-
基于第一性原理的密度泛函理论和平面波超软赝势法,采用广义梯度近似算法研究了Sb,S两种元素共掺杂SnO2材料的电子结构与电学性质.电子结构表明:共掺杂后材料仍然为n型导电直接带隙半导体;电荷密度分布改变,S原子与Sn,Sb原子轨道电子重叠加剧.能带结构表明,Sb,S共掺SnO2在能带中引入新的能级,能带带隙相比于单掺更加窄化,费米能级进入导带表现出类金属特性.电子态密度计算结果进一步证实了电子转移的正确性:在价带中部,S原子轨道与Sn,Sb轨道发生杂化,电子转移加剧,价带顶部被S 3p轨道占据,提供了更多的空穴载流子,价带顶上移;随着S掺杂浓度的增加,带隙宽度继续减小,导带逐渐变窄,导电性能呈现越来越好的趋势.Wide bandgap semiconductor materials have received more and more attention because of their unique properties and potential applications. Single-doped tin dioxide (SnO2) has been studied extensively, however the calculation of SnO2 doped with Sb and S is less involved. Co-doping can effectively improve the solubility of the dopant, increase the activation rate by reducing the ionization energy of the acceptor level and the donor level, and increase the carrier mobility at low doping concentration. Co-doping can solve the problem that is difficult to solve with single doping. Based on the density functional theory of the first principle and the plane wave pseudopotential method, in this paper we study the electronic structure and electrical properties of SnO2 doped with Sb and S by using the generalized gradient approximation algorithm. The geometrical optimization calculation is carried out for the doped structure. The Broyden-Fletcher-Goldfarb-Shanno algorithm is used to find the stable structure with the lowest energy. The plane wave cutoff energy is set to be 360 eV, and the internal stress is less than or equal to 0.1 GPa. By analyzing the electronic structures, it is found that the material is still direct bandgap n-type semiconductor after being co-doped. The electron density is changed, and the overlap of atomic orbital is enhanced. It is conducive to the transfer of electrons. New energy levels are observed in the energy band of co-doped SnO2, and the bandgap width is narrower than that of single doping, thus making electronic transitions become easier. Fermi level is observed in the conduction-band, which leads to the metal-like properties of the material. The electronic density of states is further investigated. The results of the density of states confirm the correctness of electron transfer. In the middle of the valence-band, the hybridization is found to happen between the S atomic orbital and the Sn and Sb orbitals. The top of the valence-band is occupied by the S-3p orbit, thus providing more hole carriers to move up to the top of valence-band. With the increase of S doping concentration, the bandgap and the width of conduction-band both continue to decrease. As a result, the conductive performance turns better.
-
Keywords:
- co-doping /
- SnO2 /
- first principle /
- electronic structure
[1] Umehara M, Tajima S, Takeda Y, Motohiro T 2016 J. Alloy. Compd. 689 713
[2] Addonizio M L, Aronne A, Daliento S, Tari O, Fanelli E, Pernice P 2014 Appl. Surf. Sci. 305 194
[3] Sernelius B E, Berggren K F, Jin Z C, Hamberg I, Granqvist C G 1988 Phys. Rev. B 37 10244
[4] Batzill M, Diebold U 2005 Prog. Surf. Sci. 79 47
[5] Li W, Liu J Y, Ding C, Bai G, Ren Q Y, Li J Z 2017 Sensors 17 2392
[6] Kolmakov A, Klenov D O, Lilach Y, Stemmer S, Moskovits M 2005 Nano Lett. 5 667
[7] Barsan N, Schweizer-Berberich M, Gopel W 1999 Fresen. J. Anal. Chem. 365 287
[8] Barsan N, Weimar U 2003 J. Phys.: Condens. Mat. 15 R813
[9] Leite E R, Weber I T, Longo E, Varela J A 2000 Adv. Mater. 12 965
[10] Minami T 2005 Semicond. Sci. Tech. 20 35
[11] Liu H Y, Avrutin V, Izyumskaya N, Ozgur U, Morkoc H 2010 Superlattice Microst. 48 458
[12] Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv. Funct. Mater. 18 2411
[13] Tiwana P, Docampo P, Johnston M B, Snaith H J, Herz L M 2011 ACS Nano 5 5158
[14] Green A N M, Palomares E, Haque S A, Kroon J M, Durrant J R 2005 J. Phys. Chem. B 109 12525
[15] Snaith H J, Ducati C 2010 Nano Lett. 10 1259
[16] Jeong J H 2014 Kor. J. Vis. Sci. 16 573
[17] Lee K S, Park I S, Cho Y H, Jung D S, Jung N, Park H Y, Sung Y E 2008 J. Catal. 258 143
[18] Zhelev V, Petkov P, Shindov P, Bineva I, Vasilev S, Ilcheva V, Petkova T 2018 Thin Solid Films 653 19
[19] Yamamoto T, Katayama-Yoshida H 1999 Jpn. J. Appl. Phys. Part2 38 166
[20] Villamagua L, Rivera R, Castillo D, Carini M 2017 Aip Adv. 7 105010
[21] Lu Y, Wang P J, Zhang C W, Feng X Y, Jiang L, Zhang G L 2012 Acta Phys. Sin. 61 023101 (in Chinese)[逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲 2012 物理学报 61 023101]
[22] Wan Q, Wang T H 2005 Chem. Commun. 30 3841
[23] Wan Q, Dattoli E N, Lu W 2007 Appl. Phys. Lett. 90 222107
[24] Moharrami F, Bagheri-Mohagheghi M M, Azimi-Juybari H 2012 Thin Solid Films 520 6503
[25] Wang Q, Fang Y, Meng H, Wu W, Chu G W, Zou H K, Cheng D J, Chen J F 2015 Colloid Surface A 482 529
[26] Zhang C, Wang C L, Li J C, Yang K, Zhang Y F, Wu Q Z 2008 Mater. Chem. Phys. 107 215
[27] Cheng L, Wang D X, Zhang Y, Su L P, Chen S Y, Wang X F, Sun P, Yi C G 2018 Acta Phys. Sin. 67 047101 (in Chinese)[程丽, 王德兴, 张杨, 苏丽萍, 陈淑妍, 王晓峰, 孙鹏, 易重桂 2018 物理学报 67 047101]
[28] Chen L J, Li W X, Dai J F, Wang Q 2014 Acta Phys. Sin. 63 196101 (in Chinese)[陈立晶, 李维学, 戴剑锋, 王青 2014 物理学报 63 196101]
-
[1] Umehara M, Tajima S, Takeda Y, Motohiro T 2016 J. Alloy. Compd. 689 713
[2] Addonizio M L, Aronne A, Daliento S, Tari O, Fanelli E, Pernice P 2014 Appl. Surf. Sci. 305 194
[3] Sernelius B E, Berggren K F, Jin Z C, Hamberg I, Granqvist C G 1988 Phys. Rev. B 37 10244
[4] Batzill M, Diebold U 2005 Prog. Surf. Sci. 79 47
[5] Li W, Liu J Y, Ding C, Bai G, Ren Q Y, Li J Z 2017 Sensors 17 2392
[6] Kolmakov A, Klenov D O, Lilach Y, Stemmer S, Moskovits M 2005 Nano Lett. 5 667
[7] Barsan N, Schweizer-Berberich M, Gopel W 1999 Fresen. J. Anal. Chem. 365 287
[8] Barsan N, Weimar U 2003 J. Phys.: Condens. Mat. 15 R813
[9] Leite E R, Weber I T, Longo E, Varela J A 2000 Adv. Mater. 12 965
[10] Minami T 2005 Semicond. Sci. Tech. 20 35
[11] Liu H Y, Avrutin V, Izyumskaya N, Ozgur U, Morkoc H 2010 Superlattice Microst. 48 458
[12] Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv. Funct. Mater. 18 2411
[13] Tiwana P, Docampo P, Johnston M B, Snaith H J, Herz L M 2011 ACS Nano 5 5158
[14] Green A N M, Palomares E, Haque S A, Kroon J M, Durrant J R 2005 J. Phys. Chem. B 109 12525
[15] Snaith H J, Ducati C 2010 Nano Lett. 10 1259
[16] Jeong J H 2014 Kor. J. Vis. Sci. 16 573
[17] Lee K S, Park I S, Cho Y H, Jung D S, Jung N, Park H Y, Sung Y E 2008 J. Catal. 258 143
[18] Zhelev V, Petkov P, Shindov P, Bineva I, Vasilev S, Ilcheva V, Petkova T 2018 Thin Solid Films 653 19
[19] Yamamoto T, Katayama-Yoshida H 1999 Jpn. J. Appl. Phys. Part2 38 166
[20] Villamagua L, Rivera R, Castillo D, Carini M 2017 Aip Adv. 7 105010
[21] Lu Y, Wang P J, Zhang C W, Feng X Y, Jiang L, Zhang G L 2012 Acta Phys. Sin. 61 023101 (in Chinese)[逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲 2012 物理学报 61 023101]
[22] Wan Q, Wang T H 2005 Chem. Commun. 30 3841
[23] Wan Q, Dattoli E N, Lu W 2007 Appl. Phys. Lett. 90 222107
[24] Moharrami F, Bagheri-Mohagheghi M M, Azimi-Juybari H 2012 Thin Solid Films 520 6503
[25] Wang Q, Fang Y, Meng H, Wu W, Chu G W, Zou H K, Cheng D J, Chen J F 2015 Colloid Surface A 482 529
[26] Zhang C, Wang C L, Li J C, Yang K, Zhang Y F, Wu Q Z 2008 Mater. Chem. Phys. 107 215
[27] Cheng L, Wang D X, Zhang Y, Su L P, Chen S Y, Wang X F, Sun P, Yi C G 2018 Acta Phys. Sin. 67 047101 (in Chinese)[程丽, 王德兴, 张杨, 苏丽萍, 陈淑妍, 王晓峰, 孙鹏, 易重桂 2018 物理学报 67 047101]
[28] Chen L J, Li W X, Dai J F, Wang Q 2014 Acta Phys. Sin. 63 196101 (in Chinese)[陈立晶, 李维学, 戴剑锋, 王青 2014 物理学报 63 196101]
计量
- 文章访问数: 8052
- PDF下载量: 214
- 被引次数: 0