搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子束透射氮化硅薄膜窗产生低密度等离子体

颜劭祺 高继昆 陈越 马尧 朱晓东

引用本文:
Citation:

电子束透射氮化硅薄膜窗产生低密度等离子体

颜劭祺, 高继昆, 陈越, 马尧, 朱晓东

Low-density plasmas generated by electron beams passing through silicon nitride window

Yan Shao-Qi, Gao Ji-Kun, Chen Yue, Ma Yao, Zhu Xiao-Dong
PDF
HTML
导出引用
  • 低电子密度等离子体源在电离层等离子体的实验室模拟中具有重要的应用. 本文利用高能电子束透射氮化硅薄膜窗口, 在低气压条件下激发低密度等离子体. 采用蒙特卡罗方法对氮化硅薄膜的电子束透射特性进行模拟; 利用CCD相机和静电探针对产生的电子束等离子体进行诊断. 电子束等离子体呈现出顶点位于氮化硅薄膜窗口的锥状结构. 在相同气压下, 电子初始能量越高, 锥状等离子体锥角越小, 等离子体更加向轴线集中, 这与氮化硅薄膜的电子透射特性蒙特卡罗模拟定性一致. 随着工作气压增大, 高能电子与中性粒子碰撞频率变大, 电子束散射效应增强导致等离子体锥角变大. 等离子体锥状结构是高能电子透射特性以及高能电子与气体分子散射特征的反映. 在40 keV条件下, 当电子束流从10 μA减小到 0.5 μA时, 电子密度减小, 变化在105—106 cm–3范围; 而电子温度没有明显的变化, 接近1 eV. 随气压增大, 电子密度有增大趋势. 研究工作表明, 在工作腔尺寸足够大的情况下, 可得到沿电子入射方向随距离增加逐渐衰减的105 cm–3以下更低的电子密度; 这是由于射程增加, 透射的高能电子与中性气体碰撞产生能量损失增大; 同时电子束散射增强导致了等离子体更加发散.
    In general, more attention is paid to how to improve the characteristic parameters of plasma in plasma applications. However, in some cases, it is necessary to produce plasma with low-electron density, such as in the laboratory simulation of ionospheric plasma in space science. In this study, a low-density plasma is generated by electron beams passing through a silicon nitride transmission window under low pressure condition. The transmission properties of electron beam passing through silicon nitride films are investigated by Monte Carlo simulation, and the plasma feature is studied by a planar Langmuir probe and a digital camera. It is found that the plasma exhibits a conical structure with its apex located at the transmission window. At a constant pressure, the cone angle of conical plasma decreases with the electron energy increasing. This is qualitatively consistent with the Monte Carlo simulation result. The frequency of electron-neutral collisions increases as the working pressure rising, which leads the plasma cone angle to increase. When the beam current is reduced from 10 μA to 0.5 μA at 40 keV, the electron density decreases, in a range between 105 and 106 cm–3, while the electron temperature does not change significantly but approaches 1 eV. It can be inferred that the electron density decreases with the distance z from the transmission window in the incident direction of the electron beam. A low-density plasma of less than 105 cm–3 can be obtained further away from the transmission window.
      通信作者: 朱晓东, xdzhu@ustc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFE0301102)资助的课题.
      Corresponding author: Zhu Xiao-Dong, xdzhu@ustc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFE0301102).
    [1]

    Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. A 31 050825Google Scholar

    [2]

    Wang L, Cui L, Zhu X D, Wen X H 2007 Phys. Plasmas 14 123501Google Scholar

    [3]

    Chen F F, Evans J D, Tynan G R 2001 Plasma Sources Sci. Technol. 10 236Google Scholar

    [4]

    Fang H K, Oyama K I, Chen A B 2017 Plasma Sources Sci. Technol. 26 115010Google Scholar

    [5]

    Pigache D R 1973 AIAA J. 11 129Google Scholar

    [6]

    Stone N H, Rehmann W K 1970 The Simulation of Ionospheric Conditions for Space Vehicles TN D-5894 NASA

    [7]

    Kelley M 2009 The Earth’s Ionosphere (2nd Ed.) (Amsterdam: Elsevier

    [8]

    Morozov A, Heindl T, Skrobol C, Wieser J, Krücken R, Ulrich A, 2008 Eur. Phys. J. D 48 383Google Scholar

    [9]

    Masoud N, Martus K, Murnick D 2019 Plasma Sources Sci. Technol. 28 045010Google Scholar

    [10]

    Zhu B L, Yan S Q, Chen Y, Zhu X D 2022 Plasma Sources Sci. Technol. 31 025012Google Scholar

    [11]

    Pei X K, Zhang P, Chen K, Lu X P 2013 IEEE Trans. Plasma Sci. 41 494Google Scholar

    [12]

    Yan S Q, Chen Y, Ma Y, Gao J K, Zhu X D 2023 Phys. Plasmas 30 073504Google Scholar

    [13]

    Shimizu R, Ding Z J 1992 Rep. Prog. Phys. 55 487Google Scholar

    [14]

    Zhu B L, Ma Y, Yan S Q, Ke W, Yang K, Zhu X D 2020 J. Appl. Phys. 128 135302Google Scholar

    [15]

    蒲其荣, 丁泽军, 孙霞, 吴自勤 2004 电子显微学报 23 571Google Scholar

    Pu Q R, Ding Z J, Sun X, Wu Z Q 2004 J. Chin. Electr. Microsc. Soc. 23 571Google Scholar

    [16]

    Seltzer S M, Berger M J 1982 Int. J. Appl. Radiat. Isot. 33 1189Google Scholar

    [17]

    Hoang H, Røed K, Bekkeng T A, Moen J I, Spicher A, Clausen L B N, Miloch W J, Trondsen E, Pedersen A 2018 Meas. Sci. Technol. 29 065906Google Scholar

    [18]

    Morozov A, Krücken R, Ulrich A, Wieser J 2006 J. Appl. Phys. 100 093305Google Scholar

    [19]

    Walton S G, Boris D R, Hernández S C, Lock E H, Petrova Tz B, Petrov G M, Fernsler R F 2015 ECS J. Solid State Sci. Technol. 4 N5033Google Scholar

    [20]

    Cohn A, Caledonia G 1970 J. Appl. Phys. 41 3767Google Scholar

    [21]

    Soloviev V, Konchakov A, Krivstov V, Malmuth N 2001 32nd AIAA Plasmadynamics and Lasers Conference Anaheim, CA, U. S. A. June 2001 AIAA 2001–3089

    [22]

    Bai X Y, Chen C, Li H, Liu W D, Chen W 2017 Phys. Plasmas 24 103509Google Scholar

  • 图 1  实验装置示意图

    Fig. 1.  Schematic diagram of the experimental setup.

    图 2  氮气等离子体放电图像, 电子束的束流为 5 μA, 横列表示不同气压, 纵列表示不同电子束能量

    Fig. 2.  Photos of nitrogen plasma taken by CCD digital camera. The electron beam current is controlled at 5 μA. Each column shows the change of plasma shape with electron energy when the gas pressure is fixed, and each row gives the plasma shapes at different pressures under constant electron energy.

    图 3  束流传输效率TMC和能量传输效率EMC的模拟结果, 电子束能量为20—40 keV, 氮化硅薄膜厚度400 nm

    Fig. 3.  The simulation results of the transmittance of the electron beam TMC and energy transmission efficiency EMC with electron beam energy from 20 to 40 keV. The thickness of the silicon nitride film is 400 nm.

    图 4  不同能量的入射高能电子束透射400 nm薄膜后的散射角度统计分布 (a) 透射电子的散射角分布; (b) N(θ)/Nzθ的变化

    Fig. 4.  Statistical distribution of electron scattering angle after passing through the 400 nm film with different energy: (a) Distribution of electron scattering angle; (b) N(θ)/Nz ratio with θ.

    图 5  静电探针的测量结果 (a) 3个束流下典型的探针I-V曲线; (b) 电子密度随束流的变化; (c) 电子温度随束流的变化; 电子束能量为40 keV, 工作气压为100 Pa

    Fig. 5.  The results of the langmuir probe measurement: (a) Typical I-V curves under different beam currents; (b) the electron density variation with beam currents; (c) the electron temperature variation with beam currents. The energy of the electron beam is 40 keV, and the working pressure is 100 Pa.

    图 6  电子密度和电子温度随工作气压的变化, 电子束能量为40 keV, 电子束电流为5 μA

    Fig. 6.  The variation of electron density and electron temperature with working pressure. The electron beam energy is 40 keV, and the electron beam current is 5 μA.

  • [1]

    Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. A 31 050825Google Scholar

    [2]

    Wang L, Cui L, Zhu X D, Wen X H 2007 Phys. Plasmas 14 123501Google Scholar

    [3]

    Chen F F, Evans J D, Tynan G R 2001 Plasma Sources Sci. Technol. 10 236Google Scholar

    [4]

    Fang H K, Oyama K I, Chen A B 2017 Plasma Sources Sci. Technol. 26 115010Google Scholar

    [5]

    Pigache D R 1973 AIAA J. 11 129Google Scholar

    [6]

    Stone N H, Rehmann W K 1970 The Simulation of Ionospheric Conditions for Space Vehicles TN D-5894 NASA

    [7]

    Kelley M 2009 The Earth’s Ionosphere (2nd Ed.) (Amsterdam: Elsevier

    [8]

    Morozov A, Heindl T, Skrobol C, Wieser J, Krücken R, Ulrich A, 2008 Eur. Phys. J. D 48 383Google Scholar

    [9]

    Masoud N, Martus K, Murnick D 2019 Plasma Sources Sci. Technol. 28 045010Google Scholar

    [10]

    Zhu B L, Yan S Q, Chen Y, Zhu X D 2022 Plasma Sources Sci. Technol. 31 025012Google Scholar

    [11]

    Pei X K, Zhang P, Chen K, Lu X P 2013 IEEE Trans. Plasma Sci. 41 494Google Scholar

    [12]

    Yan S Q, Chen Y, Ma Y, Gao J K, Zhu X D 2023 Phys. Plasmas 30 073504Google Scholar

    [13]

    Shimizu R, Ding Z J 1992 Rep. Prog. Phys. 55 487Google Scholar

    [14]

    Zhu B L, Ma Y, Yan S Q, Ke W, Yang K, Zhu X D 2020 J. Appl. Phys. 128 135302Google Scholar

    [15]

    蒲其荣, 丁泽军, 孙霞, 吴自勤 2004 电子显微学报 23 571Google Scholar

    Pu Q R, Ding Z J, Sun X, Wu Z Q 2004 J. Chin. Electr. Microsc. Soc. 23 571Google Scholar

    [16]

    Seltzer S M, Berger M J 1982 Int. J. Appl. Radiat. Isot. 33 1189Google Scholar

    [17]

    Hoang H, Røed K, Bekkeng T A, Moen J I, Spicher A, Clausen L B N, Miloch W J, Trondsen E, Pedersen A 2018 Meas. Sci. Technol. 29 065906Google Scholar

    [18]

    Morozov A, Krücken R, Ulrich A, Wieser J 2006 J. Appl. Phys. 100 093305Google Scholar

    [19]

    Walton S G, Boris D R, Hernández S C, Lock E H, Petrova Tz B, Petrov G M, Fernsler R F 2015 ECS J. Solid State Sci. Technol. 4 N5033Google Scholar

    [20]

    Cohn A, Caledonia G 1970 J. Appl. Phys. 41 3767Google Scholar

    [21]

    Soloviev V, Konchakov A, Krivstov V, Malmuth N 2001 32nd AIAA Plasmadynamics and Lasers Conference Anaheim, CA, U. S. A. June 2001 AIAA 2001–3089

    [22]

    Bai X Y, Chen C, Li H, Liu W D, Chen W 2017 Phys. Plasmas 24 103509Google Scholar

  • [1] 马平, 田径, 田得阳, 张宁, 吴明兴, 唐璞. 应用于超高速流场电子密度分布测量的七通道微波干涉仪测量系统. 物理学报, 2024, 73(17): 172401. doi: 10.7498/aps.73.20240656
    [2] 刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华. 等离子体风洞中释放二氧化碳降低电子密度. 物理学报, 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [3] 冯博文, 王若愚, 马雨彭雪, 钟晓霞. 常压针-板放电等离子体密度演化. 物理学报, 2021, 70(9): 095201. doi: 10.7498/aps.70.20201790
    [4] 王浩若, 张冲, 张宏超, 沈中华, 倪晓武, 陆健. 超短脉冲激光与微小水滴相互作用中电子密度和光场的时空分布. 物理学报, 2017, 66(12): 127801. doi: 10.7498/aps.66.127801
    [5] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度. 物理学报, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [6] 梁文龙, 王亦曼, 刘伟, 李洪义, 王金淑. 用于真空电子太赫兹器件的微型热阴极电子束源研究. 物理学报, 2014, 63(5): 057901. doi: 10.7498/aps.63.057901
    [7] 肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟. 激光加速电子束放射照相的模拟研究. 物理学报, 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [8] 杜寅昌, 曹金祥, 汪建, 郑哲, 刘宇, 孟刚, 任爱民, 张生俊. 射频电感耦合夹层等离子体中的模式转换. 物理学报, 2012, 61(19): 195206. doi: 10.7498/aps.61.195206
    [9] 邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜. 悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量. 物理学报, 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [10] 尹增谦, 赵盼盼, 董丽芳, 房同珍. 有源等离子体在开放大气环境下的反应扩散过程研究. 物理学报, 2011, 60(2): 025206. doi: 10.7498/aps.60.025206
    [11] 董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞. 大气压等离子体炬电子密度的光谱诊断. 物理学报, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [12] 王巍, 蒋刚. 基于双激发态对稠密等离子体中双电子复合速率系数的研究. 物理学报, 2010, 59(11): 7815-7823. doi: 10.7498/aps.59.7815
    [13] 全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟. 电子辐照下聚合物介质深层充电现象研究. 物理学报, 2009, 58(2): 1205-1211. doi: 10.7498/aps.58.1205
    [14] 张永辉, 常安碧, 向 飞, 宋法伦, 康 强, 罗 敏, 李名加, 龚胜刚. 电功率20 GW重复频率强流电子束二极管研究. 物理学报, 2007, 56(10): 5754-5757. doi: 10.7498/aps.56.5754
    [15] 巩华荣, 宫玉彬, 魏彦玉, 唐昌建, 薛东海, 王文祥. 考虑到束-波相互作用的速调管离子噪声二维模拟. 物理学报, 2006, 55(10): 5368-5374. doi: 10.7498/aps.55.5368
    [16] 李 弘, 苏 铁, 欧阳亮, 王慧慧, 白小燕, 陈志鹏, 刘万东. 电子束产生大尺度等离子体过程的数值模拟研究. 物理学报, 2006, 55(7): 3506-3513. doi: 10.7498/aps.55.3506
    [17] 张永辉, 马乔生, 向 飞, 甘延青, 常安碧, 刘 忠, 周传明. 重复脉冲强流电子束传输技术研究. 物理学报, 2005, 54(7): 3111-3115. doi: 10.7498/aps.54.3111
    [18] 杨 涓, 毛根旺, 何洪庆, 唐金兰, 宋 军, 苏纬仪. 微波等离子推力器真空中工作的电微波系统及其实验. 物理学报, 2004, 53(12): 4282-4286. doi: 10.7498/aps.53.4282
    [19] 何 峰, 余 玮, 陆培祥. 飞秒强激光作用下线性等离子体层中光场和电子密度的自洽分布. 物理学报, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [20] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较. 物理学报, 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
计量
  • 文章访问数:  1688
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-28
  • 修回日期:  2024-05-20
  • 上网日期:  2024-05-31
  • 刊出日期:  2024-07-20

/

返回文章
返回