搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属氢化物力学性能的第一性原理研究

代云雅 杨莉 彭述明 龙兴贵 周晓松 祖小涛

引用本文:
Citation:

金属氢化物力学性能的第一性原理研究

代云雅, 杨莉, 彭述明, 龙兴贵, 周晓松, 祖小涛

First-principles calculation for mechanical properties of metal dihydrides

Dai Yun-Ya, Yang Li, Peng Shu-Ming, Long Xing-Gui, Zhou Xiao-Song, Zu Xiao-Tao
PDF
导出引用
  • 采用第一性原理方法详细研究了氟化钙结构的多种金属氢化物MH2 (M= La, Nd, Gd, Tb, Y, Dy, Ho, Er, Lu, Sc, Ti, Zr, Hf)的力学性质(弹性常数、体弹模量、剪切模量、杨氏模量).计算结果表明, MH2 (M= La, Nd, Gd, Tb, Y, Dy, Ho, Er, Lu, Sc)在低温下具有稳定的氟化钙结构,其抵抗体积形变, 切应变和拉伸(或压缩)形变的能力从LaH2, NdH2, GdH2, TbH2, YH2, DyH2, HoH2, ErH2, LuH2到ScH2逐次递增, 而MH2 (M= Ti, Zr, Hf)在低温下的氟化钙结构不稳定.通过对两种稳定的氢化物(TbH2, ErH2) 和两种不稳定的氢化物(TiH2, HfH2)的电子态密度以及差分电荷密度进行对比, 发现它们的稳定性与金属和氢之间的相互作用有密切关系.
    The mechanical properties of MH2 (M= La, Nd, Gd, Tb, Y, Dy, Ho, Er, Lu, Sc, Ti, Zr, Hf) are studied by the first-principles calculations. The results show that the fluorite structures of MH2 (M= La, Nd, Gd, Tb, Y, Dy, Ho, Er, Lu, Sc) are stable at low temperatures. Their bulk moduli, shear moduli and Young's moduli increase in the order of LaH2, NdH2, GdH2, TbH2, YH2, DyH2, HoH2, ErH2, LuH2 and ScH2. However, the cubic phases of MH2 (M= Ti, Zr, Hf) are unstable at low temperatures. According to the densities of states and charge densities of TbH2, ErH2, TiH2 and HfH2, it can be found that the stabilities of metal dihydrides depend on the interaction between metal and hydrogen atoms.
    • 基金项目: 国家自然科学基金(批准号: 10976007)及中央高校基本科研业务费专项资金(批准号: ZYGX2009J040)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10976007) and the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2009J040).
    [1]

    Weast R C, Astle M J, Beyer W H 1983 CRC Handbook of Chemistry and Physics (64th Ed.) (Boca Raton, FL: CRC Press)

    [2]

    Billur S, Farida L D, Michael H 2007 Int. J. Hydrogen Energy 32 1121

    [3]

    Fan K M, Yang L, Peng S M, Long X G, Wu Z C, Zu X T 2011 Acta Phys. Sin. 60 076201 (in Chinese) [范开敏, 杨莉, 彭述明, 龙兴贵, 吴仲成, 祖小涛 2011 物理学报 60 076201]

    [4]

    Setoyama D, Matsunaga J J, Muta H 2004 J. Alloys Compd. 385 156

    [5]

    Ito M, Setoyama D, Matsunaga J J 2005 J. Alloys Compd. 394 58

    [6]

    Setoyama D, Matsunaga J J, Muta H 2004 J. Alloys Compd. 381 215

    [7]

    Setoyama D, Ito M, Matsunaga J J 2005 J. Alloys Compd. 394 207

    [8]

    Setoyama D, Matsunaga J J, Ito M 2005 J. Nucl. Mater. 344 298

    [9]

    Ito M, Setoyama D, Matsunaga J J 2006 J. Alloys Compd. 426 67

    [10]

    Yamanaka S, Yoshioka K, Uno M, 1999 J. Alloys Compd. 293-295 23

    [11]

    Yamanaka S, Yamada K, Kurosaki K 2002 J. Alloys Compd. 330-332 99

    [12]

    Senkov O N, Dubois M, Jonas J J 1996 Metall. Mater. Trans. A 27(A) 3963

    [13]

    Tao S X, Notten P H L, Santen van R A 2009 Phys. Rev. B 79 144121

    [14]

    Liang C P, Gong H R 2010 Int. J. Hydrogen Energy 35 11378

    [15]

    Ramiro Q, Romeo D C 2009 Phys. Rev. B 80 184103

    [16]

    Zhou L 2005 Renew Sustain Energy Rev. 9 395

    [17]

    Schlapbach L, Züttel A 2001 Nature 414 353

    [18]

    Zuttel A 2003 Mater. Today 6 24

    [19]

    Zhou L, Zhou Y, Sun Y 2006 Int. J. Hydrogen Energy 31 259

    [20]

    Grochala W, Edwards P P 2004 Chem. Rev. 104 1283

    [21]

    Eberle U, Arnold G, Helmholt R V 2006 J. Power Sour. 154 456

    [22]

    Latroche M 2004 J. Phys. Chem. Solids 65 517

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [25]

    Perdew J P, Chevary J A, Vosko S H 1992 Phys. Rev. B 46 6671

    [26]

    Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115

    [27]

    Tao S X, Notten P H L, Santen van R A 2010 Phys. Rev. B 82 125448

    [28]

    Villars P 1997 Pearson's Handbook Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH)

    [29]

    Bonnet J E, Daou J N 1977 J. Appl. Phys. 48 964

    [30]

    Rahman M S, Khan, Miller R F 1979 J. Phys. D: Appl. Phys 12 271

    [31]

    Daou J N, Vajda P 1992 Phys. Rev. B 45 10907

    [32]

    Grimshaw J A, Spooner F J, Wilson C G 1981 J. Mater. Sci. 16 2855

    [33]

    Ducastelle F, Caudron R, Costa P 1970 J. Physique 31 57

    [34]

    Nye J F 1985 Physical Properties of Crystals (Oxford: Oxford University Press)

    [35]

    Crane R L, Chatoraj S C, Strope M V 1971 J. Less-common Met. 25 225

    [36]

    Zeng Z H, Deng H Q, Li W X, Hu W Y 2006 Acta Phys. Sin. 55 3157 (in Chinese) [曾振华, 邓辉球, 李微雪, 胡望宇 2006 物理学报 55 3157]

    [37]

    Zhang Y, Lü G H, Deng S H, Wang T M 2006 Acta Phys. Sin. 55 2901 (in Chinese) [张颖, 吕广宏, 邓胜华, 王天民 2006 物理学报 55 2901]

    [38]

    Kudabaev Z I, Torgeson D R, Shevakin A F 1995 J. Alloys Compd. 231 233

    [39]

    Gehring G A, Gehring K A 1975 Rep. Prog. Phys. 38 1

    [40]

    Wolf W, Herzig P 2000 J. Phys.: Condens. Matter. 12 4535

    [41]

    Snow C S, Schultz P, Mattsson T 2010 A Hearty Hodge Podge of ErT2 Research (Albuquerque, NM: Sandia National Laboratories)

  • [1]

    Weast R C, Astle M J, Beyer W H 1983 CRC Handbook of Chemistry and Physics (64th Ed.) (Boca Raton, FL: CRC Press)

    [2]

    Billur S, Farida L D, Michael H 2007 Int. J. Hydrogen Energy 32 1121

    [3]

    Fan K M, Yang L, Peng S M, Long X G, Wu Z C, Zu X T 2011 Acta Phys. Sin. 60 076201 (in Chinese) [范开敏, 杨莉, 彭述明, 龙兴贵, 吴仲成, 祖小涛 2011 物理学报 60 076201]

    [4]

    Setoyama D, Matsunaga J J, Muta H 2004 J. Alloys Compd. 385 156

    [5]

    Ito M, Setoyama D, Matsunaga J J 2005 J. Alloys Compd. 394 58

    [6]

    Setoyama D, Matsunaga J J, Muta H 2004 J. Alloys Compd. 381 215

    [7]

    Setoyama D, Ito M, Matsunaga J J 2005 J. Alloys Compd. 394 207

    [8]

    Setoyama D, Matsunaga J J, Ito M 2005 J. Nucl. Mater. 344 298

    [9]

    Ito M, Setoyama D, Matsunaga J J 2006 J. Alloys Compd. 426 67

    [10]

    Yamanaka S, Yoshioka K, Uno M, 1999 J. Alloys Compd. 293-295 23

    [11]

    Yamanaka S, Yamada K, Kurosaki K 2002 J. Alloys Compd. 330-332 99

    [12]

    Senkov O N, Dubois M, Jonas J J 1996 Metall. Mater. Trans. A 27(A) 3963

    [13]

    Tao S X, Notten P H L, Santen van R A 2009 Phys. Rev. B 79 144121

    [14]

    Liang C P, Gong H R 2010 Int. J. Hydrogen Energy 35 11378

    [15]

    Ramiro Q, Romeo D C 2009 Phys. Rev. B 80 184103

    [16]

    Zhou L 2005 Renew Sustain Energy Rev. 9 395

    [17]

    Schlapbach L, Züttel A 2001 Nature 414 353

    [18]

    Zuttel A 2003 Mater. Today 6 24

    [19]

    Zhou L, Zhou Y, Sun Y 2006 Int. J. Hydrogen Energy 31 259

    [20]

    Grochala W, Edwards P P 2004 Chem. Rev. 104 1283

    [21]

    Eberle U, Arnold G, Helmholt R V 2006 J. Power Sour. 154 456

    [22]

    Latroche M 2004 J. Phys. Chem. Solids 65 517

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [24]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [25]

    Perdew J P, Chevary J A, Vosko S H 1992 Phys. Rev. B 46 6671

    [26]

    Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115

    [27]

    Tao S X, Notten P H L, Santen van R A 2010 Phys. Rev. B 82 125448

    [28]

    Villars P 1997 Pearson's Handbook Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH)

    [29]

    Bonnet J E, Daou J N 1977 J. Appl. Phys. 48 964

    [30]

    Rahman M S, Khan, Miller R F 1979 J. Phys. D: Appl. Phys 12 271

    [31]

    Daou J N, Vajda P 1992 Phys. Rev. B 45 10907

    [32]

    Grimshaw J A, Spooner F J, Wilson C G 1981 J. Mater. Sci. 16 2855

    [33]

    Ducastelle F, Caudron R, Costa P 1970 J. Physique 31 57

    [34]

    Nye J F 1985 Physical Properties of Crystals (Oxford: Oxford University Press)

    [35]

    Crane R L, Chatoraj S C, Strope M V 1971 J. Less-common Met. 25 225

    [36]

    Zeng Z H, Deng H Q, Li W X, Hu W Y 2006 Acta Phys. Sin. 55 3157 (in Chinese) [曾振华, 邓辉球, 李微雪, 胡望宇 2006 物理学报 55 3157]

    [37]

    Zhang Y, Lü G H, Deng S H, Wang T M 2006 Acta Phys. Sin. 55 2901 (in Chinese) [张颖, 吕广宏, 邓胜华, 王天民 2006 物理学报 55 2901]

    [38]

    Kudabaev Z I, Torgeson D R, Shevakin A F 1995 J. Alloys Compd. 231 233

    [39]

    Gehring G A, Gehring K A 1975 Rep. Prog. Phys. 38 1

    [40]

    Wolf W, Herzig P 2000 J. Phys.: Condens. Matter. 12 4535

    [41]

    Snow C S, Schultz P, Mattsson T 2010 A Hearty Hodge Podge of ErT2 Research (Albuquerque, NM: Sandia National Laboratories)

  • [1] 张硕鑫, 刘士余, 严达利, 余浅, 任海涛, 于彬, 李德军. Ta1–xHfxC和Ta1–xZrxC固溶体的结构稳定性和力学性质的第一性原理研究. 物理学报, 2021, 70(11): 117102. doi: 10.7498/aps.70.20210191
    [2] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究. 物理学报, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [3] 罗雄, 孟威威, 陈国旭佳, 管晓溪, 贾双凤, 郑赫, 王建波. 二维Nb2SiTe4基化合物稳定性、电子结构和光学性质的第一性原理研究. 物理学报, 2020, 69(19): 197102. doi: 10.7498/aps.69.20200848
    [4] 李君, 刘立胜, 徐爽, 张金咏. 单轴压缩下Ti3B4的力学、电学性能及变形机制的第一性原理研究. 物理学报, 2020, 69(4): 043102. doi: 10.7498/aps.69.20191194
    [5] 胡雪兰, 卢睿智, 王智隆, 王亚如. Re对Ni3Al微观结构及力学性质影响的第一原理研究. 物理学报, 2020, 69(10): 107101. doi: 10.7498/aps.69.20200097
    [6] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算. 物理学报, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [7] 王晓媛, 赵丰鹏, 王杰, 闫亚宾. 金属有机框架材料力学、电学及其应变调控特性的第一原理研究. 物理学报, 2016, 65(17): 178105. doi: 10.7498/aps.65.178105
    [8] 曾小波, 朱晓玲, 李德华, 陈中钧, 艾应伟. IrB和IrB2力学性质的第一性原理计算. 物理学报, 2014, 63(15): 153101. doi: 10.7498/aps.63.153101
    [9] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰. Au-Sn金属间化合物的第一性原理研究. 物理学报, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [10] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [11] 李青坤, 孙毅, 周玉, 曾凡林. 第一性原理研究bct-C4碳材料的强度性质. 物理学报, 2012, 61(9): 093104. doi: 10.7498/aps.61.093104
    [12] 李青坤, 孙毅, 周玉, 曾凡林. 第一性原理研究hcp-C3碳体环材料的力学性质. 物理学报, 2012, 61(4): 043103. doi: 10.7498/aps.61.043103
    [13] 李德华, 苏文晋, 朱晓玲. BC5力学性质的第一性原理计算. 物理学报, 2012, 61(2): 023103. doi: 10.7498/aps.61.023103
    [14] 刘春华, 欧阳楚英, 嵇英华. 第一性原理计算Mg2Ni氢化物的电子结构及其稳定性分析. 物理学报, 2011, 60(7): 077103. doi: 10.7498/aps.60.077103
    [15] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [16] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究. 物理学报, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [17] 李德华, 朱晓玲, 苏文晋, 程新路. PtN2的结构和力学性质的第一性原理计算. 物理学报, 2010, 59(3): 2004-2009. doi: 10.7498/aps.59.2004
    [18] 刘志明, 何 志, 马琰铭, 崔 田, 刘冰冰, 邹广田. 金属Nb中H的量子行为研究. 物理学报, 2008, 57(7): 4386-4390. doi: 10.7498/aps.57.4386
    [19] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] 刘志明, 崔 田, 马琰铭, 刘冰冰, 邹广田. Nb2H 的电子结构和相互作用. 物理学报, 2007, 56(8): 4877-4883. doi: 10.7498/aps.56.4877
计量
  • 文章访问数:  4919
  • PDF下载量:  902
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-20
  • 修回日期:  2012-05-28
  • 刊出日期:  2012-05-05

金属氢化物力学性能的第一性原理研究

  • 1. 电子科技大学应用物理系, 成都 610054;
  • 2. 中国工程物理研究院核物理与化学研究所, 绵阳 610003
    基金项目: 国家自然科学基金(批准号: 10976007)及中央高校基本科研业务费专项资金(批准号: ZYGX2009J040)资助的课题.

摘要: 采用第一性原理方法详细研究了氟化钙结构的多种金属氢化物MH2 (M= La, Nd, Gd, Tb, Y, Dy, Ho, Er, Lu, Sc, Ti, Zr, Hf)的力学性质(弹性常数、体弹模量、剪切模量、杨氏模量).计算结果表明, MH2 (M= La, Nd, Gd, Tb, Y, Dy, Ho, Er, Lu, Sc)在低温下具有稳定的氟化钙结构,其抵抗体积形变, 切应变和拉伸(或压缩)形变的能力从LaH2, NdH2, GdH2, TbH2, YH2, DyH2, HoH2, ErH2, LuH2到ScH2逐次递增, 而MH2 (M= Ti, Zr, Hf)在低温下的氟化钙结构不稳定.通过对两种稳定的氢化物(TbH2, ErH2) 和两种不稳定的氢化物(TiH2, HfH2)的电子态密度以及差分电荷密度进行对比, 发现它们的稳定性与金属和氢之间的相互作用有密切关系.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回