-
采用第一性原理方法详细研究了氟化钙结构的多种金属氢化物MH2 (M= La, Nd, Gd, Tb, Y, Dy, Ho, Er, Lu, Sc, Ti, Zr, Hf)的力学性质(弹性常数、体弹模量、剪切模量、杨氏模量).计算结果表明, MH2 (M= La, Nd, Gd, Tb, Y, Dy, Ho, Er, Lu, Sc)在低温下具有稳定的氟化钙结构,其抵抗体积形变, 切应变和拉伸(或压缩)形变的能力从LaH2, NdH2, GdH2, TbH2, YH2, DyH2, HoH2, ErH2, LuH2到ScH2逐次递增, 而MH2 (M= Ti, Zr, Hf)在低温下的氟化钙结构不稳定.通过对两种稳定的氢化物(TbH2, ErH2) 和两种不稳定的氢化物(TiH2, HfH2)的电子态密度以及差分电荷密度进行对比, 发现它们的稳定性与金属和氢之间的相互作用有密切关系.The mechanical properties of MH2 (M= La, Nd, Gd, Tb, Y, Dy, Ho, Er, Lu, Sc, Ti, Zr, Hf) are studied by the first-principles calculations. The results show that the fluorite structures of MH2 (M= La, Nd, Gd, Tb, Y, Dy, Ho, Er, Lu, Sc) are stable at low temperatures. Their bulk moduli, shear moduli and Young's moduli increase in the order of LaH2, NdH2, GdH2, TbH2, YH2, DyH2, HoH2, ErH2, LuH2 and ScH2. However, the cubic phases of MH2 (M= Ti, Zr, Hf) are unstable at low temperatures. According to the densities of states and charge densities of TbH2, ErH2, TiH2 and HfH2, it can be found that the stabilities of metal dihydrides depend on the interaction between metal and hydrogen atoms.
-
Keywords:
- metal dihydride /
- mechanical properties /
- first-principles
[1] Weast R C, Astle M J, Beyer W H 1983 CRC Handbook of Chemistry and Physics (64th Ed.) (Boca Raton, FL: CRC Press)
[2] Billur S, Farida L D, Michael H 2007 Int. J. Hydrogen Energy 32 1121
[3] Fan K M, Yang L, Peng S M, Long X G, Wu Z C, Zu X T 2011 Acta Phys. Sin. 60 076201 (in Chinese) [范开敏, 杨莉, 彭述明, 龙兴贵, 吴仲成, 祖小涛 2011 物理学报 60 076201]
[4] Setoyama D, Matsunaga J J, Muta H 2004 J. Alloys Compd. 385 156
[5] Ito M, Setoyama D, Matsunaga J J 2005 J. Alloys Compd. 394 58
[6] Setoyama D, Matsunaga J J, Muta H 2004 J. Alloys Compd. 381 215
[7] Setoyama D, Ito M, Matsunaga J J 2005 J. Alloys Compd. 394 207
[8] Setoyama D, Matsunaga J J, Ito M 2005 J. Nucl. Mater. 344 298
[9] Ito M, Setoyama D, Matsunaga J J 2006 J. Alloys Compd. 426 67
[10] Yamanaka S, Yoshioka K, Uno M, 1999 J. Alloys Compd. 293-295 23
[11] Yamanaka S, Yamada K, Kurosaki K 2002 J. Alloys Compd. 330-332 99
[12] Senkov O N, Dubois M, Jonas J J 1996 Metall. Mater. Trans. A 27(A) 3963
[13] Tao S X, Notten P H L, Santen van R A 2009 Phys. Rev. B 79 144121
[14] Liang C P, Gong H R 2010 Int. J. Hydrogen Energy 35 11378
[15] Ramiro Q, Romeo D C 2009 Phys. Rev. B 80 184103
[16] Zhou L 2005 Renew Sustain Energy Rev. 9 395
[17] Schlapbach L, Züttel A 2001 Nature 414 353
[18] Zuttel A 2003 Mater. Today 6 24
[19] Zhou L, Zhou Y, Sun Y 2006 Int. J. Hydrogen Energy 31 259
[20] Grochala W, Edwards P P 2004 Chem. Rev. 104 1283
[21] Eberle U, Arnold G, Helmholt R V 2006 J. Power Sour. 154 456
[22] Latroche M 2004 J. Phys. Chem. Solids 65 517
[23] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[24] Blöchl P E 1994 Phys. Rev. B 50 17953
[25] Perdew J P, Chevary J A, Vosko S H 1992 Phys. Rev. B 46 6671
[26] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115
[27] Tao S X, Notten P H L, Santen van R A 2010 Phys. Rev. B 82 125448
[28] Villars P 1997 Pearson's Handbook Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH)
[29] Bonnet J E, Daou J N 1977 J. Appl. Phys. 48 964
[30] Rahman M S, Khan, Miller R F 1979 J. Phys. D: Appl. Phys 12 271
[31] Daou J N, Vajda P 1992 Phys. Rev. B 45 10907
[32] Grimshaw J A, Spooner F J, Wilson C G 1981 J. Mater. Sci. 16 2855
[33] Ducastelle F, Caudron R, Costa P 1970 J. Physique 31 57
[34] Nye J F 1985 Physical Properties of Crystals (Oxford: Oxford University Press)
[35] Crane R L, Chatoraj S C, Strope M V 1971 J. Less-common Met. 25 225
[36] Zeng Z H, Deng H Q, Li W X, Hu W Y 2006 Acta Phys. Sin. 55 3157 (in Chinese) [曾振华, 邓辉球, 李微雪, 胡望宇 2006 物理学报 55 3157]
[37] Zhang Y, Lü G H, Deng S H, Wang T M 2006 Acta Phys. Sin. 55 2901 (in Chinese) [张颖, 吕广宏, 邓胜华, 王天民 2006 物理学报 55 2901]
[38] Kudabaev Z I, Torgeson D R, Shevakin A F 1995 J. Alloys Compd. 231 233
[39] Gehring G A, Gehring K A 1975 Rep. Prog. Phys. 38 1
[40] Wolf W, Herzig P 2000 J. Phys.: Condens. Matter. 12 4535
[41] Snow C S, Schultz P, Mattsson T 2010 A Hearty Hodge Podge of ErT2 Research (Albuquerque, NM: Sandia National Laboratories)
-
[1] Weast R C, Astle M J, Beyer W H 1983 CRC Handbook of Chemistry and Physics (64th Ed.) (Boca Raton, FL: CRC Press)
[2] Billur S, Farida L D, Michael H 2007 Int. J. Hydrogen Energy 32 1121
[3] Fan K M, Yang L, Peng S M, Long X G, Wu Z C, Zu X T 2011 Acta Phys. Sin. 60 076201 (in Chinese) [范开敏, 杨莉, 彭述明, 龙兴贵, 吴仲成, 祖小涛 2011 物理学报 60 076201]
[4] Setoyama D, Matsunaga J J, Muta H 2004 J. Alloys Compd. 385 156
[5] Ito M, Setoyama D, Matsunaga J J 2005 J. Alloys Compd. 394 58
[6] Setoyama D, Matsunaga J J, Muta H 2004 J. Alloys Compd. 381 215
[7] Setoyama D, Ito M, Matsunaga J J 2005 J. Alloys Compd. 394 207
[8] Setoyama D, Matsunaga J J, Ito M 2005 J. Nucl. Mater. 344 298
[9] Ito M, Setoyama D, Matsunaga J J 2006 J. Alloys Compd. 426 67
[10] Yamanaka S, Yoshioka K, Uno M, 1999 J. Alloys Compd. 293-295 23
[11] Yamanaka S, Yamada K, Kurosaki K 2002 J. Alloys Compd. 330-332 99
[12] Senkov O N, Dubois M, Jonas J J 1996 Metall. Mater. Trans. A 27(A) 3963
[13] Tao S X, Notten P H L, Santen van R A 2009 Phys. Rev. B 79 144121
[14] Liang C P, Gong H R 2010 Int. J. Hydrogen Energy 35 11378
[15] Ramiro Q, Romeo D C 2009 Phys. Rev. B 80 184103
[16] Zhou L 2005 Renew Sustain Energy Rev. 9 395
[17] Schlapbach L, Züttel A 2001 Nature 414 353
[18] Zuttel A 2003 Mater. Today 6 24
[19] Zhou L, Zhou Y, Sun Y 2006 Int. J. Hydrogen Energy 31 259
[20] Grochala W, Edwards P P 2004 Chem. Rev. 104 1283
[21] Eberle U, Arnold G, Helmholt R V 2006 J. Power Sour. 154 456
[22] Latroche M 2004 J. Phys. Chem. Solids 65 517
[23] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[24] Blöchl P E 1994 Phys. Rev. B 50 17953
[25] Perdew J P, Chevary J A, Vosko S H 1992 Phys. Rev. B 46 6671
[26] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115
[27] Tao S X, Notten P H L, Santen van R A 2010 Phys. Rev. B 82 125448
[28] Villars P 1997 Pearson's Handbook Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH)
[29] Bonnet J E, Daou J N 1977 J. Appl. Phys. 48 964
[30] Rahman M S, Khan, Miller R F 1979 J. Phys. D: Appl. Phys 12 271
[31] Daou J N, Vajda P 1992 Phys. Rev. B 45 10907
[32] Grimshaw J A, Spooner F J, Wilson C G 1981 J. Mater. Sci. 16 2855
[33] Ducastelle F, Caudron R, Costa P 1970 J. Physique 31 57
[34] Nye J F 1985 Physical Properties of Crystals (Oxford: Oxford University Press)
[35] Crane R L, Chatoraj S C, Strope M V 1971 J. Less-common Met. 25 225
[36] Zeng Z H, Deng H Q, Li W X, Hu W Y 2006 Acta Phys. Sin. 55 3157 (in Chinese) [曾振华, 邓辉球, 李微雪, 胡望宇 2006 物理学报 55 3157]
[37] Zhang Y, Lü G H, Deng S H, Wang T M 2006 Acta Phys. Sin. 55 2901 (in Chinese) [张颖, 吕广宏, 邓胜华, 王天民 2006 物理学报 55 2901]
[38] Kudabaev Z I, Torgeson D R, Shevakin A F 1995 J. Alloys Compd. 231 233
[39] Gehring G A, Gehring K A 1975 Rep. Prog. Phys. 38 1
[40] Wolf W, Herzig P 2000 J. Phys.: Condens. Matter. 12 4535
[41] Snow C S, Schultz P, Mattsson T 2010 A Hearty Hodge Podge of ErT2 Research (Albuquerque, NM: Sandia National Laboratories)
计量
- 文章访问数: 9691
- PDF下载量: 958
- 被引次数: 0