搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sb,S共掺杂SnO2电子结构的第一性原理分析

丁超 李卫 刘菊燕 王琳琳 蔡云 潘沛锋

引用本文:
Citation:

Sb,S共掺杂SnO2电子结构的第一性原理分析

丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋

First principle study of electronic structure of Sb, S Co-doped SnO2

Ding Chao, Li Wei1\2\3, Liu Ju-Yan, Wang Lin-Lin, Cai Yun, Pan Pei-Feng
PDF
导出引用
  • 基于第一性原理的密度泛函理论和平面波超软赝势法,采用广义梯度近似算法研究了Sb,S两种元素共掺杂SnO2材料的电子结构与电学性质.电子结构表明:共掺杂后材料仍然为n型导电直接带隙半导体;电荷密度分布改变,S原子与Sn,Sb原子轨道电子重叠加剧.能带结构表明,Sb,S共掺SnO2在能带中引入新的能级,能带带隙相比于单掺更加窄化,费米能级进入导带表现出类金属特性.电子态密度计算结果进一步证实了电子转移的正确性:在价带中部,S原子轨道与Sn,Sb轨道发生杂化,电子转移加剧,价带顶部被S 3p轨道占据,提供了更多的空穴载流子,价带顶上移;随着S掺杂浓度的增加,带隙宽度继续减小,导带逐渐变窄,导电性能呈现越来越好的趋势.
    Wide bandgap semiconductor materials have received more and more attention because of their unique properties and potential applications. Single-doped tin dioxide (SnO2) has been studied extensively, however the calculation of SnO2 doped with Sb and S is less involved. Co-doping can effectively improve the solubility of the dopant, increase the activation rate by reducing the ionization energy of the acceptor level and the donor level, and increase the carrier mobility at low doping concentration. Co-doping can solve the problem that is difficult to solve with single doping. Based on the density functional theory of the first principle and the plane wave pseudopotential method, in this paper we study the electronic structure and electrical properties of SnO2 doped with Sb and S by using the generalized gradient approximation algorithm. The geometrical optimization calculation is carried out for the doped structure. The Broyden-Fletcher-Goldfarb-Shanno algorithm is used to find the stable structure with the lowest energy. The plane wave cutoff energy is set to be 360 eV, and the internal stress is less than or equal to 0.1 GPa. By analyzing the electronic structures, it is found that the material is still direct bandgap n-type semiconductor after being co-doped. The electron density is changed, and the overlap of atomic orbital is enhanced. It is conducive to the transfer of electrons. New energy levels are observed in the energy band of co-doped SnO2, and the bandgap width is narrower than that of single doping, thus making electronic transitions become easier. Fermi level is observed in the conduction-band, which leads to the metal-like properties of the material. The electronic density of states is further investigated. The results of the density of states confirm the correctness of electron transfer. In the middle of the valence-band, the hybridization is found to happen between the S atomic orbital and the Sn and Sb orbitals. The top of the valence-band is occupied by the S-3p orbit, thus providing more hole carriers to move up to the top of valence-band. With the increase of S doping concentration, the bandgap and the width of conduction-band both continue to decrease. As a result, the conductive performance turns better.
      通信作者: 李卫, liw@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11504177)、中国博士后科学基金特别资助(批准号:2018T110480)、江苏省自然科学基金(批准号:BK20171442)和东南大学毫米波国家重点实验室开放基金(批准号:K201723)资助的课题.
      Corresponding author: Li Wei1\2\3, liw@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504177), the China Postdoctoral Science Foundation Special Funding (Grant No. 2018T110480), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20171442), and the Open Foundation of State Key Laboratory of Millimeter Waves of Southeast University, China (Grant No. K201723).
    [1]

    Umehara M, Tajima S, Takeda Y, Motohiro T 2016 J. Alloy. Compd. 689 713

    [2]

    Addonizio M L, Aronne A, Daliento S, Tari O, Fanelli E, Pernice P 2014 Appl. Surf. Sci. 305 194

    [3]

    Sernelius B E, Berggren K F, Jin Z C, Hamberg I, Granqvist C G 1988 Phys. Rev. B 37 10244

    [4]

    Batzill M, Diebold U 2005 Prog. Surf. Sci. 79 47

    [5]

    Li W, Liu J Y, Ding C, Bai G, Ren Q Y, Li J Z 2017 Sensors 17 2392

    [6]

    Kolmakov A, Klenov D O, Lilach Y, Stemmer S, Moskovits M 2005 Nano Lett. 5 667

    [7]

    Barsan N, Schweizer-Berberich M, Gopel W 1999 Fresen. J. Anal. Chem. 365 287

    [8]

    Barsan N, Weimar U 2003 J. Phys.: Condens. Mat. 15 R813

    [9]

    Leite E R, Weber I T, Longo E, Varela J A 2000 Adv. Mater. 12 965

    [10]

    Minami T 2005 Semicond. Sci. Tech. 20 35

    [11]

    Liu H Y, Avrutin V, Izyumskaya N, Ozgur U, Morkoc H 2010 Superlattice Microst. 48 458

    [12]

    Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv. Funct. Mater. 18 2411

    [13]

    Tiwana P, Docampo P, Johnston M B, Snaith H J, Herz L M 2011 ACS Nano 5 5158

    [14]

    Green A N M, Palomares E, Haque S A, Kroon J M, Durrant J R 2005 J. Phys. Chem. B 109 12525

    [15]

    Snaith H J, Ducati C 2010 Nano Lett. 10 1259

    [16]

    Jeong J H 2014 Kor. J. Vis. Sci. 16 573

    [17]

    Lee K S, Park I S, Cho Y H, Jung D S, Jung N, Park H Y, Sung Y E 2008 J. Catal. 258 143

    [18]

    Zhelev V, Petkov P, Shindov P, Bineva I, Vasilev S, Ilcheva V, Petkova T 2018 Thin Solid Films 653 19

    [19]

    Yamamoto T, Katayama-Yoshida H 1999 Jpn. J. Appl. Phys. Part2 38 166

    [20]

    Villamagua L, Rivera R, Castillo D, Carini M 2017 Aip Adv. 7 105010

    [21]

    Lu Y, Wang P J, Zhang C W, Feng X Y, Jiang L, Zhang G L 2012 Acta Phys. Sin. 61 023101 (in Chinese)[逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲 2012 物理学报 61 023101]

    [22]

    Wan Q, Wang T H 2005 Chem. Commun. 30 3841

    [23]

    Wan Q, Dattoli E N, Lu W 2007 Appl. Phys. Lett. 90 222107

    [24]

    Moharrami F, Bagheri-Mohagheghi M M, Azimi-Juybari H 2012 Thin Solid Films 520 6503

    [25]

    Wang Q, Fang Y, Meng H, Wu W, Chu G W, Zou H K, Cheng D J, Chen J F 2015 Colloid Surface A 482 529

    [26]

    Zhang C, Wang C L, Li J C, Yang K, Zhang Y F, Wu Q Z 2008 Mater. Chem. Phys. 107 215

    [27]

    Cheng L, Wang D X, Zhang Y, Su L P, Chen S Y, Wang X F, Sun P, Yi C G 2018 Acta Phys. Sin. 67 047101 (in Chinese)[程丽, 王德兴, 张杨, 苏丽萍, 陈淑妍, 王晓峰, 孙鹏, 易重桂 2018 物理学报 67 047101]

    [28]

    Chen L J, Li W X, Dai J F, Wang Q 2014 Acta Phys. Sin. 63 196101 (in Chinese)[陈立晶, 李维学, 戴剑锋, 王青 2014 物理学报 63 196101]

  • [1]

    Umehara M, Tajima S, Takeda Y, Motohiro T 2016 J. Alloy. Compd. 689 713

    [2]

    Addonizio M L, Aronne A, Daliento S, Tari O, Fanelli E, Pernice P 2014 Appl. Surf. Sci. 305 194

    [3]

    Sernelius B E, Berggren K F, Jin Z C, Hamberg I, Granqvist C G 1988 Phys. Rev. B 37 10244

    [4]

    Batzill M, Diebold U 2005 Prog. Surf. Sci. 79 47

    [5]

    Li W, Liu J Y, Ding C, Bai G, Ren Q Y, Li J Z 2017 Sensors 17 2392

    [6]

    Kolmakov A, Klenov D O, Lilach Y, Stemmer S, Moskovits M 2005 Nano Lett. 5 667

    [7]

    Barsan N, Schweizer-Berberich M, Gopel W 1999 Fresen. J. Anal. Chem. 365 287

    [8]

    Barsan N, Weimar U 2003 J. Phys.: Condens. Mat. 15 R813

    [9]

    Leite E R, Weber I T, Longo E, Varela J A 2000 Adv. Mater. 12 965

    [10]

    Minami T 2005 Semicond. Sci. Tech. 20 35

    [11]

    Liu H Y, Avrutin V, Izyumskaya N, Ozgur U, Morkoc H 2010 Superlattice Microst. 48 458

    [12]

    Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv. Funct. Mater. 18 2411

    [13]

    Tiwana P, Docampo P, Johnston M B, Snaith H J, Herz L M 2011 ACS Nano 5 5158

    [14]

    Green A N M, Palomares E, Haque S A, Kroon J M, Durrant J R 2005 J. Phys. Chem. B 109 12525

    [15]

    Snaith H J, Ducati C 2010 Nano Lett. 10 1259

    [16]

    Jeong J H 2014 Kor. J. Vis. Sci. 16 573

    [17]

    Lee K S, Park I S, Cho Y H, Jung D S, Jung N, Park H Y, Sung Y E 2008 J. Catal. 258 143

    [18]

    Zhelev V, Petkov P, Shindov P, Bineva I, Vasilev S, Ilcheva V, Petkova T 2018 Thin Solid Films 653 19

    [19]

    Yamamoto T, Katayama-Yoshida H 1999 Jpn. J. Appl. Phys. Part2 38 166

    [20]

    Villamagua L, Rivera R, Castillo D, Carini M 2017 Aip Adv. 7 105010

    [21]

    Lu Y, Wang P J, Zhang C W, Feng X Y, Jiang L, Zhang G L 2012 Acta Phys. Sin. 61 023101 (in Chinese)[逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲 2012 物理学报 61 023101]

    [22]

    Wan Q, Wang T H 2005 Chem. Commun. 30 3841

    [23]

    Wan Q, Dattoli E N, Lu W 2007 Appl. Phys. Lett. 90 222107

    [24]

    Moharrami F, Bagheri-Mohagheghi M M, Azimi-Juybari H 2012 Thin Solid Films 520 6503

    [25]

    Wang Q, Fang Y, Meng H, Wu W, Chu G W, Zou H K, Cheng D J, Chen J F 2015 Colloid Surface A 482 529

    [26]

    Zhang C, Wang C L, Li J C, Yang K, Zhang Y F, Wu Q Z 2008 Mater. Chem. Phys. 107 215

    [27]

    Cheng L, Wang D X, Zhang Y, Su L P, Chen S Y, Wang X F, Sun P, Yi C G 2018 Acta Phys. Sin. 67 047101 (in Chinese)[程丽, 王德兴, 张杨, 苏丽萍, 陈淑妍, 王晓峰, 孙鹏, 易重桂 2018 物理学报 67 047101]

    [28]

    Chen L J, Li W X, Dai J F, Wang Q 2014 Acta Phys. Sin. 63 196101 (in Chinese)[陈立晶, 李维学, 戴剑锋, 王青 2014 物理学报 63 196101]

  • [1] 轩书科. 钾钡共掺菲分子结构和电子特性的第一性原理研究. 物理学报, 2017, 66(23): 237401. doi: 10.7498/aps.66.237401
    [2] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱. 物理学报, 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [3] 冯秋菊, 潘德柱, 邢研, 石笑驰, 杨毓琪, 李芳, 李彤彤, 郭慧颖, 梁红伟. 图形化蓝宝石衬底上有序微米半球形SnO2的生长、结构和光学特性研究. 物理学报, 2017, 66(3): 038101. doi: 10.7498/aps.66.038101
    [4] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [5] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [6] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [7] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究 . 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [8] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [9] 余本海, 刘墨林, 陈东. 第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质. 物理学报, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [10] 蒋雷, 王培吉, 张昌文, 冯现徉, 逯瑶, 张国莲. 超晶格SnO2掺Cr的电子结构和光学性质的研究. 物理学报, 2011, 60(9): 093101. doi: 10.7498/aps.60.093101
    [11] 于大龙, 陈玉红, 曹一杰, 张材荣. Li2NH晶体结构建模和电子结构的第一性原理研究. 物理学报, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [12] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究. 物理学报, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [13] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算. 物理学报, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [14] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [15] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [16] 张金奎, 邓胜华, 金 慧, 刘悦林. ZnO电子结构和p型传导特性的第一性原理研究. 物理学报, 2007, 56(9): 5371-5375. doi: 10.7498/aps.56.5371
    [17] 杜 娟, 季振国. Ⅲ族元素掺杂对SnO2电子结构及电学性能的影响. 物理学报, 2007, 56(4): 2388-2392. doi: 10.7498/aps.56.2388
    [18] 徐 剑, 黄水平, 王占山, 鲁大学, 苑同锁. F掺杂SnO2电子结构的模拟计算. 物理学报, 2007, 56(12): 7195-7200. doi: 10.7498/aps.56.7195
    [19] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究. 物理学报, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
    [20] 季振国, 何振杰, 宋永梁. p型导电掺In的SnO2薄膜的制备及表征. 物理学报, 2004, 53(12): 4330-4333. doi: 10.7498/aps.53.4330
计量
  • 文章访问数:  4046
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-25
  • 修回日期:  2018-09-03
  • 刊出日期:  2018-11-05

Sb,S共掺杂SnO2电子结构的第一性原理分析

  • 1. 南京邮电大学电子与光学工程学院、微电子学院, 南京 210023;
  • 2. 东南大学毫米波国家重点实验室, 南京 210096;
  • 3. 南京大学物理学院, 南京 210093
  • 通信作者: 李卫, liw@njupt.edu.cn
    基金项目: 国家自然科学基金(批准号:11504177)、中国博士后科学基金特别资助(批准号:2018T110480)、江苏省自然科学基金(批准号:BK20171442)和东南大学毫米波国家重点实验室开放基金(批准号:K201723)资助的课题.

摘要: 基于第一性原理的密度泛函理论和平面波超软赝势法,采用广义梯度近似算法研究了Sb,S两种元素共掺杂SnO2材料的电子结构与电学性质.电子结构表明:共掺杂后材料仍然为n型导电直接带隙半导体;电荷密度分布改变,S原子与Sn,Sb原子轨道电子重叠加剧.能带结构表明,Sb,S共掺SnO2在能带中引入新的能级,能带带隙相比于单掺更加窄化,费米能级进入导带表现出类金属特性.电子态密度计算结果进一步证实了电子转移的正确性:在价带中部,S原子轨道与Sn,Sb轨道发生杂化,电子转移加剧,价带顶部被S 3p轨道占据,提供了更多的空穴载流子,价带顶上移;随着S掺杂浓度的增加,带隙宽度继续减小,导带逐渐变窄,导电性能呈现越来越好的趋势.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回