搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔钛酸钡陶瓷制备及其增强的压电灵敏性

景奇 李晓娟

引用本文:
Citation:

多孔钛酸钡陶瓷制备及其增强的压电灵敏性

景奇, 李晓娟

Preparation of porous barium titanate ceramics and enhancement of piezoelectric sensitivity

Jing Qi, Li Xiao-Juan
PDF
HTML
导出引用
  • 在压电陶瓷中增加孔洞数量, 可以有效改善陶瓷的静水压优值, 提高其压电灵敏性. 考虑到铅基压电陶瓷对环境和人体的危害, 本文以糊精为造孔剂, 采用传统固相烧结法制备无铅钛酸钡(BaTiO3)多孔压电陶瓷. 研究烧结温度(1250, 1280, 1300 ℃)和糊精含量(5%, 10%, 15%)对BaTiO3陶瓷晶体结构、孔隙率以及孔形貌特征的影响, 探索孔隙率与BaTiO3陶瓷介电、压电、声阻抗以及静水压优值等性能之间的相关性. 结果表明: 所有多孔陶瓷表现出三维贯通的开气孔, 尺寸约为1—7 ${\text{μ}}{\rm m}$. 烧结温度强烈影响BaTiO3陶瓷的孔隙率, 加入10%低沸点的糊精时, 1250 ℃和1280 ℃烧结均获得孔隙率高达58%的多孔BaTiO3陶瓷; 然而1300 ℃烧结, 陶瓷孔隙率急速下降到13%. 1250 ℃烧结10%糊精含量的陶瓷表现出高的静水压优值(约8376 × 10–15 Pa–1)和低的声阻抗(约2.84 MRrayls (1 Rayl = 10 Pa·s/m)). 与1250 ℃相比, 1280 ℃烧结的陶瓷晶粒之间的结合力明显增强, 有利于提高陶瓷的力学强度. 这些优异的性能预示着多孔钛酸钡陶瓷在传感器和水听器领域有着潜在的应用前景.
    Porous piezoelectric ceramic shows some advantages, such as high hydrostatic figure of merit, low acoustic impedance, and excellent piezoelectric sensitivity, compared with its compact counterpart. These merits make it used widely in various electronic devices, such as underwater acoustic transducer, ultrasonic transducer, and sensor. Currently, the researches of porous piezoelectric ceramics mainly focus on the Pb(Zr, Ti)O3 ceramic, which is harmful to environment and human health. In this paper, the lead-free porous barium titanate (BaTiO3) ceramic doped with dextrin is prepared by using the conventional solid-state method. The effects of sintered temperature and dextrin content on the structure, porosity, and morphology of the pores are studied experimentally and theoretically. Also, the relationship between porosity and dielectric, piezoelectricity, electro-mechanical coupling factor, acoustic impedance, and hydrostatic figure of merit are explored. The X-ray diffraction pattern shows that the lattice constants of ceramic are not affected by dextrin. The BaTiO3 ceramic demonstrates single perovskite structure with P4mm space group. The SEM micrograph reveals that the porous ceramic has three-dimensional open pores with the size of 1−7 ${\text{μ}}{\rm m}$. Sintering temperature plays a key role in porosity in the BaTiO3 ceramic. The porosity of ceramic gradually declines with sintered temperature increasing from 1250 to 1300 °C. The max porosity of up to 58% is obtained in 10% dextrin-doped BaTiO3 ceramic sintered at 1250 °C. The porosity of 5% dextrin-doped ceramic is smaller than that of the undoped one when the sintering temperature is 1250 °C or 1280 °C, indicating that a small amount of dextrin is beneficial to the densification of BaTiO3 ceramic. Both the dielectric and piezoelectric property gradually decrease with dextrin content increasing. For the BaTiO3 ceramic, high sintering temperature contributes to better dielectric and piezoelectric property than low temperature. Here, the ceramic with 10% of dextrin sintered at 1250 °C exhibits the highest hydrostatic figure of merit (8376 × 10–15 Pa–1) and the lowest acoustic impedance (~ 2.84 Mrayls). The binding force between grains is also obviously enhanced in the ceramic sintered at 1280 °C, which is very helpful for their mechanical strength improvement. The excellent properties of the BaTiO3 ceramic doped with dextrin indicate its potential applications in sensor and hydrophone.
      通信作者: 李晓娟, lixiaojuan28@163.com
    • 基金项目: 国家自然科学基金(批准号: 51602242, 51772235)资助的课题.
      Corresponding author: Li Xiao-Juan, lixiaojuan28@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51602242, 51772235).
    [1]

    Deville S 2008 Adv. Eng. Mater. 10 155Google Scholar

    [2]

    朱小龙, 苏雪筠 2000 中国陶瓷 36 36Google Scholar

    Zhu X L, Su X Y 2000 Chin. Ceram. 36 36Google Scholar

    [3]

    Guo R, Wang C A, Yang A K 2011 J. Eur. Ceram. Soc. 31 605Google Scholar

    [4]

    Ryosuke B, Tomoaki K, Tadashi F 2016 J. Chin. Ceram. Soc. 3 9Google Scholar

    [5]

    Zhu S, Cao L, Xiong Z, Lu C, Gao Z 2018 J. Eur. Ceram. Soc. 38 2251Google Scholar

    [6]

    全宸良, 娄盛涵, 刘勃, 陈宇翔, 张里程, 唐佩福 2017 解放军医学院学报 38 430Google Scholar

    Quan C L, Lou S H, Liu B, Chen Y X, Zhang L C, Tang P F 2017 J. PLA Med. Coll. 38 430Google Scholar

    [7]

    Zhang Y, Roscow J, Xie M, Bowen C 2018 J. Eur. Ceram. Soc. 38 4203Google Scholar

    [8]

    蒋招绣, 辛铭之, 申海艇, 刘雨生 2015 物理学报 64 134601Google Scholar

    Jiang Z X, Xin M Z, Shen H T, Liu Y S 2015 Acta Phys. Sin. 64 134601Google Scholar

    [9]

    刘炜 2014 博士学位论文(山西: 中北大学)

    Liu W 2014 Ph. D. Dissertation (Shanxi: North University) (in Chinese)

    [10]

    Eichhorn F, Stenzel A, Weisenseel B, Travitzky N, Kakimoto K I 2017 Mater. Lett. 206 158Google Scholar

    [11]

    Xu T, Wang C A 2016 Mater. Des. 91 242Google Scholar

    [12]

    Roscow J I, Lewis R W C, Taylor J, Bowen C R 2017 Acta Mater. 128 207Google Scholar

    [13]

    Liu B L, Chen L J, Shao C S, Zhang F Q, Zhou K C, Cao J, Zhang D 2016 Mater. Sci. Eng., C 61 8Google Scholar

    [14]

    Li P, Pu Y, Dong Z, Gao P 2014 J. Electron. Mater. 43 459Google Scholar

    [15]

    Kim J G, Ha J G, Lim T W, Park K 2006 Mater. Lett. 60 1505Google Scholar

    [16]

    Tan J, Li Z R 2016 J. Mater. Sci. 51 5092Google Scholar

    [17]

    汤婷 2009 硕士学位论文(湖北: 华中科技大学)

    Tang T 2009 M.S. Thesis (Hubei: Huazhong University of Science and Technology) (in Chinese)

    [18]

    曾涛, 董显林, 毛朝梁, 梁瑞虹, 杨洪 2006 物理学报 55 3073Google Scholar

    Zeng T, Dong X L, Mao C L, Liang R H, Yang H 2006 Acta Phys. Sin. 55 3073Google Scholar

    [19]

    聂恒昌, 王永龄, 贺红亮, 王根水, 董显林 2018 无机材料学报 33 153

    Nie H C, Wang Y L, He H L, Wang G S, Dong X L 2018 J. Inorg. Mater. 33 153

    [20]

    Xu T, Wang C A 2016 J. Eur. Ceram. Soc. 36 2647Google Scholar

    [21]

    Okazaki K, Nagata K 1973 J. Am. Ceram. Soc. 56 82Google Scholar

  • 图 1  不同糊精含量的BaTiO3陶瓷粉体的XRD图谱

    Fig. 1.  XRD of BaTiO3 ceramics powder with different dextrin content.

    图 2  多孔BaTiO3陶瓷孔隙率和体积密度随加入糊精量的变化曲线 (a) 孔隙率; (b) 相对密度

    Fig. 2.  Variation of porosity and density as a function of dextrin content in BaTiO3 ceramics: (a) Porosity; (b) relativity density.

    图 3  不同烧结温度下糊精添加量为10%的BaTiO3陶瓷的SEM图 (a) 1250 ℃; (b) 1280 ℃; (c) 1300 ℃; 图(a)插图为糊精的SEM照片

    Fig. 3.  SEM photos of 10% dextrin-doped porous BaTiO3 ceramics sintered at different temperature: (a) 1250 °C; (b) 1280 °C; (c) 1300 °C. The inset of Fig. (a) is the SEM of dextrin.

    图 4  不同烧结温度下糊精添加量为10%的BaTiO3陶瓷放大的SEM图 (a) 1250 ℃; (b) 1280 ℃

    Fig. 4.  Enlarged SEM photos of 10% dextrin-doped porous BaTiO3 ceramics sintered at different temperature: (a) 1250 °C; (b) 1280 °C.

    图 5  不同烧结温度下BaTiO3陶瓷压电应变常数d33与糊精含量的关系 (a) 1250 ℃; (b) 1280 ℃

    Fig. 5.  Dependence of d33 on dextrin content in porous BaTiO3 ceramics sintered at different temperature: (a) 1250 °C; (b) 1280 °C.

    图 6  1250 ℃和1280 ℃烧结的BaTiO3陶瓷介电常数(${\varepsilon _ {\rm{r}}}$)和平面机电耦合系数(kp)随糊精添加量的变化关系(a) 介电常数; (b) 平面机电耦合系数

    Fig. 6.  Dependence of ${\varepsilon _ {\rm{r}}}$ and kp on dextrin content in porous BaTiO3 ceramics sintered at 1250 °C and 1280 °C: (a) ${\varepsilon _ {\rm{r}}}$; (b) kp.

    图 7  1250 ℃和1280 ℃烧结的多孔BaTiO3陶瓷声阻抗(Z)随糊精添加量的变化曲线

    Fig. 7.  Dependence of acoustic impedance on dextrin content in porous BaTiO3 ceramics sintered at 1250 °C and 1280 °C.

    图 8  多孔BaTiO3陶瓷静水压优值(HFOM)随糊精添加量的变化柱状图, 插图为1280 ℃烧结不同糊精添加量陶瓷的SEM图 (a)15%; (b)10%

    Fig. 8.  Hydrostatic figure of merit of porous BaTiO3 ceramics as a function of dextrin content, the SEM photos of 1280 °C sintered ceramics with different dextrin content in the inset: (a) 15%; (b) 10%.

  • [1]

    Deville S 2008 Adv. Eng. Mater. 10 155Google Scholar

    [2]

    朱小龙, 苏雪筠 2000 中国陶瓷 36 36Google Scholar

    Zhu X L, Su X Y 2000 Chin. Ceram. 36 36Google Scholar

    [3]

    Guo R, Wang C A, Yang A K 2011 J. Eur. Ceram. Soc. 31 605Google Scholar

    [4]

    Ryosuke B, Tomoaki K, Tadashi F 2016 J. Chin. Ceram. Soc. 3 9Google Scholar

    [5]

    Zhu S, Cao L, Xiong Z, Lu C, Gao Z 2018 J. Eur. Ceram. Soc. 38 2251Google Scholar

    [6]

    全宸良, 娄盛涵, 刘勃, 陈宇翔, 张里程, 唐佩福 2017 解放军医学院学报 38 430Google Scholar

    Quan C L, Lou S H, Liu B, Chen Y X, Zhang L C, Tang P F 2017 J. PLA Med. Coll. 38 430Google Scholar

    [7]

    Zhang Y, Roscow J, Xie M, Bowen C 2018 J. Eur. Ceram. Soc. 38 4203Google Scholar

    [8]

    蒋招绣, 辛铭之, 申海艇, 刘雨生 2015 物理学报 64 134601Google Scholar

    Jiang Z X, Xin M Z, Shen H T, Liu Y S 2015 Acta Phys. Sin. 64 134601Google Scholar

    [9]

    刘炜 2014 博士学位论文(山西: 中北大学)

    Liu W 2014 Ph. D. Dissertation (Shanxi: North University) (in Chinese)

    [10]

    Eichhorn F, Stenzel A, Weisenseel B, Travitzky N, Kakimoto K I 2017 Mater. Lett. 206 158Google Scholar

    [11]

    Xu T, Wang C A 2016 Mater. Des. 91 242Google Scholar

    [12]

    Roscow J I, Lewis R W C, Taylor J, Bowen C R 2017 Acta Mater. 128 207Google Scholar

    [13]

    Liu B L, Chen L J, Shao C S, Zhang F Q, Zhou K C, Cao J, Zhang D 2016 Mater. Sci. Eng., C 61 8Google Scholar

    [14]

    Li P, Pu Y, Dong Z, Gao P 2014 J. Electron. Mater. 43 459Google Scholar

    [15]

    Kim J G, Ha J G, Lim T W, Park K 2006 Mater. Lett. 60 1505Google Scholar

    [16]

    Tan J, Li Z R 2016 J. Mater. Sci. 51 5092Google Scholar

    [17]

    汤婷 2009 硕士学位论文(湖北: 华中科技大学)

    Tang T 2009 M.S. Thesis (Hubei: Huazhong University of Science and Technology) (in Chinese)

    [18]

    曾涛, 董显林, 毛朝梁, 梁瑞虹, 杨洪 2006 物理学报 55 3073Google Scholar

    Zeng T, Dong X L, Mao C L, Liang R H, Yang H 2006 Acta Phys. Sin. 55 3073Google Scholar

    [19]

    聂恒昌, 王永龄, 贺红亮, 王根水, 董显林 2018 无机材料学报 33 153

    Nie H C, Wang Y L, He H L, Wang G S, Dong X L 2018 J. Inorg. Mater. 33 153

    [20]

    Xu T, Wang C A 2016 J. Eur. Ceram. Soc. 36 2647Google Scholar

    [21]

    Okazaki K, Nagata K 1973 J. Am. Ceram. Soc. 56 82Google Scholar

  • [1] 李巧利, 李慎慎, 肖继军, 陈兆旭. 静水压力作用下(H2dabco)[K(ClO4)3]结构与稳定性的第一性原理研究. 物理学报, 2024, 73(14): 143101. doi: 10.7498/aps.73.20240477
    [2] 梁帅博, 袁涛, 邱扬, 张震, 妙亚宁, 韩竞峰, 刘秀童, 姚春丽. 钛酸钡介电调控提升纸基摩擦纳米发电机输出性能. 物理学报, 2022, 71(7): 077701. doi: 10.7498/aps.71.20212022
    [3] 杨文, 丁倩瑶, 翟冬梅, 薄开雯, 冯艳艳, 文婕, 何方. 中空笼状多孔结构镍钴层状氢氧化物的制备及其电化学性能. 物理学报, 2022, 71(1): 018201. doi: 10.7498/aps.71.20211100
    [4] 陈小明, 王明焱, 唐木智明, 李国荣. CaZrO3改性(Na, K)NbO3基无铅陶瓷电学性能的温度稳定性. 物理学报, 2021, 70(19): 197701. doi: 10.7498/aps.70.20210440
    [5] 杨文, 丁倩瑶, 翟冬梅, 薄开雯, 冯艳艳, 文婕, 何方. 中空笼状多孔结构镍钴层状氢氧化物的制备及其电化学性能. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211100
    [6] 邵春瑞, 李海洋, 王军, 夏国栋. 多孔结构体材料热整流效应. 物理学报, 2021, 70(23): 236501. doi: 10.7498/aps.70.20211285
    [7] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能. 物理学报, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [8] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能. 物理学报, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [9] 邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国. 铌酸钾钠基无铅压电陶瓷的高压电活性研究进展. 物理学报, 2020, 69(12): 127707. doi: 10.7498/aps.69.20200288
    [10] 孙智征, 荀威, 张加永, 刘传洋, 仲嘉霖, 吴银忠. 钛酸钡的光学性质及其体积效应. 物理学报, 2019, 68(8): 087801. doi: 10.7498/aps.68.20182087
    [11] 白春江, 封国宝, 崔万照, 贺永宁, 张雯, 胡少光, 叶鸣, 胡天存, 黄光荪, 王琪. 铝阳极氧化的多孔结构抑制二次电子发射的研究. 物理学报, 2018, 67(3): 037902. doi: 10.7498/aps.67.20172243
    [12] 蒋冬冬, 谷岩, 冯玉军, 杜金梅. 静水压下锆锡钛酸铅铁电陶瓷相变和介电性能研究. 物理学报, 2011, 60(10): 107703. doi: 10.7498/aps.60.107703
    [13] 卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣. 非静水压条件下铁从α到ε结构相变的第一性原理计算. 物理学报, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [14] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [15] 明保全, 王矜奉, 臧国忠, 王春明, 盖志刚, 杜 鹃, 郑立梅. 铌酸钾钠基无铅压电陶瓷的X射线衍射与相变分析. 物理学报, 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
    [16] 王培吉, 周忠祥, 苏 燕, 荣振宇, 赵 朋, 张奉军. 钽掺杂对钛酸钡导热性能影响的研究. 物理学报, 2006, 55(4): 1959-1964. doi: 10.7498/aps.55.1959
    [17] 曾 涛, 董显林, 毛朝梁, 梁瑞虹, 杨 洪. 孔隙率及晶粒尺寸对多孔PZT陶瓷介电和压电性能的影响及机理研究. 物理学报, 2006, 55(6): 3073-3079. doi: 10.7498/aps.55.3073
    [18] 初瑞清, 徐志军, 李国荣, 曾华荣, 余寒峰, 邵 鑫, 罗豪甦, 殷庆瑞. 钛酸钡单晶沿垂直解理面方向的超高压电响应的研究. 物理学报, 2005, 54(2): 935-938. doi: 10.7498/aps.54.935
    [19] 李智强, 陆夏莲, 陈敏, 何山, 李景德. 钙钛矿结构中的简谐子软模. 物理学报, 2002, 51(7): 1581-1585. doi: 10.7498/aps.51.1581
    [20] 初宝进, 李国荣, 殷庆瑞, 张望重, 陈大任. 非化学计量和掺杂对(Na1/2Bi1/2)0.92Ba0.08TiO3陶瓷电性能的影响. 物理学报, 2001, 50(10): 2012-2016. doi: 10.7498/aps.50.2012
计量
  • 文章访问数:  11412
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-30
  • 修回日期:  2018-12-18
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-05

/

返回文章
返回