搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Re对Ni3Al微观结构及力学性质影响的第一原理研究

胡雪兰 卢睿智 王智隆 王亚如

引用本文:
Citation:

Re对Ni3Al微观结构及力学性质影响的第一原理研究

胡雪兰, 卢睿智, 王智隆, 王亚如

First-principles study on effect of Re on micro structure and mechanical properties of Ni3Al intermetallics

Hu Xue-Lan, Lu Rui-Zhi, Wang Zhi-Long, Wang Ya-Ru
PDF
HTML
导出引用
  • 应用基于密度泛函理论和广义梯度近似的第一原理方法, 探究了Re元素掺杂镍铝合金中$ {\gamma ^{\prime}}$相Ni3Al之后微观结构和力学性质的变化. 结果表明, 在大部分化学计量比范围内, Re原子在Ni3Al中易于替代Al位. Re的掺杂引起Ni3Al晶格常数小幅度地增大, 且不会引起严重的晶格畸变. 通过差分电荷密度及态密度分析得到Re原子与近邻原子产生轨道相互作用, 尤其是与Ni原子作用较强, 并使周围Ni-Al键键能降低. 通过计算弹性模量, 应用经验判据得到掺杂后Ni3Al的刚性、硬度增强. 随着Re掺杂浓度的增加, Ni3Al晶格常数、刚性和硬度随之增大. 为了对第一性原理所得结果进行温度修正, 进一步结合声子谱计算考察了温度对力学性质的影响. Re的掺杂使得Ni3Al晶胞的熵略微增加, 自由能略微降低, 并且大幅度地增加Ni3Al在高温下的体弹性模量, 同时降低Ni3Al在高温下的热膨胀系数.
    The effects of Re on the microstructure and mechanical properties of $ {\gamma '}$ phase Ni3Al intermetallics are investigated by using first-principles method based on density functional theory and generalized gradient approximation. It shows that in most stoichiometric ranges, the dissolution energy of Re replacing Al site is smaller than that of Re replacing Ni site. That means the energetically-favorable site of Re in Ni3Al is Al replace site. We further investigate the interaction between two Re atoms in Ni3Al. The larger the distance between two Re atoms, the more stable the system becomes, showing that Re atoms are dispersed in Ni3Al instead of being aggregated. Re doping causes a small increase in the lattice constant of Ni3Al intermetallics without causing serious lattice deformation. Analyses on differential charge density and state density show that Re atom bonds with neighboring atoms, especially with Ni atoms, and reduces the surrounding Ni—Al bond energy. Analyses on local state density show that Re atom has orbital interaction with the neighboring Ni and Al atoms, and the interaction with Ni is larger, which concerns the 5d orbit of Re and the 3d orbit of Ni. The effect of Re on the mechanical properties of Ni3Al intermetallics is also investigated. The elastic constants calculating results together with empirical criteria indicate the presence of Re atom (corresponding concentration is 0.93%) can cause increase of the stiffness and hardness of Ni3Al. The Cauchy pressure value shows a slight improvement in toughness. The increase of Re doping concentration (the concentration of Re in Ni3Al is 1.85%) can cause increase of the lattice constant, stiffness and hardness and decrease of the ductility of Ni3Al. In order to correct the temperature of the results obtained by first-principles method, the influence of temperature on the mechanical properties of Ni3Al has been further investigated through Phonopy calculation. The influence of temperature on the coefficient of thermal expansion and bulk modulus of elasticity is obtained by quasi harmonic approximation. The results show that the addition of Re slightly enhances the entropy of Ni3Al, but causes decrease of its Helmholtz free energy on a small extent. At high temperature, doping of Re greatly strengthens the bulk modulus of Ni3Al but decreases the thermal expansion coefficient of which. Results of the current research can provide theoretical data for improving the mechanical properties of single crystal turbine blades of aero-engines.
      通信作者: 胡雪兰, huxlemma@163.com
    • 基金项目: 其它-中央高校基本业务经费(3122018Z004)
      Corresponding author: Hu Xue-Lan, huxlemma@163.com
    [1]

    方昌德 2004 航空发动机 30 1Google Scholar

    Fang C D 2004 Aeroengine 30 1Google Scholar

    [2]

    秦琴, 毛子荐, 刘昭凡 2017 工具技术 51 3Google Scholar

    Qin Q, Mao Z J, Liu Z F 2017 Tool Eng. 51 3Google Scholar

    [3]

    徐颂波 1997 上海有色金属 18 88

    Xu S B 1997 Shanghai Nonferro. Met. 18 88

    [4]

    陈金栌, 朱定一, 林登宜 2006 材料导报 20 35Google Scholar

    Chen J L, Zhu D Y, Lin D Y 2006 Mater. Rev. 20 35Google Scholar

    [5]

    赵希宏, 韩雅芳, 谭永宁, 殷克勤, 余乾, 肖程波 1997 材料工程 42 13

    Zhao X H, Han Y F, Tan Y N, Yin K Q, Yu Q, Xiao C B 1997 J. Mater. Eng. 42 13

    [6]

    Lucaci M, Orban R L, Patroi D, Hodorogea S, Bibicu I, Lungu M 2007 Adv. Mater. Res. 23 67Google Scholar

    [7]

    Kumar A, Chernatynskiy A, Hong M, Phillpot S, Sinnott S 2015 Comput. Mater. Sci. 101 39Google Scholar

    [8]

    Wu Q, Li S S 2012 Comput. Mater. Sci. 53 1Google Scholar

    [9]

    Masahashi N, Takasugi T, Izumi O 1988 Acta Metall. 36 1823Google Scholar

    [10]

    Masahashi N, Takasugi T, Izumi O 1987 J. Mater. Sci. 22 2599Google Scholar

    [11]

    张永刚, 韩雅芳, 陈国良, 郭建亭, 万晓景, 冯涤 2001 金属间化合物结构材料 (北京: 国防工业出版社) 第577−578页

    Zhang Y G, Han Y F, Chen G L, Guo J T, Wan X J, Feng D 2001 Structural Intermetallics (Beijing: National Defense Industry Press) pp577−578 (in Chinese)

    [12]

    于松, 王崇愚, 于涛 2007 物理学报 56 3212Google Scholar

    Yu S, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 3212Google Scholar

    [13]

    刘争光 2014 博士学位论文 (北京: 钢铁研究总院)

    Liu Z G 2014 Ph. D. Dissertation (Beijing: Central Iron & Steel Research Institute) (in Chinese)

    [14]

    Gong W, Zhao W Y, Miao N H, Zhou J, Sun Z M, Li S S, Gong S K 2018 Comput. Mater. Sci. 144 23Google Scholar

    [15]

    胡雪兰 2009 博士学位论文 (北京: 北京航空航天大学)

    Hu X L 2009 Ph. D. Dissertation (Beijing: Beihang University) (in Chinese)

    [16]

    刘悦林 2009 博士学位论文 (北京: 北京航空航天大学)

    Liu Y L 2009 Ph. D. Dissertation (Beijing: Beihang University) (in Chinese)

    [17]

    Liu S L, Wang C Y, Yu T, Liu Z G 2015 Comput. Mater. Sci. 97 102Google Scholar

    [18]

    Yu X X, Wang C Y, Zhang X N, Yan P, Zhang Z 2014 J. Alloys Compd. 582 299Google Scholar

    [19]

    Wang S Y, Wang C Y, Sun J H, Duan W H, Zhao D L 2002 Phys. Rev. B 65 035101Google Scholar

    [20]

    Zhou Y, Mao Z G, Booth-Morrison C, Seidman D N 2008 Appl. Phys. Lett. 93 71905Google Scholar

    [21]

    Yang X Y, Hu W Y 2014 J. Appl. Phys. 115 1679

    [22]

    Liu S L, Wang C Y, Yu T 2015 Comput. Mater. Sci. 110 261Google Scholar

    [23]

    Prikhodko S V, Yang H, Ardell A J 1999 Metall. Mater. Trans. A 30 2403Google Scholar

    [24]

    Li P, Li Q Q, Jin T, Zhou Y Z, Li J G, Sun X F, Zhang Z F 2014 Mater. Sci. Eng., A 603 84Google Scholar

    [25]

    赵海根, 李树索, 裴延玲, 宫声凯, 徐惠彬 2015 金属学报 51 1279

    Zhao H G, Li S S, Pei Y L, Gong S K, Xu H B 2015 Acta Metall. Sin. 51 1279

    [26]

    Pugh S F 1954 Philos. Mag. 45 823Google Scholar

    [27]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345Google Scholar

    [28]

    黄昆 2014 固体物理学 (第二版) (北京: 北京大学出版社) 第54−55页

    Huang K 2014 Solid State Physics (2nd Ed.) (Beijing: Peking University Press) pp54−55 (in Chinese)

    [29]

    胡赓祥, 蔡珣, 戎咏华 2010 材料科学基础 (第三版) (上海: 上海交通大学出版社) 第169−170页

    Hu G X, Cai X, Rong Y H 2010 Fundamentals of Materials Science (3rd Ed.) (Shanghai: Shanghai Jiao Tong University Press) pp169−170 (in Chinese)

  • 图 1  L12 Ni3Al晶胞及Re可能的掺杂位置示意图 (a) Ni3Al晶胞示意图; (b) Al替代位; (c) Ni替代位; (d) 八面体间隙位置

    Fig. 1.  The crystal structure of L12 Ni3Al and different sites for Re in Ni3Al: (a) The crystal structure of Ni3Al; (b) Al substitution site; (c) Ni substitution site; (d) octahedral interstitial site.

    图 2  Re替代Ni位、替代Al位和占据八面体间隙的情况下溶解能随Ni/Al的浓度变化图

    Fig. 2.  The variation of dissolution energy with Ni/Al concentration when Re is substituted for Ni or Al site or occupied octahedral interstice.

    图 3  Re替代前后掺杂位置近邻的化学键 (a) Re替代前Al原子与近邻Ni所成的化学键; (b) Re替代后与近邻Ni所成的化学键; (c) Re替代前掺杂点位附近Ni—Ni键和Ni—Al键的情况; (d) Re替代后掺杂点位附近Ni—Ni键和Ni—Al键的情况

    Fig. 3.  The nearby bonds around doping position before or after Re substitutes: (a) The bonds formed between Al and neighboring Ni before Re substitutes; (b) the bonds formed between Re and neighboring Ni after Re substitutes; (c) the nearby Ni—Ni bonds and Ni—Al bonds around doping position before Re substitutes; (d) the nearby Ni—Ni bonds and Ni—Al bonds around doping position after Re substitutes.

    图 4  Re掺杂后掺杂点位附近的差分电荷密度

    Fig. 4.  The differential charge density around the doping position after Re substitutes.

    图 5  纯Ni3Al和Ni3Al-1Re体系的总态密度

    Fig. 5.  The total density of states of Ni3Al and Ni3Al-1Re.

    图 6  Re, 与Re近邻的Al和与Re近邻的Ni的局域态密度 (a) Re原子在纯Re和在Ni3Al-1Re中的局域态密度; (b)与Re近邻的Al在Ni3Al和Ni3Al-1Re中的局域态密度; (c)与Re近邻的Ni在Ni3Al和Ni3Al-1Re中的局域态密度

    Fig. 6.  Local density of states(LDOS) of Re, Al(next to Re) and Ni(next to Re): (a) LDOS of Re in pure Re and in Ni3Al-1Re; (b) LDOS of Al(next to Re) in Ni3Al and in Ni3Al-1Re; (c) LDOS of Ni(next to Re) in Ni3Al and in Ni3Al-1Re.

    图 7  Ni3Al和Ni3Al-1Re的热力学性质随温度的变化曲线 (a) Ni3Al和Ni3Al-1Re的熵随温度的变化曲线; (b) Ni3Al和Ni3Al-1Re的亥姆霍兹自由能随温度的变化曲线; (c) Ni3Al和Ni3Al-1Re的定体热容随温度的变化曲线; (d) Ni3Al和Ni3Al-1Re的体弹性模量随温度的变化曲线; (e) Ni3Al和Ni3Al-1Re的热膨胀系数随温度的变化曲线

    Fig. 7.  Thermal properties of Ni3Al and Ni3Al-1Re as a function of temperature: (a) Entropy of Ni3Al and Ni3Al-1Re as a function of temperature; (b) Helmholtz free energy of Ni3Al and Ni3Al-1Re as a function of temperature; (c) ${C_V}$ of Ni3Al and Ni3Al-1Re as a function of temperature; (d) B of Ni3Al and Ni3Al-1Re as a function of temperature; (e)$\alpha $ of Ni3Al and Ni3Al-1Re as a function of temperature.

    表 1  Ni3Al超晶胞能量与2个Re原子间距的关系

    Table 1.  Relation between the energy of Ni3Al supercell and the distance between 2 Re atoms.

    相对位
    置情况
    2个Re原子
    相距a
    2个Re原子
    相距$\sqrt 2 a$
    2个Re原子
    相距$\sqrt 3 a$
    晶胞能量/eV–604.81–604.85–604.88
    下载: 导出CSV

    表 2  Ni3Al弹性常数和弹性模量的计算值与其他研究的计算值和实验值的对比以及Ni3Al-1Re, Ni3Al-2Re弹性常数等物理量的计算值

    Table 2.  Comparison of calculated values of elastic constant and modulus of Ni3Al with other calculated, experimental values and calculated values of some physical parameters of Ni3Al-1Re and Ni3Al-2Re.

    c11/GPac12/GPac44/GPaB/GPaG/GPaE/GPac12c44G/B
    Ni3Al233.2152.6118.1179.587.0224.734.50.48
    Calc1[11]$227 \pm 5$$148 \pm 5$$120 \pm 2$
    Calc2[22]242.6149.3130.3180.486.4223.0
    Expt1[11]220.1146.0123.6171.079.0205.0
    Expt2[23]225.0149.0124.0174.377.3202.1
    Ni3Al-1Re236.7153.7118.8181.487.9227.034.90.48
    Ni3Al-2Re241.8154.5120.8183.689.9231.933.70.49
    下载: 导出CSV
  • [1]

    方昌德 2004 航空发动机 30 1Google Scholar

    Fang C D 2004 Aeroengine 30 1Google Scholar

    [2]

    秦琴, 毛子荐, 刘昭凡 2017 工具技术 51 3Google Scholar

    Qin Q, Mao Z J, Liu Z F 2017 Tool Eng. 51 3Google Scholar

    [3]

    徐颂波 1997 上海有色金属 18 88

    Xu S B 1997 Shanghai Nonferro. Met. 18 88

    [4]

    陈金栌, 朱定一, 林登宜 2006 材料导报 20 35Google Scholar

    Chen J L, Zhu D Y, Lin D Y 2006 Mater. Rev. 20 35Google Scholar

    [5]

    赵希宏, 韩雅芳, 谭永宁, 殷克勤, 余乾, 肖程波 1997 材料工程 42 13

    Zhao X H, Han Y F, Tan Y N, Yin K Q, Yu Q, Xiao C B 1997 J. Mater. Eng. 42 13

    [6]

    Lucaci M, Orban R L, Patroi D, Hodorogea S, Bibicu I, Lungu M 2007 Adv. Mater. Res. 23 67Google Scholar

    [7]

    Kumar A, Chernatynskiy A, Hong M, Phillpot S, Sinnott S 2015 Comput. Mater. Sci. 101 39Google Scholar

    [8]

    Wu Q, Li S S 2012 Comput. Mater. Sci. 53 1Google Scholar

    [9]

    Masahashi N, Takasugi T, Izumi O 1988 Acta Metall. 36 1823Google Scholar

    [10]

    Masahashi N, Takasugi T, Izumi O 1987 J. Mater. Sci. 22 2599Google Scholar

    [11]

    张永刚, 韩雅芳, 陈国良, 郭建亭, 万晓景, 冯涤 2001 金属间化合物结构材料 (北京: 国防工业出版社) 第577−578页

    Zhang Y G, Han Y F, Chen G L, Guo J T, Wan X J, Feng D 2001 Structural Intermetallics (Beijing: National Defense Industry Press) pp577−578 (in Chinese)

    [12]

    于松, 王崇愚, 于涛 2007 物理学报 56 3212Google Scholar

    Yu S, Wang C Y, Yu T 2007 Acta Phys. Sin. 56 3212Google Scholar

    [13]

    刘争光 2014 博士学位论文 (北京: 钢铁研究总院)

    Liu Z G 2014 Ph. D. Dissertation (Beijing: Central Iron & Steel Research Institute) (in Chinese)

    [14]

    Gong W, Zhao W Y, Miao N H, Zhou J, Sun Z M, Li S S, Gong S K 2018 Comput. Mater. Sci. 144 23Google Scholar

    [15]

    胡雪兰 2009 博士学位论文 (北京: 北京航空航天大学)

    Hu X L 2009 Ph. D. Dissertation (Beijing: Beihang University) (in Chinese)

    [16]

    刘悦林 2009 博士学位论文 (北京: 北京航空航天大学)

    Liu Y L 2009 Ph. D. Dissertation (Beijing: Beihang University) (in Chinese)

    [17]

    Liu S L, Wang C Y, Yu T, Liu Z G 2015 Comput. Mater. Sci. 97 102Google Scholar

    [18]

    Yu X X, Wang C Y, Zhang X N, Yan P, Zhang Z 2014 J. Alloys Compd. 582 299Google Scholar

    [19]

    Wang S Y, Wang C Y, Sun J H, Duan W H, Zhao D L 2002 Phys. Rev. B 65 035101Google Scholar

    [20]

    Zhou Y, Mao Z G, Booth-Morrison C, Seidman D N 2008 Appl. Phys. Lett. 93 71905Google Scholar

    [21]

    Yang X Y, Hu W Y 2014 J. Appl. Phys. 115 1679

    [22]

    Liu S L, Wang C Y, Yu T 2015 Comput. Mater. Sci. 110 261Google Scholar

    [23]

    Prikhodko S V, Yang H, Ardell A J 1999 Metall. Mater. Trans. A 30 2403Google Scholar

    [24]

    Li P, Li Q Q, Jin T, Zhou Y Z, Li J G, Sun X F, Zhang Z F 2014 Mater. Sci. Eng., A 603 84Google Scholar

    [25]

    赵海根, 李树索, 裴延玲, 宫声凯, 徐惠彬 2015 金属学报 51 1279

    Zhao H G, Li S S, Pei Y L, Gong S K, Xu H B 2015 Acta Metall. Sin. 51 1279

    [26]

    Pugh S F 1954 Philos. Mag. 45 823Google Scholar

    [27]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345Google Scholar

    [28]

    黄昆 2014 固体物理学 (第二版) (北京: 北京大学出版社) 第54−55页

    Huang K 2014 Solid State Physics (2nd Ed.) (Beijing: Peking University Press) pp54−55 (in Chinese)

    [29]

    胡赓祥, 蔡珣, 戎咏华 2010 材料科学基础 (第三版) (上海: 上海交通大学出版社) 第169−170页

    Hu G X, Cai X, Rong Y H 2010 Fundamentals of Materials Science (3rd Ed.) (Shanghai: Shanghai Jiao Tong University Press) pp169−170 (in Chinese)

  • [1] 李巧利, 李慎慎, 肖继军, 陈兆旭. 静水压力作用下(H2dabco)[K(ClO4)3]结构与稳定性的第一性原理研究. 物理学报, 2024, 73(14): 143101. doi: 10.7498/aps.73.20240477
    [2] 张硕鑫, 刘士余, 严达利, 余浅, 任海涛, 于彬, 李德军. Ta1–xHfxC和Ta1–xZrxC固溶体的结构稳定性和力学性质的第一性原理研究. 物理学报, 2021, 70(11): 117102. doi: 10.7498/aps.70.20210191
    [3] 李君, 刘立胜, 徐爽, 张金咏. 单轴压缩下Ti3B4的力学、电学性能及变形机制的第一性原理研究. 物理学报, 2020, 69(4): 043102. doi: 10.7498/aps.69.20191194
    [4] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质. 物理学报, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [5] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能. 物理学报, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [6] 王雪飞, 马静婕, 焦照勇, 张现周. Ti3(SnxAl1-x)C2固溶体电学、力学和热学性能的理论研究. 物理学报, 2016, 65(20): 206201. doi: 10.7498/aps.65.206201
    [7] 王晓媛, 赵丰鹏, 王杰, 闫亚宾. 金属有机框架材料力学、电学及其应变调控特性的第一原理研究. 物理学报, 2016, 65(17): 178105. doi: 10.7498/aps.65.178105
    [8] 李倩倩, 郝秋艳, 李英, 刘国栋. 稀土元素(Ce, Pr)掺杂GaN的电子结构和光学性质的理论研究. 物理学报, 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [9] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [10] 高潭华, 刘慧英, 张鹏, 吴顺情, 杨勇, 朱梓忠. Al掺杂的尖晶石型LiMn2O4的结构和电子性质. 物理学报, 2012, 61(18): 187306. doi: 10.7498/aps.61.187306
    [11] 代云雅, 杨莉, 彭述明, 龙兴贵, 周晓松, 祖小涛. 金属氢化物力学性能的第一性原理研究. 物理学报, 2012, 61(10): 108801. doi: 10.7498/aps.61.108801
    [12] 李青坤, 孙毅, 周玉, 曾凡林. 第一性原理研究hcp-C3碳体环材料的力学性质. 物理学报, 2012, 61(4): 043103. doi: 10.7498/aps.61.043103
    [13] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [14] 崔冬萌, 谢泉, 陈茜, 赵凤娟, 李旭珍. Si基外延Ru2Si3电子结构及光学性质研究. 物理学报, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [15] 李德华, 朱晓玲, 苏文晋, 程新路. PtN2的结构和力学性质的第一性原理计算. 物理学报, 2010, 59(3): 2004-2009. doi: 10.7498/aps.59.2004
    [16] 顾娟, 王山鹰, 苟秉聪. Au和3d过渡金属元素混合团簇结构、电子结构和磁性的研究. 物理学报, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [17] 郭建云, 郑 广, 何开华, 陈敬中. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究. 物理学报, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [18] 丁迎春, 向安平, 徐 明, 祝文军. 掺稀土元素(Y,La)的γ-Si3N4的电子结构和光学性质. 物理学报, 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
    [19] 丁迎春, 徐 明, 潘洪哲, 沈益斌, 祝文军, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究. 物理学报, 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
    [20] 潘洪哲, 徐 明, 祝文军, 周海平. β-Si3N4电子结构和光学性质的第一性原理研究. 物理学报, 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
计量
  • 文章访问数:  9224
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-14
  • 修回日期:  2020-03-17
  • 刊出日期:  2020-05-20

/

返回文章
返回