搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛酸钡的光学性质及其体积效应

孙智征 荀威 张加永 刘传洋 仲嘉霖 吴银忠

引用本文:
Citation:

钛酸钡的光学性质及其体积效应

孙智征, 荀威, 张加永, 刘传洋, 仲嘉霖, 吴银忠

Optical properties of BaTiO3 and its volume effects

Sun Zhi-Zheng, Xun Wei, Zhang Jia-Yong, Liu Chuan-Yang, Zhong Jia-Lin, Wu Yin-Zhong
PDF
HTML
导出引用
  • 钛酸钡(BaTiO3, BTO)是铁电物理学和材料学领域具有代表性的研究对象. 本文基于准粒子相互作用的GW方法研究BTO材料的光学性质, 并研究了等应变情况下的体积效应. 第一性计算结果表明, 考虑了激子效应的GW (格林函数(G)-库仑势(W))方法得到的激发态性质更接近实验结果. 引入等应变调控, 发现体积膨胀会导致光学吸收峰红移, 体积压缩则光学吸收峰蓝移. 同时, 探究了体积变化对BTO块材的自发极化和电子结构的影响, 发现体积膨胀会使钛原子的d轨道和氧原子的p轨道杂化更显著, 进一步导致材料自发极化的增大, 而体积压缩对自发极化和dp杂化的影响正好相反. 通过比较研究, 还发现等应变的体积效应对极化的影响不如等应力体积效应明显.
    BaTiO3 (BTO) is a typical studying object both in ferroelectrics and in material science. By the GW method, optical property of BTO is investigated, and its volume effect under the case of iso-strain is also studied. It is found that the results of excited states are closer to the experimental results with the consideration of electron-hole interaction in the framework of GW method. Considering the volume effect, we obtain that the red shift of the peaks of optical absorption occurs under the expansion of volume, and the blue shift appears when the BTO is compressed. At the same time, the polarization and the hybridization between d orbital of Ti atom and p orbital of O atom are enhanced for the case of volume expansion, however, things will be opposite under the compression of volume. Furthermore, the volume effect in the iso-strain case is less dramatic than in the iso-stress case.
      通信作者: 吴银忠, yzwu@usts.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11274054)、江苏省十三五重点学科项目(批准号: 20168765)和苏州市低维光电材料与器件重点实验室(批准号: SZS201611)资助的课题.
      Corresponding author: Wu Yin-Zhong, yzwu@usts.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274054), the Jiangsu Key Disciplines of the Thirteenth Five-Year Plan, China(Grant No. 20168765), and the Suzhou Key Laboratory for Low Dimensional Optoelectronic Materials and Devices, China (Grant No. SZS201611).
    [1]

    钟维烈 1998 铁电体物理学(北京: 科学出版社)

    Zhong W L 1998 Ferroelectric Physics (Beijing: Science Press) (in Chinese)

    [2]

    Cohen R E 1992 Nature 358 136Google Scholar

    [3]

    Ma C, Jin K J, Ge C, Yang G Z 2018 Phys. Rev. B 97 115103Google Scholar

    [4]

    Zhuravlev M Y, Sabirianov R F, Jaswal S S, Tsymbal E Y 2005 Phys. Rev. Lett. 94 246802Google Scholar

    [5]

    Yu Z L, Ma Q R, Zhao Y Q, Liu B, Cai M Q 2018 J. Phys. Chem. C 122 9275

    [6]

    Khenata R, Sahnoun M, Baltache H, Rerat M, Rashek A H, Illes N, Bouhafs B 2005 Solid State Commun. 136 120Google Scholar

    [7]

    Hosseini S M, Movlarooy T, Kompany A 2005 Euro. Phys. J B 46 463Google Scholar

    [8]

    Gupta G, Nautiyal T, Auluck S 2004 Phys. Rev. B 69 052101

    [9]

    Saha S, Sinha T P, Mookerjee A 2000 Phys. Rev. B 62 8828Google Scholar

    [10]

    Liu Q J, Zhang N C, Liu F S, Wang H Y, Liu Z T 2013 Opt. Mater. 35 2629Google Scholar

    [11]

    Wemple S H 1970 Phys. Rev. B 2 2679Google Scholar

    [12]

    Piskunov S, Heifets E, Eglitis R I, Borstel G 2004 Comp. Mater. Sci. 29 165Google Scholar

    [13]

    Hybertsen M S, Louie S G 1986 Phy. Rev. B 34 5390Google Scholar

    [14]

    Rohlfing M, Louie S G 2000 Phy. Rev. B 62 4927

    [15]

    Deslippe J, Samsonidze, Strubbe D A, Jain M, Cohen M L, Louie S G 2012 Comp. Mater. Sci. 183 1269

    [16]

    Sanna S, Thierfelder C, Wippermann S, Sinha T P, Schmidt W G 2011 Phys. Rev. B 83 054112Google Scholar

    [17]

    Kornev I A, Bellaiche L, Bouvier P, Janolin P E, Dkhil B, Kreisel J 2005 Phys. Rev. Lett. 95 196804Google Scholar

    [18]

    Moriwake H, Koyama Y, Matsunaga K, Hirayama T, Tanaka I 2008 J Phys.: Condens. Mat. 20 345207Google Scholar

    [19]

    Wang X X, Wang C L 2003 Chin. J. Chem. 21 1130

    [20]

    Nguyen M D, Dekkers M, Houwman E, Steenwelle R, Wan X, Roelofs A, Schmitz-Kempen T, Rijnders G 2011 Appl. Phys. Lett. 99 252904Google Scholar

    [21]

    Wen Z, Qiu X B, Li C, Zheng C Y, Ge X Y, Li A D, Wu D 2014 Appl. Phys. Lett. 104 042907Google Scholar

    [22]

    Li W, Weng G J 2001 J. Appl. Phys. 90 2484Google Scholar

    [23]

    Dieguez O, Tinte S, Antons A, Bungaro C, Neaton J B, Rabe K M, Vanderbilt D 2004 Phys. Rev. B 69 212101Google Scholar

    [24]

    Zhao R, Li W W, Lee J H, Choi E M, Liang Y, Zhang W, Tang R J, Wang H Y, Jia Q X, MacManus-Driscoll J L, Yang H 2014 Adv. Funct. Mater. 24 5240Google Scholar

    [25]

    Van Helvoort A T J, Da H L, Soleim B G, Holmestad R, Tybell T 2005 Appl. Phys. Lett. 86 092907Google Scholar

    [26]

    Chen A, Hu J M, Lu P, Yang T N, Zhang W R, Li L G, Ahmed T, Enriquez E, Weigand W, Su Q, Wang H Y, Zhu J Y, MacManus-Driscoll J L, Chen L Q, Yarotski D, Jia Q X 2016 Sci. Adv. 2 e1600245Google Scholar

    [27]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [28]

    Perdew J P, Yue W 1986 Phys. Rev. B 33 8820

    [29]

    Gao S Y, Yang L 2017 Phys. Rev. B 96 155410Google Scholar

    [30]

    Ehrenreich H, Cohen M H 1959 Phys. Rev. 115 1786

    [31]

    Bilc D I, Orlando R, Shaltaf R, Rignanese G M, Íñiguez J, Ghosez P 2008 Phys. Rev. B 77 165107Google Scholar

    [32]

    Wang F G, Grinberg I, Rappe A M 2014 Appl. Phys. Lett. 104 152903Google Scholar

    [33]

    Dong H F, Wu Z G, Wang S Y, Duan W H, Li J B 2013 Appl. Phys. Lett. 102 072905Google Scholar

    [34]

    Chernova E, Pacherova O, Chvostova D, Dejneka A, Kocourek T, Jelinek M, Tyunina M 2015 Appl. Phys. Lett. 106 192903Google Scholar

  • 图 1  BTO块材自发极化随体积的变化曲线

    Fig. 1.  Spontaneous polarization of bulk BTO versus its volume

    图 2  体积变化对Ti原子d轨道分波态密度的影响

    Fig. 2.  Projected DOS of ${\rm d}_{xy}$ and ${\rm d}_{xz}$ of Ti atom for different volume

    图 3  体积改变对BTO能带的影响

    Fig. 3.  Energy bands of BTO for selected volumes.

    图 4  不同体积BTO的介电常数虚部谱($\epsilon_2^{\bot}$为垂直于极化方向即xy平面内的介电常数虚部, $\epsilon_2^{^{_{/\!/}}}$z方向的介电常数虚部)

    Fig. 4.  Spectrum of imagine part of dielectric constant for selected BTO volumes, where $\epsilon_2^{\bot}$ corresponds the direction perpendicular to the polarization, and $\epsilon_2^{^{_{/\!/}}}$ stands for the direction parallel to the polarization

    图 5  不同体积下BTO块材的光学吸收谱($\alpha^{\bot}$为垂直于极化方向即xy平面内的光学吸收系数, $\alpha^{^{_{/\!/}}}$z方向的吸收系数)

    Fig. 5.  Spectrum of optical absorption of BTO for selected volumes, where $\alpha^{\bot}$ corresponds the direction perpendicular to the polarization, and $\alpha^{^{_{/\!/}}}$ stands for the direction parallel to the polarization

    表 1  不同体积下计算得到的BTO块材的能隙(单位:eV)

    Table 1.  Energy gaps (in eV) for selected BTO volumes and different theoretical method

    方法 V = 0.9V0 V = V0 V = 1.1V0
    PBE 1.89 1.76, 1.71[16] 1.66
    HSE 3.42 3.25, 3.12[32] 3.10
    GW 3.65 3.54, 3.90[16] 3.41
    实验 3.4[11]
    下载: 导出CSV
  • [1]

    钟维烈 1998 铁电体物理学(北京: 科学出版社)

    Zhong W L 1998 Ferroelectric Physics (Beijing: Science Press) (in Chinese)

    [2]

    Cohen R E 1992 Nature 358 136Google Scholar

    [3]

    Ma C, Jin K J, Ge C, Yang G Z 2018 Phys. Rev. B 97 115103Google Scholar

    [4]

    Zhuravlev M Y, Sabirianov R F, Jaswal S S, Tsymbal E Y 2005 Phys. Rev. Lett. 94 246802Google Scholar

    [5]

    Yu Z L, Ma Q R, Zhao Y Q, Liu B, Cai M Q 2018 J. Phys. Chem. C 122 9275

    [6]

    Khenata R, Sahnoun M, Baltache H, Rerat M, Rashek A H, Illes N, Bouhafs B 2005 Solid State Commun. 136 120Google Scholar

    [7]

    Hosseini S M, Movlarooy T, Kompany A 2005 Euro. Phys. J B 46 463Google Scholar

    [8]

    Gupta G, Nautiyal T, Auluck S 2004 Phys. Rev. B 69 052101

    [9]

    Saha S, Sinha T P, Mookerjee A 2000 Phys. Rev. B 62 8828Google Scholar

    [10]

    Liu Q J, Zhang N C, Liu F S, Wang H Y, Liu Z T 2013 Opt. Mater. 35 2629Google Scholar

    [11]

    Wemple S H 1970 Phys. Rev. B 2 2679Google Scholar

    [12]

    Piskunov S, Heifets E, Eglitis R I, Borstel G 2004 Comp. Mater. Sci. 29 165Google Scholar

    [13]

    Hybertsen M S, Louie S G 1986 Phy. Rev. B 34 5390Google Scholar

    [14]

    Rohlfing M, Louie S G 2000 Phy. Rev. B 62 4927

    [15]

    Deslippe J, Samsonidze, Strubbe D A, Jain M, Cohen M L, Louie S G 2012 Comp. Mater. Sci. 183 1269

    [16]

    Sanna S, Thierfelder C, Wippermann S, Sinha T P, Schmidt W G 2011 Phys. Rev. B 83 054112Google Scholar

    [17]

    Kornev I A, Bellaiche L, Bouvier P, Janolin P E, Dkhil B, Kreisel J 2005 Phys. Rev. Lett. 95 196804Google Scholar

    [18]

    Moriwake H, Koyama Y, Matsunaga K, Hirayama T, Tanaka I 2008 J Phys.: Condens. Mat. 20 345207Google Scholar

    [19]

    Wang X X, Wang C L 2003 Chin. J. Chem. 21 1130

    [20]

    Nguyen M D, Dekkers M, Houwman E, Steenwelle R, Wan X, Roelofs A, Schmitz-Kempen T, Rijnders G 2011 Appl. Phys. Lett. 99 252904Google Scholar

    [21]

    Wen Z, Qiu X B, Li C, Zheng C Y, Ge X Y, Li A D, Wu D 2014 Appl. Phys. Lett. 104 042907Google Scholar

    [22]

    Li W, Weng G J 2001 J. Appl. Phys. 90 2484Google Scholar

    [23]

    Dieguez O, Tinte S, Antons A, Bungaro C, Neaton J B, Rabe K M, Vanderbilt D 2004 Phys. Rev. B 69 212101Google Scholar

    [24]

    Zhao R, Li W W, Lee J H, Choi E M, Liang Y, Zhang W, Tang R J, Wang H Y, Jia Q X, MacManus-Driscoll J L, Yang H 2014 Adv. Funct. Mater. 24 5240Google Scholar

    [25]

    Van Helvoort A T J, Da H L, Soleim B G, Holmestad R, Tybell T 2005 Appl. Phys. Lett. 86 092907Google Scholar

    [26]

    Chen A, Hu J M, Lu P, Yang T N, Zhang W R, Li L G, Ahmed T, Enriquez E, Weigand W, Su Q, Wang H Y, Zhu J Y, MacManus-Driscoll J L, Chen L Q, Yarotski D, Jia Q X 2016 Sci. Adv. 2 e1600245Google Scholar

    [27]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [28]

    Perdew J P, Yue W 1986 Phys. Rev. B 33 8820

    [29]

    Gao S Y, Yang L 2017 Phys. Rev. B 96 155410Google Scholar

    [30]

    Ehrenreich H, Cohen M H 1959 Phys. Rev. 115 1786

    [31]

    Bilc D I, Orlando R, Shaltaf R, Rignanese G M, Íñiguez J, Ghosez P 2008 Phys. Rev. B 77 165107Google Scholar

    [32]

    Wang F G, Grinberg I, Rappe A M 2014 Appl. Phys. Lett. 104 152903Google Scholar

    [33]

    Dong H F, Wu Z G, Wang S Y, Duan W H, Li J B 2013 Appl. Phys. Lett. 102 072905Google Scholar

    [34]

    Chernova E, Pacherova O, Chvostova D, Dejneka A, Kocourek T, Jelinek M, Tyunina M 2015 Appl. Phys. Lett. 106 192903Google Scholar

  • [1] 梁帅博, 袁涛, 邱扬, 张震, 妙亚宁, 韩竞峰, 刘秀童, 姚春丽. 钛酸钡介电调控提升纸基摩擦纳米发电机输出性能. 物理学报, 2022, 71(7): 077701. doi: 10.7498/aps.71.20212022
    [2] 黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根. 二维黑磷的光学性质. 物理学报, 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [3] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能. 物理学报, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [4] 张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能. 第一性原理方法研究N-Pr共掺杂ZnO的电子结构和光学性质. 物理学报, 2019, 68(1): 017401. doi: 10.7498/aps.68.20181531
    [5] 景奇, 李晓娟. 多孔钛酸钡陶瓷制备及其增强的压电灵敏性. 物理学报, 2019, 68(5): 057701. doi: 10.7498/aps.68.20181790
    [6] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质. 物理学报, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [7] 吴琼, 刘俊, 董前民, 刘阳, 梁培, 舒海波. 硫化锡电子结构和光学性质的量子尺寸效应. 物理学报, 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [8] 冯现徉, 逯瑶, 蒋雷, 张国莲, 张昌文, 王培吉. In掺杂ZnO超晶格光学性质的研究. 物理学报, 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [9] 高尚鹏, 祝桐. 基于自洽GW方法的碳化硅准粒子能带结构计算. 物理学报, 2012, 61(13): 137103. doi: 10.7498/aps.61.137103
    [10] 孙中华, 王红艳, 张志东, 张中月. 金纳米环结构的光学性质研究. 物理学报, 2011, 60(4): 047808. doi: 10.7498/aps.60.047808
    [11] 焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮. 闪锌矿GaN弹性性质、电子结构和光学性质外压力效应的理论研究. 物理学报, 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [12] 李旭珍, 谢泉, 陈茜, 赵凤娟, 崔冬萌. OsSi2电子结构和光学性质的研究. 物理学报, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [13] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究. 物理学报, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [14] 关 丽, 刘保亭, 李 旭, 赵庆勋, 王英龙, 郭建新, 王书彪. 萤石结构TiO2的电子结构和光学性质. 物理学报, 2008, 57(1): 482-487. doi: 10.7498/aps.57.482
    [15] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质. 物理学报, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [16] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [17] 沈益斌, 周 勋, 徐 明, 丁迎春, 段满益, 令狐荣锋, 祝文军. 过渡金属掺杂ZnO的电子结构和光学性质. 物理学报, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [18] 王培吉, 周忠祥, 苏 燕, 荣振宇, 赵 朋, 张奉军. 钽掺杂对钛酸钡导热性能影响的研究. 物理学报, 2006, 55(4): 1959-1964. doi: 10.7498/aps.55.1959
    [19] 伞海生, 李 斌, 冯博学, 何毓阳, 陈 冲. 由缺陷引起的Burstein-Moss和带隙收缩效应对CdIn2O4透明导电薄膜光带隙的影响. 物理学报, 2005, 54(2): 842-847. doi: 10.7498/aps.54.842
    [20] 李智强, 陆夏莲, 陈敏, 何山, 李景德. 钙钛矿结构中的简谐子软模. 物理学报, 2002, 51(7): 1581-1585. doi: 10.7498/aps.51.1581
计量
  • 文章访问数:  12178
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-24
  • 修回日期:  2019-02-04
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-20

/

返回文章
返回