搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AgBiSCl2光电与热电性能的第一性原理研究

王思航 陈梦菡 张丽萍

引用本文:
Citation:

AgBiSCl2光电与热电性能的第一性原理研究

王思航, 陈梦菡, 张丽萍

First-Principles Investigation of the Photovoltaic and Thermoelectric Properties of AgBiSCl2

WANG Si-Hang, CHEN Meng-Han, ZHANG Li-Ping
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 混合阴离子硫卤化物凭借其独特的晶格动力学和可调电子结构,在热电与光电材料领域备受关注。本文基于密度泛函理论的第一性原理计算,结合玻尔兹曼输运方程、声子重整化模型,研究了AgBiSCl2的光电、热电性能。结果表明,AgBiSCl2为直接带隙半导体且带隙为1.72 eV,紫外区光吸收系数达到1×106 cm-1,3 μm厚度下光谱极限最大效率为28.06%。AgBiSCl2中Ag原子离域引起的rattling振动引发强非谐声子散射,导致极低的晶格热导率,在300 K时平均热导率中kpkc分别为0.246 W/mK和0.132W/mK。700 K时p型最大ZT为0.77和n型为0.69;由此表明AgBiSCl2在高效热电能量转换与紫外光电探测器领域具有重要应用潜力,为设计多功能材料提供了理论参考。
    This study systematically investigates the potential of the hybrid anion semiconductor AgBiSCl2 for photovoltaic and thermoelectric applications, aiming to provide theoretical guidance for high-performance energy conversion devices. Structural analysis reveals favorable ductility and a relatively low Debye temperature (219 K). Electronic structure calculations show that AgBiSCl2 is a direct band gap semiconductor, with a gap of approximately 1.72 eV after including spin–orbit coupling effects. The conduction band is mainly derived from Bi 6p orbitals, while the valence band is dominated by contributions from Ag 4d, Cl 3p, and S 3p orbitals.
    Analysis of interatomic interactions indicates that Ag–S and Ag–Cl bonds are relatively weak, resulting in local structural softness and enhanced lattice anharmonicity. These weak bonds facilitate phonon scattering and give rise to low-frequency localized "rattling" vibrations primarily associated with Ag atoms, contributing to reduced lattice thermal conductivity. In contrast, Bi–S bonds exhibit stronger, more directional interactions, which help stabilize the overall structure. The coexistence of weak bonding and strong lattice coupling enables favorable modulation of thermal transport properties.
    Optically, AgBiSCl2 possesses a high static dielectric constant (ε1 (0) = 5.60) and exhibits strong absorption in the ultraviolet region, with absorption coefficients rapidly exceeding 1×106 cm-1. A theoretical solar conversion efficiency of up to 28.06% is predicted for a 3 μm-thick absorber layer , highlighting its potential as a highperformance photovoltaic material.
    In terms of thermal transport, phonon spectra exhibit mode hardening with increasing temperature, while flat optical branches in the 30–70 cm-1 range enhance phonon scattering. The localized Ag vibrations intensify the anharmonicity, reducing phonon lifetimes and group velocities. As a result, at 300 K, the lattice thermal conductivities via the Peierls and coherent channels are calculated to be 0.246 W·m-1·K-1 and 0.132 W·m-1·K-1, respectively. For electronic transport, the p-type material maintains a higher Seebeck coefficient than the n-type, while the latter shows greater electrical conductivity. At 700 K, the thermoelectric figure of merit (ZT) reaches 0.77 for p-type and 0.69 for n-type AgBiSCl2, indicating promising high-temperature thermoelectric performance.
    In summary, AgBiSCl2 exhibits excellent potential for dual photovoltaic and thermoelectric applications. Its unique bonding features and lattice response mechanisms provide valuable insights for the design of multifunctional energy conversion materials.
  • [1]

    Kato D, Hongo K, Maezono R, Higashi M, Kunioku H, Yabuuchi M, Suzuki H, Okajima H, Zhong C, Nakano K, Abe R, Kageyama H 2017 J. Am. Chem. Soc. 13918725

    [2]

    Luu S D N, Vaqueiro P 2016 Journal of Materiomics 2131

    [3]

    Ghorpade U V, Suryawanshi M P, Green M A, Wu T, Hao X, Ryan K M 2023 Chem. Rev. 123327

    [4]

    Kageyama H, Hayashi K, Maeda K, Attfield J P, Hiroi Z, Rondinelli J M, Poeppelmeier K R 2018 Nat Commun 9772

    [5]

    Gibson Q D, Zhao T, Daniels L M, Walker H C, Daou R, Hébert S, Zanella M, Dyer M S, Claridge J B, Slater B, Gaultois M W, Corà F, Alaria J, Rosseinsky M J 2021 Science 3731017

    [6]

    Majhi K, Pal K, Lohani H, Banerjee A, Mishra P, Yadav A K, Ganesan R, Sekhar B R, Waghmare U V, Anil Kumar P S 2017 Applied Physics Letters 110162102

    [7]

    Qiu W, Xi L, Wei P, Ke X, Yang J, Zhang W 2014 Proceedings of the National Academy of Sciences 11115031

    [8]

    Xie L, Feng J H, Li R, He J Q 2020 Phys. Rev. Lett. 125245901

    [9]

    Ruck M, Poudeu Poudeu P F, Söhnel T 2004 Zeitschrift für anorganische und allgemeine Chemie 63063

    [10]

    Quarta D, Toso S, Fieramosca A, Dominici L, Caliandro R, Moliterni A, Tobaldi D M, Saleh G, Gushchina I, Brescia R, Prato M, Infante I, Cola A, Giannini C, Manna L, Gigli G, Giansante C 2023 Chem. Mater. 359900

    [11]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 5411169

    [12]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 773865

    [13]

    Blöchl P E 1994 Phys. Rev. B 5017953

    [14]

    Heyd J, Peralta J E, Scuseria G E, Martin R L 2005 The Journal of Chemical Physics 123174101

    [15]

    Saha S, Sinha T P, Mookerjee A 2000 J. Phys.: Condens. Matter 123325

    [16]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73045112

    [17]

    Ganose A M, Park J, Faghaninia A, Woods-Robinson R, Persson K A, Jain A 2021 Nat Commun 122222

    [18]

    Shockley W 1950 Electrons and Holes in Semiconductors: With Applications to Transistor Electronics (D Van Nostrand Co) pp558

    [19]

    Ganose A M, Park J, Faghaninia A, Woods-Robinson R, Persson K A, Jain A 2021 Nat Commun 122222

    [20]

    Rode D L 1975 Semiconductors and Semimetals , 1975-01-01 pp1-89

    [21]

    Tadano T, Tsuneyuki S 2015 Phys. Rev. B 92054301

    [22]

    Tadano T, Gohda Y, Tsuneyuki S 2014 J. Phys.: Condens. Matter 26225402

    [23]

    Zhou F, Sadigh B, Åberg D, Xia Y, Ozoliņš V 2019 Phys. Rev. B 100184309

    [24]

    Ju Z, Ma D, Chang Z 2025 Phys. Rev. B 111134302

    [25]

    Zheng J, Lin C, Lin C, Hautier G, Guo R, Huang B 2024 npj Comput Mater 1030

    [26]

    Xie Q Y, Xiao F, Zhang K W, Wang B T 2024 Phys. Rev. B 110045203

    [27]

    Xiao F, Xie Q Y, Ming X, Li H, Zhang J, Wang B T 2024 Phys. Rev. B 109245202

    [28]

    Xie Q Y, Ma J J, Liu Q Y, Liu P F, Zhang P, Zhang K W, Wang B T 2022 Phys. Chem. Chem. Phys. 247303

    [29]

    Simoncelli M, Marzari N, Mauri F 2019 Nat. Phys. 15809

    [30]

    Simoncelli M, Marzari N, Mauri F 2022 Phys. Rev. X 12

    [31]

    Slack G A 1973 Journal of Physics and Chemistry of Solids 34321

    [32]

    Hao Y, Che J, Wang X, Li X, Lookman T, Sun J, Ding X, Gao Z 2025 Phys. Rev. B 111

    [33]

    Cutler M, Leavy J F, Fitzpatrick R L 1964 Phys. Rev. 133 A1143

    [34]

    Yu L, Zunger A 2012 Phys. Rev. Lett. 108068701

    [35]

    Zhu C, Liu Y, Wang D, Zhu Z, Zhou P, Tu Y, Yang G, Chen H, Zang Y, Du J, Yan W 2024 Cell Reports Physical Science 5102321

    [36]

    Basera P, Bhattacharya S 2022 J. Phys. Chem. Lett. 136439

    [37]

    Xia Y, Ozoliņš V, Wolverton C 2020 Phys. Rev. Lett. 125085901

    [38]

    Tadano T, Saidi W A 2022 Phys. Rev. Lett. 129185901

    [39]

    Li W, Mingo N 2014 Phys. Rev. B 89184304

    [40]

    Christensen M, Abrahamsen A B, Christensen N B, Juranyi F, Andersen N H, Lefmann K, Andreasson J, Bahl C R H, Iversen B B 2008 Nature Mater 7811

    [41]

    Allen P B, Feldman J L 1989 Phys. Rev. Lett. 62645

    [42]

    Zheng J, Shi D, Yang Y, Lin C, Huang H, Ruiqiang Guo, Huang B 2022 Phys. Rev. B 105224303

    [43]

    Zheng J J, Zhang L P 2023 Acta Phys. Sin. 72086301(in Chinese) [郑建军, 张丽萍2023物理学报72086301]

    [44]

    Chen X K, Zhu J, Qi M, Jia P Z, Xie Z X 2025 Phys. Rev. Applied 23

  • [1] 任清勇, 王建立, 李昺, 马杰, 童欣. 复杂晶格动力学与能源材料的中子散射研究. 物理学报, doi: 10.7498/aps.74.20241178
    [2] 何俊松, 罗丰, 王剑, 杨士冠, 翟立军, 程林, 刘虹霞, 张艳, 李艳丽, 孙志刚, 胡季帆. 熔融旋甩制备Co掺杂TiNiCoxSn合金的热电性能. 物理学报, doi: 10.7498/aps.73.20240112
    [3] 袁珉慧, 乐文凯, 谈小建, 帅晶. 二维共价键子结构Zintl相热电材料研究及进展. 物理学报, doi: 10.7498/aps.70.20211010
    [4] 赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆. Cu1.8–x Sbx S热电材料的相结构与电热输运性能. 物理学报, doi: 10.7498/aps.70.20201852
    [5] 黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程. Mn-In-Cu共掺杂优化SnTe基材料的热电性能. 物理学报, doi: 10.7498/aps.70.20202020
    [6] 刘超, 杨岳洋, 南策文, 林元华. MAX及其衍生MXene相碳化物的热电性能及展望. 物理学报, doi: 10.7498/aps.70.20211050
    [7] 王雅宁, 陈少平, 樊文浩, 郭敬云, 吴玉程, 王文先. PbTe基热电接头界面性能. 物理学报, doi: 10.7498/aps.69.20201080
    [8] 郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程. 改善Te基热电材料与复合电极界面性能. 物理学报, doi: 10.7498/aps.69.20200436
    [9] 王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东. 具有本征低晶格热导率的硫化银快离子导体的热电性能. 物理学报, doi: 10.7498/aps.68.20190073
    [10] 陶颖, 祁宁, 王波, 陈志权, 唐新峰. 氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究. 物理学报, doi: 10.7498/aps.67.20180382
    [11] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军. PbSe-MnSe纳米复合热电材料的微结构和电热输运性能. 物理学报, doi: 10.7498/aps.65.107201
    [12] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林. 含硫宽禁带Ga2Te3基热电半导体的声电输运特性. 物理学报, doi: 10.7498/aps.64.197201
    [13] 刘义, 张清, 李海金, 李勇, 刘厚通. Sr掺杂钙钛矿型氧化物Y1-xSrxCoO3的溶胶-凝胶制备及电阻率温度关系研究. 物理学报, doi: 10.7498/aps.62.047202
    [14] 吴子华, 谢华清, 曾庆峰. Ag-ZnO纳米复合热电材料的制备及其性能研究. 物理学报, doi: 10.7498/aps.62.097301
    [15] 霍凤萍, 吴荣归, 徐桂英, 牛四通. 热压制备(AgSbTe2)100-x-(GeTe)x合金的热电性能. 物理学报, doi: 10.7498/aps.61.087202
    [16] 葛振华, 张波萍, 于昭新, 刘勇, 李敬锋. 机械合金化过程对硫化铋块体热电性能的影响机理. 物理学报, doi: 10.7498/aps.61.048401
    [17] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, doi: 10.7498/aps.59.1243
    [18] 鄢永高, 唐新峰, 刘海君, 尹玲玲, 张清杰. Ag偏离化学计量比Ag1-xPb18SbTe20材料的热电传输性能. 物理学报, doi: 10.7498/aps.56.3473
    [19] 刘玮书, 张波萍, 李敬锋, 刘 静. 机械合金化合成CoSb3过程中的固相反应机理的热力学解释. 物理学报, doi: 10.7498/aps.55.465
    [20] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响. 物理学报, doi: 10.7498/aps.54.3321
计量
  • 文章访问数:  89
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-08

/

返回文章
返回