搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维carbyne链原子键性质应变调控的第一性原理研究

侯璐 童鑫 欧阳钢

引用本文:
Citation:

一维carbyne链原子键性质应变调控的第一性原理研究

侯璐, 童鑫, 欧阳钢

First-principles study of atomic bond nature of one-dimensional carbyne chain under different strains

Hou Lu, Tong Xin, Ouyang Gang
PDF
HTML
导出引用
  • 基于密度泛函理论和广义梯度近似的第一原理方法, 系统研究了应变对一维carbyne(卡拜)链原子键性质的调控机理. 结果表明, 轴向压缩应变的增加将导致carbyne链中碳-碳单键和碳-碳三键之间的键长差值越来越小, 最终变为零. 通过分析能带结构和差分电荷密度, 发现当压缩应变为16%时, carbyne链由半导体转变为金属. 当应变为17%时, 声子谱出现虚频. 在可研究范围内, 应变对carbyne链的热容量有增强作用. 而且, carbyne链的刚度远大于石墨烯和碳纳米管.
    One-dimensional (1D) carbyne chain has the potential applications in the nanoelectronic devices due to its unique properties. Although some progress of the mechanical and thermal properties of 1D carbyne chain has been made, the physical mechanism of the strain modulation of atomic bond nature remains unclear. In order to explore the strain effects on the mechanical and related physical properties of 1D carbyne chain, we systematically investigate the strain-dependent bond nature of 1D carbyne chain based on the first-principles calculations of density functional theory and generalized gradient approximation. It is found that when the compressive strain is 16%, the bonding nature of 1D carbyne chain is changed, and the bond length alternation of single and triple bonds in 1D carbyne chain tends to zero, which originates from the difference in bond strength between single bond and triple bond. Moreover, 1D carbyne chain can change from semiconductor into metal when the compressive strain is 16% indicated by analyzing the band structure and related differential charge density. When the strain is 17%, the phonon spectrum has an imaginary frequency. Besides, when the ambient temperature is less than 510 K, the heat capacity of 1D carbyne chain decreases with strain increasing. However, more phonon modes will be activated at larger strains when the temperature is higher than 510 K, and the heat capacity is enhanced gradually with strain increasing. Also, the stiffness coefficient of 1D carbyne chain is larger than that of graphene and carbon nanotube. These results conduce to the fundamental understanding of atomic bond nature in 1D carbyne chain under different strains.
      通信作者: 欧阳钢, gangouy@hunnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11574080, 91833302)资助的课题
      Corresponding author: Ouyang Gang, gangouy@hunnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574080, 91833302)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351Google Scholar

    [3]

    Cao A Y, Dickrell P L, Sawyer W G, Ghasemi-Nejhad M N, Ajayan P M 2005 Science 310 1307Google Scholar

    [4]

    Boyd A, Dube I, Fedorov G, Paranjape M, Barbara P 2014 Carbon 69 417Google Scholar

    [5]

    Dillon A C, Jones K M, Bekkendahl T A, Kiang C H, Bethune D S, Heben M J 1997 Nature 386 377Google Scholar

    [6]

    Chen P, Wu X, Lin J, Tan K L 1999 Science 285 91Google Scholar

    [7]

    Baughman R H, Zakhidov A A, De Heer W A 2002 Science 297 787Google Scholar

    [8]

    Liu M J, Artyukhov V I, Lee H, Xu F, Yakobson B I 2013 ACS Nano 7 10075Google Scholar

    [9]

    Zhang Y Z, Su Y J, Wang L, Kong E S W, Chen X S, Zhang Y F 2011 Nanoscale Res. Lett. 6 577Google Scholar

    [10]

    Pan B, Xiao J, Li J, Liu P, Wang C, Yang G 2015 Sci. Adv. 1 e1500857Google Scholar

    [11]

    Kotrechko S, Timoshevskii A, Kolyvoshko E, Matviychuk Y, Stetsenko N 2017 Nanoscale Res. Lett. 12 327Google Scholar

    [12]

    Akdim B, Pachter R 2011 ACS Nano 5 1769Google Scholar

    [13]

    周艳红, 许英, 郑小宏 2007 物理学报 56 1093Google Scholar

    Zhou Y H, Xu Y, Zheng X H 2007 Acta Phys. Sin. 56 1093Google Scholar

    [14]

    Sorokin P B, Lee H, Antipina L Y, Singh A K, Yakobson B I 2011 Nano Lett. 11 2660Google Scholar

    [15]

    Cannella C B, Goldman N 2015 J. Phys. Chem. C 119 21605Google Scholar

    [16]

    Andrade N F, Aguiar A L, Kim Y A, Endo M, Freire P T C, Brunetto G, Galvao D S, Dresselhaus M S, Souza Filho A G 2015 J. Phys. Chem. C 119 10669Google Scholar

    [17]

    Wang M, Lin S 2015 Sci. Rep. 5 18122Google Scholar

    [18]

    Liu F, Ming P, Li J 2007 Phys. Rev. B 76 064120Google Scholar

    [19]

    Lu J P 1997 Phys. Rev. Lett. 79 1297Google Scholar

    [20]

    Nair A K, Cranford S W, Buehler M J 2011 Eurphys. Lett. 95 16002Google Scholar

    [21]

    Artyukhov V I, Liu M, Yakobson B I 2014 Nano Lett. 14 4224Google Scholar

    [22]

    Yang X G, Lv C F, Yao Z, Yao M G, Qin J X, Li X, Shi L, Du M R, Liu B B, Shan C X 2020 Carbon 159 266Google Scholar

    [23]

    Zhang Z, Zhao Y P, Ouyang G 2017 J. Phys. Chem. C 121 19296Google Scholar

    [24]

    Dong J S, Ouyang G 2019 ACS Omega 4 8641Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [30]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [31]

    Ma F, Zheng H B, Sun Y J, Yang D, Xu K W, Chu P K 2012 Appl. Phys. Lett. 101 111904Google Scholar

    [32]

    La Torre A, Botello-Mendez A, Baaziz W, Charlier J C, Banhart F 2015 Nat. Commun. 6 6636Google Scholar

    [33]

    Li J P, Meng S H, Lu H T, Tohyama T 2018 Chin. Phys. B 27 117101Google Scholar

    [34]

    Cretu O, Botello-Mendez A R, Janowska I, Pham-Huu C, Charlier J C, Banhart F 2013 Nano Lett. 13 3487Google Scholar

    [35]

    Kudryavtsev Y P, Evsyukov S E, Guseva M B, Babaev V G, Khvostov V V 1993 Russ. Chem. Bull. 42 399Google Scholar

    [36]

    Heimann R B, Evsyukov S E, Kavan L 1999 Carbyne and Carbynoid Structures (Dordrecht: Kluwer Academic Press) p317

    [37]

    Liu X J, Zhang G, Zhang Y W 2015 J. Phys. Chem. C 119 24156Google Scholar

  • 图 1  (a) Carbyne链结构示意图; (b) 差分电荷密度图

    Fig. 1.  (a) Schematic diagram of a carbyne unit cell structure; (b) diagram of the related differential charge density.

    图 2  (a) Carbyne链单位应变能(两个原子)与应变之间的关系; (b), (c) 分别为拉伸应变和压缩应变所对应的carbyne链键长差值的变化; (d) carbyne链差分电荷密度在拉伸和压缩应变下的变化图

    Fig. 2.  (a) Density functional theory calculations of stretching energy per unit cell (two atoms) as a function of strain $\varepsilon $; (b) tensile strain and (c) compressive strain dependence of bond length difference; (d) the charge density of carbyne under the condition of tensile and compressive strains.

    图 3  Carbyne链原胞的能带结构 (a) 未施加应变; (b) 压缩应变为16%.

    Fig. 3.  Band structures of carbyne chain: (a) Without strain; (b) under compressive strain of 16%.

    图 4  (a), (b), (c) 分别为碳-碳单键、碳-碳三键和carbyne链在拉伸应变下外力与c方向长度改变量之间的关系

    Fig. 4.  Force of (a) single bond, (b) triple bonds and (c) carbyne chain as a function of length change in the c direction under tensile strain.

    图 5  Carbyne链原胞的声子谱 (a)—(f) 分别是轴向拉伸应变为0%, 3%, 6%, 9%, 12%, 17%时对应的声子谱.

    Fig. 5.  Phonon spectrum of carbyne unit cell. Panels (a)–(f) are the corresponding phonon spectra when the axial tensile strains are 0%, 3%, 6%, 9%, 12% and 17%, respectively.

    图 6  轴向拉伸应变下carbyne链热容量随温度的变化

    Fig. 6.  Temperature-dependent heat capacity of carbyne chain under the approach of axial tensile strain

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351Google Scholar

    [3]

    Cao A Y, Dickrell P L, Sawyer W G, Ghasemi-Nejhad M N, Ajayan P M 2005 Science 310 1307Google Scholar

    [4]

    Boyd A, Dube I, Fedorov G, Paranjape M, Barbara P 2014 Carbon 69 417Google Scholar

    [5]

    Dillon A C, Jones K M, Bekkendahl T A, Kiang C H, Bethune D S, Heben M J 1997 Nature 386 377Google Scholar

    [6]

    Chen P, Wu X, Lin J, Tan K L 1999 Science 285 91Google Scholar

    [7]

    Baughman R H, Zakhidov A A, De Heer W A 2002 Science 297 787Google Scholar

    [8]

    Liu M J, Artyukhov V I, Lee H, Xu F, Yakobson B I 2013 ACS Nano 7 10075Google Scholar

    [9]

    Zhang Y Z, Su Y J, Wang L, Kong E S W, Chen X S, Zhang Y F 2011 Nanoscale Res. Lett. 6 577Google Scholar

    [10]

    Pan B, Xiao J, Li J, Liu P, Wang C, Yang G 2015 Sci. Adv. 1 e1500857Google Scholar

    [11]

    Kotrechko S, Timoshevskii A, Kolyvoshko E, Matviychuk Y, Stetsenko N 2017 Nanoscale Res. Lett. 12 327Google Scholar

    [12]

    Akdim B, Pachter R 2011 ACS Nano 5 1769Google Scholar

    [13]

    周艳红, 许英, 郑小宏 2007 物理学报 56 1093Google Scholar

    Zhou Y H, Xu Y, Zheng X H 2007 Acta Phys. Sin. 56 1093Google Scholar

    [14]

    Sorokin P B, Lee H, Antipina L Y, Singh A K, Yakobson B I 2011 Nano Lett. 11 2660Google Scholar

    [15]

    Cannella C B, Goldman N 2015 J. Phys. Chem. C 119 21605Google Scholar

    [16]

    Andrade N F, Aguiar A L, Kim Y A, Endo M, Freire P T C, Brunetto G, Galvao D S, Dresselhaus M S, Souza Filho A G 2015 J. Phys. Chem. C 119 10669Google Scholar

    [17]

    Wang M, Lin S 2015 Sci. Rep. 5 18122Google Scholar

    [18]

    Liu F, Ming P, Li J 2007 Phys. Rev. B 76 064120Google Scholar

    [19]

    Lu J P 1997 Phys. Rev. Lett. 79 1297Google Scholar

    [20]

    Nair A K, Cranford S W, Buehler M J 2011 Eurphys. Lett. 95 16002Google Scholar

    [21]

    Artyukhov V I, Liu M, Yakobson B I 2014 Nano Lett. 14 4224Google Scholar

    [22]

    Yang X G, Lv C F, Yao Z, Yao M G, Qin J X, Li X, Shi L, Du M R, Liu B B, Shan C X 2020 Carbon 159 266Google Scholar

    [23]

    Zhang Z, Zhao Y P, Ouyang G 2017 J. Phys. Chem. C 121 19296Google Scholar

    [24]

    Dong J S, Ouyang G 2019 ACS Omega 4 8641Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [30]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [31]

    Ma F, Zheng H B, Sun Y J, Yang D, Xu K W, Chu P K 2012 Appl. Phys. Lett. 101 111904Google Scholar

    [32]

    La Torre A, Botello-Mendez A, Baaziz W, Charlier J C, Banhart F 2015 Nat. Commun. 6 6636Google Scholar

    [33]

    Li J P, Meng S H, Lu H T, Tohyama T 2018 Chin. Phys. B 27 117101Google Scholar

    [34]

    Cretu O, Botello-Mendez A R, Janowska I, Pham-Huu C, Charlier J C, Banhart F 2013 Nano Lett. 13 3487Google Scholar

    [35]

    Kudryavtsev Y P, Evsyukov S E, Guseva M B, Babaev V G, Khvostov V V 1993 Russ. Chem. Bull. 42 399Google Scholar

    [36]

    Heimann R B, Evsyukov S E, Kavan L 1999 Carbyne and Carbynoid Structures (Dordrecht: Kluwer Academic Press) p317

    [37]

    Liu X J, Zhang G, Zhang Y W 2015 J. Phys. Chem. C 119 24156Google Scholar

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究. 物理学报, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究. 物理学报, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [3] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析. 物理学报, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算. 物理学报, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [5] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [6] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [7] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [8] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [9] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [10] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [11] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [12] 余本海, 刘墨林, 陈东. 第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质. 物理学报, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [13] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [14] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [15] 于大龙, 陈玉红, 曹一杰, 张材荣. Li2NH晶体结构建模和电子结构的第一性原理研究. 物理学报, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [16] 张洪亮, 雷海乐, 唐永建, 罗江山, 李恺, 邓晓臣. 纳米结构Cu固体材料的低温热容性能研究. 物理学报, 2010, 59(1): 471-475. doi: 10.7498/aps.59.471
    [17] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究. 物理学报, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [18] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [19] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究. 物理学报, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
    [20] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
计量
  • 文章访问数:  7474
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-30
  • 修回日期:  2020-08-23
  • 上网日期:  2020-12-09
  • 刊出日期:  2020-12-20

/

返回文章
返回