarta D, Toso S, Fieramosca A, Dominici L, Caliandro R, Moliterni A, Tobaldi D M, Saleh G, Gushchina I, Brescia R, Prato M, Infante I, Cola A, Giannini C, Manna L, Gigli G, Giansante C 2023 Chem. Mater. 359900
[11] Kresse G, Furthmüller J 1996 Phys. Rev. B 5411169
[12] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 773865
[13] Blöchl P E 1994 Phys. Rev. B 5017953
[14] Heyd J, Peralta J E, Scuseria G E, Martin R L 2005 The Journal of Chemical Physics 123174101
[15] Saha S, Sinha T P, Mookerjee A 2000 J. Phys.: Condens. Matter 123325
[16] Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73045112
[17] Ganose A M, Park J, Faghaninia A, Woods-Robinson R, Persson K A, Jain A 2021 Nat Commun 122222
[18] Shockley W 1950 Electrons and Holes in Semiconductors: With Applications to Transistor Electronics (D Van Nostrand Co) pp558
[19] Ganose A M, Park J, Faghaninia A, Woods-Robinson R, Persson K A, Jain A 2021 Nat Commun 122222
[20] Rode D L 1975 Semiconductors and Semimetals , 1975-01-01 pp1-89
[21] Tadano T, Tsuneyuki S 2015 Phys. Rev. B 92054301
[22] Tadano T, Gohda Y, Tsuneyuki S 2014 J. Phys.: Condens. Matter 26225402
[23] Zhou F, Sadigh B, Åberg D, Xia Y, Ozoliņš V 2019 Phys. Rev. B 100184309
[24] Ju Z, Ma D, Chang Z 2025 Phys. Rev. B 111134302
[25] Zheng J, Lin C, Lin C, Hautier G, Guo R, Huang B 2024 npj Comput Mater 1030
[26] Xie Q Y, Xiao F, Zhang K W, Wang B T 2024 Phys. Rev. B 110045203
[27] Xiao F, Xie Q Y, Ming X, Li H, Zhang J, Wang B T 2024 Phys. Rev. B 109245202
[28] Xie Q Y, Ma J J, Liu Q Y, Liu P F, Zhang P, Zhang K W, Wang B T 2022 Phys. Chem. Chem. Phys. 247303
[29] Simoncelli M, Marzari N, Mauri F 2019 Nat. Phys. 15809
[30] Simoncelli M, Marzari N, Mauri F 2022 Phys. Rev. X 12
[31] Slack G A 1973 Journal of Physics and Chemistry of Solids 34321
[32] Hao Y, Che J, Wang X, Li X, Lookman T, Sun J, Ding X, Gao Z 2025 Phys. Rev. B 111
[33] Cutler M, Leavy J F, Fitzpatrick R L 1964 Phys. Rev. 133 A1143
[34] Yu L, Zunger A 2012 Phys. Rev. Lett. 108068701
[35] Zhu C, Liu Y, Wang D, Zhu Z, Zhou P, Tu Y, Yang G, Chen H, Zang Y, Du J, Yan W 2024 Cell Reports Physical Science 5102321
[36] Basera P, Bhattacharya S 2022 J. Phys. Chem. Lett. 136439
[37] Xia Y, Ozoliņš V, Wolverton C 2020 Phys. Rev. Lett. 125085901
[38] Tadano T, Saidi W A 2022 Phys. Rev. Lett. 129185901
[39] Li W, Mingo N 2014 Phys. Rev. B 89184304
[40] Christensen M, Abrahamsen A B, Christensen N B, Juranyi F, Andersen N H, Lefmann K, Andreasson J, Bahl C R H, Iversen B B 2008 Nature Mater 7811
[41] Allen P B, Feldman J L 1989 Phys. Rev. Lett. 62645
[42] Zheng J, Shi D, Yang Y, Lin C, Huang H, Ruiqiang Guo, Huang B 2022 Phys. Rev. B 105224303
[43] Zheng J J, Zhang L P 2023 Acta Phys. Sin. 72086301(in Chinese) [郑建军, 张丽萍2023物理学报72086301]
[44] Chen X K, Zhu J, Qi M, Jia P Z, Xie Z X 2025 Phys. Rev. Applied 23
计量
- 文章访问数: 89
- PDF下载量: 0
- 被引次数: 0