搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静水压力作用下(H2dabco)[K(ClO4)3]结构与稳定性的第一性原理研究

李巧利 李慎慎 肖继军 陈兆旭

引用本文:
Citation:

静水压力作用下(H2dabco)[K(ClO4)3]结构与稳定性的第一性原理研究

李巧利, 李慎慎, 肖继军, 陈兆旭

First-principles study on the structure and stability of (H2dabco)[K(ClO4)3] under hydrostatic pressure

Li Qiao-Li, Li Shen-Shen, Xiao Ji-Jun, Chen Zhao-Xu
PDF
HTML
导出引用
  • 基于第一性原理计算, 深入研究了(H2dabco)[K(ClO4)3](DAP-2)晶体在0—50 GPa压力作用下的晶体结构、分子结构、电子结构和力学性质变化, 并评估了压力对其撞击感度和稳定性的影响. 通过分析晶体内部特征键长和键角发现, 在25 GPa处, 有机阳离子H2dabco2+的笼状结构发生了扭曲. 对H2dabco2+和KO12多面体的质心平均分数坐标和欧拉角的计算结果显示, 整个压力范围内晶体可能保持Pa-3空间群对称性不变. 根据第一性原理带隙判据和不同压力下的带隙变化, 发现在低于20 GPa时, DAP-2的撞击感度随着压力增加而逐渐减小; 而当压力高于20 GPa时, 撞击感度则呈现出随压力增加而缓慢增大的趋势. 此外, 弹性常数Cij、杨氏模量(E)、体积模量(B)、剪切模量(G)以及柯西压(C12C44)均随着压力的增大而增大, 表明在压力作用下晶体的刚性和延展性得到了显著增强. 根据力学稳定性准则, 该晶体在整个压力范围内保持力学稳定性.
    The crystal structure, molecular structure, electronic structure and mechanical properties of molecular perovskite high-energetic material (H2dabco)[K(ClO4)3] (DAP-2) under hydrostatic pressure ranging from 0 to 50 GPa are calculated and studied based on density functional theory. And the influences of pressure on its stability and impact sensitivity of DAP-2 are investigated. As the external pressure gradually increases, both the lattice parameters and the volume of DAP-2 crystal exhibit a monotonic decreasing trend. In the entire pressure range, the unit cell volume shrinks by up to 40.20%. By using the Birch Munnaghan equation of state to fit P-V relation, the bulk modulus B0 and its first-order derivative B0’ with respect to pressure are obtained to be 23.4 GPa and 4.9 GPa, respectively. The observations of the characteristic bond length and bond angle within the crystal indicate that the cage-like structure of organic cation H2dabco2+ undergoes distortion at 25 GPa. Further analysis of the average fractional coordinates of the center-of-mass and Euler angles for H2dabco2+ and KO12 polyhedron shows that within a pressure range from 0 to 50 GPa, both the average fractional coordinates of the center-of-mass and the Euler angles exhibit fluctuations at 25 GPa, but the overall amplitude of these fluctuations is very small. Based on this finding, it is speculated that the space group symmetry of the crystal may remain unchanged in the entire pressure range. In terms of electronic structure, with the increase of pressure, the band gap value increases rapidly and reaches a maximum value at about 20 GPa, followed by a slow decreasing trend. Based on the first-principles band gap criterion and the variation of the band gap under different pressures, it is demonstrated that below 20 GPa, the impact sensitivity of DAP-2 gradually decreases with pressure increasing; however, when the pressure exceeds 20 GPa, the impact sensitivity exhibits a slow increasing trend. In addition, the elastic constants Cij, Young’s modulus (E), bulk modulus (B), shear modulus (G), and Cauchy pressure (C12C44) all increase with pressure rising, indicating that the rigidity and ductility of the crystal under pressure are significantly strengthened. According to the mechanical stability criterion, the crystal maintains the mechanical stability throughout the pressure range.
      通信作者: 肖继军, xiao_jijun@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11572160)资助的课题.
      Corresponding author: Xiao Ji-Jun, xiao_jijun@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11572160).
    [1]

    Agrawal J P, Hodgson R 2007 Organic Chemistry of Explosives (New York: Wiley

    [2]

    Agrawal J P 2005 Propel. Explos. Pyrot. 30 316Google Scholar

    [3]

    Yu Q, Yin P, Zhang J H, He C L, Imler G H, Parrish D A, Shreeve J M 2017 J. Am. Chem. Soc. 139 8816Google Scholar

    [4]

    Kumar D, Imler G H, Parrish D A 2017 J. Mater. Chem. A 5 16767Google Scholar

    [5]

    Bennion J C, Siddiqi Z R, Matzger A J 2017 Chem. Commun. 53 6065Google Scholar

    [6]

    Zhang J H, Dharavath S, Mitchell L A, Parrish D A, Shreeve J M 2016 J. Am. Chem. Soc. 138 7500Google Scholar

    [7]

    He C, Shreeve J M 2016 Angew. Chem. 128 782Google Scholar

    [8]

    Liu W, Liu W L, Pang S P 2017 RSC Adv. 7 3617Google Scholar

    [9]

    Xu J G, Sun C, Zhang M J, Liu B W, Li X Z, Lu J, Wang S H, Zheng F K, Guo G C 2017 Chem. Mater. 29 9725Google Scholar

    [10]

    Sun C G, Zhang C, Jiang C, Yang C, Du Y, Zhao Y, Hu B C, Zheng Z S, Christe K O 2018 Nat. Commun. 9 1269Google Scholar

    [11]

    Wang S, Wang Q Y, Feng X, Wang B, Yang L 2017 Adv. Mater. 29 1701898Google Scholar

    [12]

    Shen C, Liu Y, Zhu Z Q, Xu Y G, Lu M 2017 Chem. Commun. 53 7489Google Scholar

    [13]

    Lin J D, Li Y H, Xu J G, Zheng F K, Guo G C, Lv R X, He W C, Huang Z N, Liu J F 2018 J. Solid State Chem. 265 42Google Scholar

    [14]

    Nielsen A T, Chafin A P, Christian S L, Moore D W, Nadler M P, Nissan R A, Vanderah D J, Gilardi R D, George C F, Flippen-Anderson J L 1998 Tetrahedron 54 11793Google Scholar

    [15]

    Liao W Q, Zhao D W, Tang Y Y, Zhang Y, Li P F, Shi P P, Chen X G, You Y M, Xiong R G 2019 Science 363 1206Google Scholar

    [16]

    Ye H Y, Tang Y Y, Li P F, Liao W Q, Gao J X, Hua X N, Cai H, Shi P P, You Y M, Xiong R G 2018 Science 361 151Google Scholar

    [17]

    徐豪杰, 韩世国, 孙志华, 罗军华 2021 化学学报 79 23Google Scholar

    Luo J H, Sun Z H, Han S G, Xu H J 2021 Acta Chim. Sin. 79 23Google Scholar

    [18]

    He Y P, Galli G 2014 Chem. Mater. 26 5394Google Scholar

    [19]

    Xing G, Mathews N, Lim S S, Yantara N, Liu X F, Sabba D, Grätzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar

    [20]

    Guo Y L, Liu C, Tanaka H, Nakamura E 2015 J. Phys. Chem. Lett. 6 535Google Scholar

    [21]

    Chen S L, Yang Z R, Wang B J, Shang Y, Sun L Y, He C T, Zhou H L, Zhang W X, Chen X M 2018 Sci. China Mater. 61 1123Google Scholar

    [22]

    Chen S L, Shang Y, He C T, Sun L Y, Ye Z M, Zhang W X, Chen X M 2018 CrystEngComm 20 7458Google Scholar

    [23]

    Shang Y, Huang R K, Chen S L, He C T, Yu Z H, Ye Z M, Zhang W X, Chen X M, Design 2020 Cryst. Growth Des. 20 1891Google Scholar

    [24]

    Shang Y, Yu Z H, Huang R K, Chen S L, Liu D X, Chen X X, Zhang W X, Chen X M 2020 Eng. PRC. 6 1013

    [25]

    Shang Y, Chen S L, Yu Z H, Huang R K, He C T, Ye Z M, Zhang W X, Chen X M 2022 Inorg. Chem. 61 4143Google Scholar

    [26]

    Feng Y, Zhang J, Cao W, Zhang J, Shreeve J n M 2023 Nat. Commun. 14 7765Google Scholar

    [27]

    Chen S, Yi Z, Jia C, Li Y, Chen H, Zhu S, Zhang L 2023 Small 19 2302631Google Scholar

    [28]

    Zhou J, Ding L, Bi F, Wang B, Zhang J 2018 J. Anal. Appl. Pyrolysis 129 189Google Scholar

    [29]

    An T, He W, Chen S W, Zuo B L, Qi X F, Zhao F Q, Luo Y J, Yan Q L 2018 J. Phys. Chem. C 122 26956Google Scholar

    [30]

    Jia Q, Deng P, Li X X, Hu L S, Cao X 2020 Vacuum 175 109257Google Scholar

    [31]

    Deng P, Wang H, Yang X, Ren H, Jiao Q J 2020 J. Alloy. Compd. 827 154257Google Scholar

    [32]

    Zhou J, Ding L, Zhao F Q, Wang B, Zhang J L 2020 Chin. Chem. Lett. 31 554Google Scholar

    [33]

    Li X X, Hu S Q, Cao X, Hu L S, Deng P, Xie Z B 2020 J. Energ. Mater. 38 162Google Scholar

    [34]

    Jia Q, Bai X, Zhu S, Cao X, Deng P, Hu L 2019 J. Energ. Mater. 38 377

    [35]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [36]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [37]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [38]

    Kresse G, Furthmüller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [39]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [40]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [41]

    Ganose A M, Savory C N, Scanlon D O 2015 J. Phys. Chem. Lett. 6 4594Google Scholar

    [42]

    P J, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X l, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [43]

    Le Page Y, Saxe P 2002 Phys. Rev. B 65 104104Google Scholar

    [44]

    Alyoubi R Y, Raffah B M, Hamioud F, Mubarak A A 2021 Mod. Phys. Lett. B 35 2150056

    [45]

    Murnaghan F D 1944 P. Natl. Acad. Sci. USA 30 244Google Scholar

    [46]

    Feng G Q, Jiang X X, Wei W J, Gong P F, Kang L, Li Z H, Li Y C, Li X D, Wu X S, Lin Z S 2016 Dalton T. 45 4303Google Scholar

    [47]

    Agrawal P M, Rice B M, Zheng L Q, Velardez G F, Thompson D L 2006 J. Phys. Chem. B 110 5721Google Scholar

    [48]

    Agrawal P M, Rice B M, Zheng L Q, Thompson D L 2006 J. Phys. Chem. B 110 26185Google Scholar

    [49]

    Xiao H M, Li Y F 1995 Sci. China Ser. B 5 538

    [50]

    Zhu W H, Xiao J J, Ji G F, Zhao F, Xiao H M 2007 J. Phys. Chem. B 111 12715Google Scholar

    [51]

    Xu X J, Zhu W H, Xiao H M 2007 J. Phys. Chem. B 111 2090Google Scholar

    [52]

    Zhu W H, Xiao H M 2008 J. Comput. Chem. 29 176Google Scholar

    [53]

    Zhu W H, Xiao H M 2010 Struct. Chem. 21 657Google Scholar

    [54]

    Fan J Y, Su Y, Zheng Z Y, Zhang Q Y, Zhao J J 2019 J. Raman Spectrosc. 50 889Google Scholar

    [55]

    Wu Q, Zhu W, Xiao H 2014 Struct. Chem. 26 477

    [56]

    Xiang F, Wu Q, Zhu W H, Xiao H M 2014 Struct. Chem. 25 1625Google Scholar

    [57]

    Wang W P, Liu F S, Liu Q J, Wang Y G, Liu Z T 2016 Comp. Mater. Sci. 121 225Google Scholar

    [58]

    Feng J 2014 APL Mater. 2 081801Google Scholar

    [59]

    袁文翎, 姚碧霞, 李喜, 胡顺波, 任伟 2024 物理学报 73 086104Google Scholar

    Yuan W L, Yao B X, Li X, Hu S B, Ren W 2024 Acta Phys. Sin. 73 086104Google Scholar

    [60]

    Liu Q J, Ran Z, Liu F S, Liu Z T 2015 J. Alloys Compd. 631 192Google Scholar

    [61]

    Chen S, Sun Y, Duan Y H, Huang B, Peng M J 2015 J. Alloys Compd. 630 202Google Scholar

    [62]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345Google Scholar

    [63]

    Jund P, Viennois R, Tao X M, Niedziolka K, Tédenac J C 2012 Phys. Rev. B 85 224105Google Scholar

  • 图 1  (a) DAP-2单胞的多面体模型示意图; (b) DAP-2单胞的球棍模型示意图; (c) 有机阳离子H2dabco2+结构, K, O, Cl, C, N和H原子分别用蓝紫色、粉色、绿色、深灰色、蓝色和浅灰色表示, 而N—H…O键用青色虚线表示, 对称性代码: A: –z+1, –x+1, –y+1; B: –y+1/2, z –1/2, x; C: x –1/2, y, –z+3/2; D: z –1/2, –x+1/2, –y+1; E: x, y, z; F: –y+1/2, –z+1, x+1/2

    Fig. 1.  (a) Schematic diagram of the polyhedral model for the unit cell of DAP-2; (b) schematic diagram of the ball-and-stick model for the unit cell of DAP-2; (c) structure of the organic cation H2dabco2+. The atoms of K, O, Cl, C, N and H are represented by blue purple, pink, green, dark gray, blue, and light gray, respectively, while N—H···O bonds are represented by cyan dashed lines. Symmetry code: A: –z+1, –x+1, –y+1; B: –y+1/2, z –1/2, x; C: x –1/2, y, –z+3/2; D: z –1/2, –x+1/2, –y+1; E: x, y, z; F: –y+1/2, –z+1, x+1/2.

    图 2  不同压力下DAP-2的晶格常数a (a)和晶胞体积V (b)

    Fig. 2.  Lattice constant a (a) and cell volume V (b) of DAP-2 crystal under different pressures.

    图 3  不同压力下DAP-2晶体中部分键长

    Fig. 3.  Partial bond lengths in DAP-2 crystal under different pressures.

    图 4  不同压力下DAP-2晶体中部分键角

    Fig. 4.  Partial bond angles in DAP-2 crystal under different pressures.

    图 5  有机阳离子的结构变化

    Fig. 5.  Structural changes of organic cations H2dabco2+.

    图 6  不同压力下H2dabco2+阳离子的质心平均分数坐标(a)与欧拉角(b)

    Fig. 6.  The average fractional coordinates of the centers-of-mass (a) and Euler angle (b) of H2dabco2+ cation under different pressures.

    图 7  不同压力下K1O12多面体(a)与K2O12多面体(b)的欧拉角

    Fig. 7.  Euler angles of K1O12 polyhedron (a) and K2O12 polyhedron (b) under different pressures.

    图 8  不同压力下DAP-2晶体的带隙值

    Fig. 8.  Band gap values of DAP-2 crystal under different pressures

    图 9  0 GPa时DAP-2晶体的总态密度和分态密度图

    Fig. 9.  Total density of states and partial density of states of DAP-2 crystal at 0 GPa.

    图 10  不同压力下DAP-2晶体的态密度图

    Fig. 10.  Density of states of DAP-2 crystals under different pressures.

    图 11  不同压力下DAP-2晶体的弹性常数及其模量 (a)弹性常数; (b)力学稳定性; (c)B, G, E; (d)C11C44

    Fig. 11.  Elastic constants and moduli of DAP-2 crystal under different pressures: (a) Elastic constants; (b) mechanical stability; (c) B, G, E; (d) C11C44.

    表 1  DAP-2晶胞参数的计算值与实验值

    Table 1.  The calculated and experimental values of crystal cell parameters for DAP-2.

    Method a Δa/% α/(°) V3 ΔV/%
    Experiment[21] 14.291 90 2918.689
    PBE 14.530 +1.67 90 3067.650 +5.10
    PBEsol 14.288 –0.02 90 2917.954 –0.03
    PBE+D3 14.282 –0.06 90 2913.178 –0.19
    下载: 导出CSV
  • [1]

    Agrawal J P, Hodgson R 2007 Organic Chemistry of Explosives (New York: Wiley

    [2]

    Agrawal J P 2005 Propel. Explos. Pyrot. 30 316Google Scholar

    [3]

    Yu Q, Yin P, Zhang J H, He C L, Imler G H, Parrish D A, Shreeve J M 2017 J. Am. Chem. Soc. 139 8816Google Scholar

    [4]

    Kumar D, Imler G H, Parrish D A 2017 J. Mater. Chem. A 5 16767Google Scholar

    [5]

    Bennion J C, Siddiqi Z R, Matzger A J 2017 Chem. Commun. 53 6065Google Scholar

    [6]

    Zhang J H, Dharavath S, Mitchell L A, Parrish D A, Shreeve J M 2016 J. Am. Chem. Soc. 138 7500Google Scholar

    [7]

    He C, Shreeve J M 2016 Angew. Chem. 128 782Google Scholar

    [8]

    Liu W, Liu W L, Pang S P 2017 RSC Adv. 7 3617Google Scholar

    [9]

    Xu J G, Sun C, Zhang M J, Liu B W, Li X Z, Lu J, Wang S H, Zheng F K, Guo G C 2017 Chem. Mater. 29 9725Google Scholar

    [10]

    Sun C G, Zhang C, Jiang C, Yang C, Du Y, Zhao Y, Hu B C, Zheng Z S, Christe K O 2018 Nat. Commun. 9 1269Google Scholar

    [11]

    Wang S, Wang Q Y, Feng X, Wang B, Yang L 2017 Adv. Mater. 29 1701898Google Scholar

    [12]

    Shen C, Liu Y, Zhu Z Q, Xu Y G, Lu M 2017 Chem. Commun. 53 7489Google Scholar

    [13]

    Lin J D, Li Y H, Xu J G, Zheng F K, Guo G C, Lv R X, He W C, Huang Z N, Liu J F 2018 J. Solid State Chem. 265 42Google Scholar

    [14]

    Nielsen A T, Chafin A P, Christian S L, Moore D W, Nadler M P, Nissan R A, Vanderah D J, Gilardi R D, George C F, Flippen-Anderson J L 1998 Tetrahedron 54 11793Google Scholar

    [15]

    Liao W Q, Zhao D W, Tang Y Y, Zhang Y, Li P F, Shi P P, Chen X G, You Y M, Xiong R G 2019 Science 363 1206Google Scholar

    [16]

    Ye H Y, Tang Y Y, Li P F, Liao W Q, Gao J X, Hua X N, Cai H, Shi P P, You Y M, Xiong R G 2018 Science 361 151Google Scholar

    [17]

    徐豪杰, 韩世国, 孙志华, 罗军华 2021 化学学报 79 23Google Scholar

    Luo J H, Sun Z H, Han S G, Xu H J 2021 Acta Chim. Sin. 79 23Google Scholar

    [18]

    He Y P, Galli G 2014 Chem. Mater. 26 5394Google Scholar

    [19]

    Xing G, Mathews N, Lim S S, Yantara N, Liu X F, Sabba D, Grätzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar

    [20]

    Guo Y L, Liu C, Tanaka H, Nakamura E 2015 J. Phys. Chem. Lett. 6 535Google Scholar

    [21]

    Chen S L, Yang Z R, Wang B J, Shang Y, Sun L Y, He C T, Zhou H L, Zhang W X, Chen X M 2018 Sci. China Mater. 61 1123Google Scholar

    [22]

    Chen S L, Shang Y, He C T, Sun L Y, Ye Z M, Zhang W X, Chen X M 2018 CrystEngComm 20 7458Google Scholar

    [23]

    Shang Y, Huang R K, Chen S L, He C T, Yu Z H, Ye Z M, Zhang W X, Chen X M, Design 2020 Cryst. Growth Des. 20 1891Google Scholar

    [24]

    Shang Y, Yu Z H, Huang R K, Chen S L, Liu D X, Chen X X, Zhang W X, Chen X M 2020 Eng. PRC. 6 1013

    [25]

    Shang Y, Chen S L, Yu Z H, Huang R K, He C T, Ye Z M, Zhang W X, Chen X M 2022 Inorg. Chem. 61 4143Google Scholar

    [26]

    Feng Y, Zhang J, Cao W, Zhang J, Shreeve J n M 2023 Nat. Commun. 14 7765Google Scholar

    [27]

    Chen S, Yi Z, Jia C, Li Y, Chen H, Zhu S, Zhang L 2023 Small 19 2302631Google Scholar

    [28]

    Zhou J, Ding L, Bi F, Wang B, Zhang J 2018 J. Anal. Appl. Pyrolysis 129 189Google Scholar

    [29]

    An T, He W, Chen S W, Zuo B L, Qi X F, Zhao F Q, Luo Y J, Yan Q L 2018 J. Phys. Chem. C 122 26956Google Scholar

    [30]

    Jia Q, Deng P, Li X X, Hu L S, Cao X 2020 Vacuum 175 109257Google Scholar

    [31]

    Deng P, Wang H, Yang X, Ren H, Jiao Q J 2020 J. Alloy. Compd. 827 154257Google Scholar

    [32]

    Zhou J, Ding L, Zhao F Q, Wang B, Zhang J L 2020 Chin. Chem. Lett. 31 554Google Scholar

    [33]

    Li X X, Hu S Q, Cao X, Hu L S, Deng P, Xie Z B 2020 J. Energ. Mater. 38 162Google Scholar

    [34]

    Jia Q, Bai X, Zhu S, Cao X, Deng P, Hu L 2019 J. Energ. Mater. 38 377

    [35]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [36]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [37]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [38]

    Kresse G, Furthmüller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [39]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [40]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [41]

    Ganose A M, Savory C N, Scanlon D O 2015 J. Phys. Chem. Lett. 6 4594Google Scholar

    [42]

    P J, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X l, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [43]

    Le Page Y, Saxe P 2002 Phys. Rev. B 65 104104Google Scholar

    [44]

    Alyoubi R Y, Raffah B M, Hamioud F, Mubarak A A 2021 Mod. Phys. Lett. B 35 2150056

    [45]

    Murnaghan F D 1944 P. Natl. Acad. Sci. USA 30 244Google Scholar

    [46]

    Feng G Q, Jiang X X, Wei W J, Gong P F, Kang L, Li Z H, Li Y C, Li X D, Wu X S, Lin Z S 2016 Dalton T. 45 4303Google Scholar

    [47]

    Agrawal P M, Rice B M, Zheng L Q, Velardez G F, Thompson D L 2006 J. Phys. Chem. B 110 5721Google Scholar

    [48]

    Agrawal P M, Rice B M, Zheng L Q, Thompson D L 2006 J. Phys. Chem. B 110 26185Google Scholar

    [49]

    Xiao H M, Li Y F 1995 Sci. China Ser. B 5 538

    [50]

    Zhu W H, Xiao J J, Ji G F, Zhao F, Xiao H M 2007 J. Phys. Chem. B 111 12715Google Scholar

    [51]

    Xu X J, Zhu W H, Xiao H M 2007 J. Phys. Chem. B 111 2090Google Scholar

    [52]

    Zhu W H, Xiao H M 2008 J. Comput. Chem. 29 176Google Scholar

    [53]

    Zhu W H, Xiao H M 2010 Struct. Chem. 21 657Google Scholar

    [54]

    Fan J Y, Su Y, Zheng Z Y, Zhang Q Y, Zhao J J 2019 J. Raman Spectrosc. 50 889Google Scholar

    [55]

    Wu Q, Zhu W, Xiao H 2014 Struct. Chem. 26 477

    [56]

    Xiang F, Wu Q, Zhu W H, Xiao H M 2014 Struct. Chem. 25 1625Google Scholar

    [57]

    Wang W P, Liu F S, Liu Q J, Wang Y G, Liu Z T 2016 Comp. Mater. Sci. 121 225Google Scholar

    [58]

    Feng J 2014 APL Mater. 2 081801Google Scholar

    [59]

    袁文翎, 姚碧霞, 李喜, 胡顺波, 任伟 2024 物理学报 73 086104Google Scholar

    Yuan W L, Yao B X, Li X, Hu S B, Ren W 2024 Acta Phys. Sin. 73 086104Google Scholar

    [60]

    Liu Q J, Ran Z, Liu F S, Liu Z T 2015 J. Alloys Compd. 631 192Google Scholar

    [61]

    Chen S, Sun Y, Duan Y H, Huang B, Peng M J 2015 J. Alloys Compd. 630 202Google Scholar

    [62]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345Google Scholar

    [63]

    Jund P, Viennois R, Tao X M, Niedziolka K, Tédenac J C 2012 Phys. Rev. B 85 224105Google Scholar

  • [1] 张硕鑫, 刘士余, 严达利, 余浅, 任海涛, 于彬, 李德军. Ta1–xHfxC和Ta1–xZrxC固溶体的结构稳定性和力学性质的第一性原理研究. 物理学报, 2021, 70(11): 117102. doi: 10.7498/aps.70.20210191
    [2] 胡雪兰, 卢睿智, 王智隆, 王亚如. Re对Ni3Al微观结构及力学性质影响的第一原理研究. 物理学报, 2020, 69(10): 107101. doi: 10.7498/aps.69.20200097
    [3] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [4] 宋庆功, 赵俊普, 顾威风, 甄丹丹, 郭艳蕊, 李泽朋. 基于密度泛函理论的La掺杂-TiAl体系结构延性与电子性质. 物理学报, 2017, 66(6): 066103. doi: 10.7498/aps.66.066103
    [5] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华. ZnTe结构相变、电子结构和光学性质的研究. 物理学报, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [6] 吴琼, 刘俊, 董前民, 刘阳, 梁培, 舒海波. 硫化锡电子结构和光学性质的量子尺寸效应. 物理学报, 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [7] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变. 物理学报, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [8] 徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民. 并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究. 物理学报, 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [9] 潘敏, 黄整, 赵勇. 强关联效应下非磁性元素Ir掺杂的SmFeAsO电子结构理论研究. 物理学报, 2013, 62(21): 217401. doi: 10.7498/aps.62.217401
    [10] 唐春梅, 郭微, 朱卫华, 刘明熠, 张爱梅, 巩江峰, 王辉. 内掺过渡金属非典型富勒烯M@C22(M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) 几何结构、电子结构、稳定性和磁性的密度泛函研究. 物理学报, 2012, 61(2): 026101. doi: 10.7498/aps.61.026101
    [11] 程亮, 甘章华, 刘威, 赵兴中. (Nb, N)共掺杂锐钛矿电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(23): 237107. doi: 10.7498/aps.61.237107
    [12] 曹青松, 袁勇波, 肖传云, 陆瑞锋, 阚二军, 邓开明. C80H80几何结构和电子性质的密度泛函研究. 物理学报, 2012, 61(10): 106101. doi: 10.7498/aps.61.106101
    [13] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究. 物理学报, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [14] 张秀荣, 吴礼清, 饶倩. (OsnN)0,(n=16)团簇电子结构与光谱性质的理论研究. 物理学报, 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [15] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [16] 张秀荣, 高从花, 吴礼清, 唐会帅. WnNim(n+m≤7; m=1, 2)团簇电子结构与光谱性质的理论研究. 物理学报, 2010, 59(8): 5429-5438. doi: 10.7498/aps.59.5429
    [17] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [18] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究. 物理学报, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [19] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [20] 王贵春, 袁建民. Cu低维体系的结构和电子性质. 物理学报, 2003, 52(4): 970-977. doi: 10.7498/aps.52.970
计量
  • 文章访问数:  1231
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-07
  • 修回日期:  2024-05-24
  • 上网日期:  2024-06-07
  • 刊出日期:  2024-07-20

/

返回文章
返回