搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量

邹帅 唐中华 吉亮亮 苏晓东 辛煜

引用本文:
Citation:

悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量

邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜

Application of floating microwave resonator probe to the measurement of electron density in electronegative capacitively coupled plasma

Zou Shuai, Tang Zhong-Hua, Ji Liang-Liang, Su Xiao-Dong, Xin Yu
PDF
导出引用
  • 本文首先利用悬浮型微波共振探针测量了Ar等离子体的电子密度,并与朗缪尔双探针的测量结果进行了比较,表明了微波共振探针在低密度等离子体测量的可行性.对40.68 MHz单射频容性耦合Ar/SF6和SF6/O2等离子体的测量结果表明:电负性气体SF6掺入Ar等离子体显著降低了等离子体电子密度,但随着增加SF6的流量,电子密度表现为缓慢下降;而O2掺入SF6等离子体中,电子密度则随着O2流量的增加表现为持续的下降.另外,40.68 MHz/13.56 MHz双频激发的SF6/O2容性耦合离子体的电子密度并不随低频功率的变化而变化.本文对上述的实验现象进行了初步的解释.
    In electronegative or reactive plasmas, the problems such as negative ions floating near the sheath edge or deposition contamination cause more challenges for the diagnosis of conventional Langmiur probe. The electron density measured by microwave resonance probe is only a function of dielectric constant of plasma, there should be less or no influence of electronegative or reactive plasma. In this paper, a floating microwave resonator probe is proposed to measure electron density of capacitively coupled Ar plasma. A comparison with Langmuir double probe measurement shows that microwave resonance probe is applicable for measuring low electron density of plasma. The experimental results from the measurements of Ar/SF6 and SF6/O2 capacitively discharge driven by 40.68 MHz show that addition of SF6 into Ar plasma reduces the electron density significantly, with further increase of SF6 flow rate, electron density shows a gradual decrease. While for the addition ofO2 into SF6 discharge, the electron density continuously decreases with the increase ofO2 flow rate. Additionally, the electron density does not vary with lower frequency input power for SF6/O2 capacitively discharge driven by 40.68 MHz/13.56 MHz. The preliminary interpretations of the above experimental phenomena are presented.
    • 基金项目: 江苏省前瞻性产学研联合研究项目(批准号:BY2010125)资助的课题.
    • Funds: Project supported by the Prospective Project of Industry-University-Research Institution of Jiangsu Province, China (Grant No. BY2010125).
    [1]

    Niu T Y, Cao J X, Liu L, Liu J Y, Wang Y, Wang L, LÜ Y,Wang G, Zhu Y 2007 Acta Phys. Sin. 56 2330 (in Chinese) [牛田野, 曹金祥, 刘磊, 刘金英, 王艳, 王亮, 吕铀, 王舸, 朱颖 2007 物理学报 56 2330]

    [2]

    Sun K, Xin Y, Huang X J, Yuan Q H, Ning Z Y 2008 Acta Phys. Sin. 57 6465 [孙恺, 辛煜, 黄晓江, 袁强华, 宁兆元 2008 物理学报 57 6465]

    [3]

    Godyak V A 1990 Plasma–Surface Interaction and Processing of Materials (Deventer: Kluwer) p95

    [4]

    Godyak V A, Demidov V I 2011 J. Phys. D: Appl. Phys. 44 233001

    [5]

    Kim J H, Seong D J, Lim J Y, Chung K H 2003 Appl. Phys. Lett. 83 4725

    [6]

    Kim J H, Choi S C, Shin Y H, Chung K H 2004 Rev Sci Instrum 75 2706

    [7]

    Kokura H , Nakamura K , Ghanashev I P, Sugai H 1999 Jpn. J. Appl. Phys. Part 1 38 5262

    [8]

    Li B, Li H, Chen Z P, Xie J L, Liu W D 2010 J. Phys. D: Appl. Phys. 43 325203

    [9]

    Dine S, Booth J P, Curley G A, Corr C S, Jolly J, Guillon J 2005 Plasma Sources Sci. Technol. 14 777

    [10]

    Cao J X, Xu H L, Yu C X, Zeng L, Zhao H B, Ding W X, Xu B, Shen H G, Jin K 1995 Chinese Journal of Electronics 23 88(in Chinses) [曹金祥, 徐宏亮, 俞昌旋, 曾磊, 赵红波, 丁卫星, 许炳,沈海根, 金凯 1995 电子学报 23 88]

    [11]

    Stenzel R L 1976 Rev Sci Instrum 47 603

    [12]

    Kondrat’ev I G, Konstrov A V, Smirnov A I, Strikovskii A V, Shashurin A V 2002 Plasma Physics Reports 28 900

    [13]

    Piejak R B, Godyak V A, Garner R, Alexandrovich B M 2004 J. App. Phys. 95 3785

    [14]

    Piejak R B, Al Kuzee J, Braithwaite N S J 2005 Plasma Sources Sci. Technol. 14 734

    [15]

    Sands B L, Siefert N S, Ganguly B N 2007 Plasma Sources Sci.Technol. 16 716

    [16]

    Karkari S K, Ellingboe A R 2006 Appl. Phys. Lett. 88 101501

    [17]

    Karkari S K, Ellingboe A R, Gaman C 2007 J. Appl. Phys. 102 063308

    [18]

    Karkari S K, Gaman C, Ellingboe A R, Swindells I, Bradley J W 2007 Meas. Sci. Technol. 18 2649

    [19]

    Karkari S K, Doggett B, Gaman C, Donnelly T, O’Farrell D, Ellingboe A R, Lunney J G 2008 Plasma Sources Sci. Technol. 17 032001

    [20]

    Gogna G S, Karkaria S K 2010 Appl. Phys. Lett. 96 151503

    [21]

    Conway J, Sirse N, Karkari S K, Turner M M 2010 Plasma Sources Sci. Technol. 19 065002

    [22]

    Karkari S K, Gogna G S, Boilson D, TurneM M, Simonin A 2010 Contrib. Plasma Phys. 50 903

    [23]

    Xu J Z, Nakamura K, Zhang Q, Sugai H 2009 Plasma Sources Sci. Technol. 18 045009

    [24]

    Xu J Z, Shi J J, Zhang J, Zhang Q, Nakamura K, Sugai H 2010 Chin. Phys. B 19 075206

    [25]

    Yoo J, Kim K, Thamilselvan M, Lakshminarayn N, Kim Y K, Lee J, Yoo K J, Yi J 2008 J. Phys. D: Appl. Phys. 41 125205

    [26]

    Yoo J 2010 Solar Energy 84 730

    [27]

    Yoo J, Yu G, Yi J 2011 Solar Energy Materials & Solar Cells 95 2

    [28]

    Sugai H 2005 Plasma Electronic Engineering (Beijing: Science Press) (in chinses) [菅井秀郎 等离子体电子工程学 2005(北京:科学出版社)]

    [29]

    Jiang X Z, Liu Y X, Yang S, Lu W Q, Bi Z H, Li X S, Wang Y N 2011 J. Vac. Sci. Technol. A 29 011006

    [30]

    Christophoroua L G , Olthoffb J K 2000 J. Phys. Chem. Ref. Data

    [31]

    Picard A, Turban G, Grolleau 1986 J. Phys. D: Appl. Phys. 19 991

    [32]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New Jersey: Wiley) p360

    [33]

    Brown M S, Scofield J D, Ganguly B N 2003 J. Appl. Phys. 94 822

    [34]

    Yuan Q H, Xin Y, Yin G Q, Huang X J, Sun K, Ning Z Y 2008 J. Appl. Phys. 41 205209

  • [1]

    Niu T Y, Cao J X, Liu L, Liu J Y, Wang Y, Wang L, LÜ Y,Wang G, Zhu Y 2007 Acta Phys. Sin. 56 2330 (in Chinese) [牛田野, 曹金祥, 刘磊, 刘金英, 王艳, 王亮, 吕铀, 王舸, 朱颖 2007 物理学报 56 2330]

    [2]

    Sun K, Xin Y, Huang X J, Yuan Q H, Ning Z Y 2008 Acta Phys. Sin. 57 6465 [孙恺, 辛煜, 黄晓江, 袁强华, 宁兆元 2008 物理学报 57 6465]

    [3]

    Godyak V A 1990 Plasma–Surface Interaction and Processing of Materials (Deventer: Kluwer) p95

    [4]

    Godyak V A, Demidov V I 2011 J. Phys. D: Appl. Phys. 44 233001

    [5]

    Kim J H, Seong D J, Lim J Y, Chung K H 2003 Appl. Phys. Lett. 83 4725

    [6]

    Kim J H, Choi S C, Shin Y H, Chung K H 2004 Rev Sci Instrum 75 2706

    [7]

    Kokura H , Nakamura K , Ghanashev I P, Sugai H 1999 Jpn. J. Appl. Phys. Part 1 38 5262

    [8]

    Li B, Li H, Chen Z P, Xie J L, Liu W D 2010 J. Phys. D: Appl. Phys. 43 325203

    [9]

    Dine S, Booth J P, Curley G A, Corr C S, Jolly J, Guillon J 2005 Plasma Sources Sci. Technol. 14 777

    [10]

    Cao J X, Xu H L, Yu C X, Zeng L, Zhao H B, Ding W X, Xu B, Shen H G, Jin K 1995 Chinese Journal of Electronics 23 88(in Chinses) [曹金祥, 徐宏亮, 俞昌旋, 曾磊, 赵红波, 丁卫星, 许炳,沈海根, 金凯 1995 电子学报 23 88]

    [11]

    Stenzel R L 1976 Rev Sci Instrum 47 603

    [12]

    Kondrat’ev I G, Konstrov A V, Smirnov A I, Strikovskii A V, Shashurin A V 2002 Plasma Physics Reports 28 900

    [13]

    Piejak R B, Godyak V A, Garner R, Alexandrovich B M 2004 J. App. Phys. 95 3785

    [14]

    Piejak R B, Al Kuzee J, Braithwaite N S J 2005 Plasma Sources Sci. Technol. 14 734

    [15]

    Sands B L, Siefert N S, Ganguly B N 2007 Plasma Sources Sci.Technol. 16 716

    [16]

    Karkari S K, Ellingboe A R 2006 Appl. Phys. Lett. 88 101501

    [17]

    Karkari S K, Ellingboe A R, Gaman C 2007 J. Appl. Phys. 102 063308

    [18]

    Karkari S K, Gaman C, Ellingboe A R, Swindells I, Bradley J W 2007 Meas. Sci. Technol. 18 2649

    [19]

    Karkari S K, Doggett B, Gaman C, Donnelly T, O’Farrell D, Ellingboe A R, Lunney J G 2008 Plasma Sources Sci. Technol. 17 032001

    [20]

    Gogna G S, Karkaria S K 2010 Appl. Phys. Lett. 96 151503

    [21]

    Conway J, Sirse N, Karkari S K, Turner M M 2010 Plasma Sources Sci. Technol. 19 065002

    [22]

    Karkari S K, Gogna G S, Boilson D, TurneM M, Simonin A 2010 Contrib. Plasma Phys. 50 903

    [23]

    Xu J Z, Nakamura K, Zhang Q, Sugai H 2009 Plasma Sources Sci. Technol. 18 045009

    [24]

    Xu J Z, Shi J J, Zhang J, Zhang Q, Nakamura K, Sugai H 2010 Chin. Phys. B 19 075206

    [25]

    Yoo J, Kim K, Thamilselvan M, Lakshminarayn N, Kim Y K, Lee J, Yoo K J, Yi J 2008 J. Phys. D: Appl. Phys. 41 125205

    [26]

    Yoo J 2010 Solar Energy 84 730

    [27]

    Yoo J, Yu G, Yi J 2011 Solar Energy Materials & Solar Cells 95 2

    [28]

    Sugai H 2005 Plasma Electronic Engineering (Beijing: Science Press) (in chinses) [菅井秀郎 等离子体电子工程学 2005(北京:科学出版社)]

    [29]

    Jiang X Z, Liu Y X, Yang S, Lu W Q, Bi Z H, Li X S, Wang Y N 2011 J. Vac. Sci. Technol. A 29 011006

    [30]

    Christophoroua L G , Olthoffb J K 2000 J. Phys. Chem. Ref. Data

    [31]

    Picard A, Turban G, Grolleau 1986 J. Phys. D: Appl. Phys. 19 991

    [32]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New Jersey: Wiley) p360

    [33]

    Brown M S, Scofield J D, Ganguly B N 2003 J. Appl. Phys. 94 822

    [34]

    Yuan Q H, Xin Y, Yin G Q, Huang X J, Sun K, Ning Z Y 2008 J. Appl. Phys. 41 205209

  • [1] 刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华. 等离子体风洞中释放二氧化碳降低电子密度. 物理学报, 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [2] 操礼阳, 马晓萍, 邓丽丽, 卢曼婷, 辛煜. 射频容性耦合Ar/O2等离子体的轴向诊断. 物理学报, 2021, 70(11): 115204. doi: 10.7498/aps.70.20202113
    [3] 冯博文, 王若愚, 马雨彭雪, 钟晓霞. 常压针-板放电等离子体密度演化. 物理学报, 2021, 70(9): 095201. doi: 10.7498/aps.70.20201790
    [4] 何寿杰, 张钊, 赵雪娜, 李庆. 微空心阴极维持辉光放电的时空特性. 物理学报, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [5] 王浩若, 张冲, 张宏超, 沈中华, 倪晓武, 陆健. 超短脉冲激光与微小水滴相互作用中电子密度和光场的时空分布. 物理学报, 2017, 66(12): 127801. doi: 10.7498/aps.66.127801
    [6] 杨郁, 唐成双, 赵一帆, 虞一青, 辛煜. 甚高频激发的容性耦合Ar+O2等离子体电负特性研究. 物理学报, 2017, 66(18): 185202. doi: 10.7498/aps.66.185202
    [7] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度. 物理学报, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [8] 王倩, 赵江山, 罗时文, 左都罗, 周翊. ArF准分子激光系统的能量效率特性. 物理学报, 2016, 65(21): 214205. doi: 10.7498/aps.65.214205
    [9] 赵永蓬, 李连波, 崔怀愈, 姜杉, 刘涛, 张文红, 李伟. 毛细管放电69.8nm激光强度空间分布特性研究. 物理学报, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [10] 魏小龙, 徐浩军, 李建海, 林敏, 宋慧敏. 高气压空气环状感性耦合等离子体实验研究和参数诊断. 物理学报, 2015, 64(17): 175201. doi: 10.7498/aps.64.175201
    [11] 林敏, 徐浩军, 魏小龙, 梁华, 张艳华. 电磁波在非磁化等离子体中衰减效应的实验研究. 物理学报, 2015, 64(5): 055201. doi: 10.7498/aps.64.055201
    [12] 何寿杰, 哈静, 刘志强, 欧阳吉庭, 何锋. 流体-亚稳态原子传输混合模型模拟空心阴极放电特性. 物理学报, 2013, 62(11): 115203. doi: 10.7498/aps.62.115203
    [13] 洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜. 电负性气体的掺入对容性耦合Ar等离子体的影响. 物理学报, 2013, 62(11): 115202. doi: 10.7498/aps.62.115202
    [14] 刘可, 易佑民, 李良波. 延迟双脉冲激光产生大气等离子体的实验研究 . 物理学报, 2012, 61(22): 225205. doi: 10.7498/aps.61.225205
    [15] 董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞. 大气压等离子体炬电子密度的光谱诊断. 物理学报, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [16] 王巍, 蒋刚. 基于双激发态对稠密等离子体中双电子复合速率系数的研究. 物理学报, 2010, 59(11): 7815-7823. doi: 10.7498/aps.59.7815
    [17] 杨 涓, 许映乔, 朱良明. 局域环境中微波等离子体电子密度诊断实验研究. 物理学报, 2008, 57(3): 1788-1791. doi: 10.7498/aps.57.1788
    [18] 傅喜泉, 郭 弘. x射线激光在激光等离子体中传输变化及其对诊断的影响. 物理学报, 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
    [19] 何 峰, 余 玮, 陆培祥. 飞秒强激光作用下线性等离子体层中光场和电子密度的自洽分布. 物理学报, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [20] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较. 物理学报, 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
计量
  • 文章访问数:  4999
  • PDF下载量:  826
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-07
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-04-05

悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量

  • 1. 苏州大学物理科学与技术学院, 江苏省薄膜材料重点实验室, 苏州 215006
    基金项目: 江苏省前瞻性产学研联合研究项目(批准号:BY2010125)资助的课题.

摘要: 本文首先利用悬浮型微波共振探针测量了Ar等离子体的电子密度,并与朗缪尔双探针的测量结果进行了比较,表明了微波共振探针在低密度等离子体测量的可行性.对40.68 MHz单射频容性耦合Ar/SF6和SF6/O2等离子体的测量结果表明:电负性气体SF6掺入Ar等离子体显著降低了等离子体电子密度,但随着增加SF6的流量,电子密度表现为缓慢下降;而O2掺入SF6等离子体中,电子密度则随着O2流量的增加表现为持续的下降.另外,40.68 MHz/13.56 MHz双频激发的SF6/O2容性耦合离子体的电子密度并不随低频功率的变化而变化.本文对上述的实验现象进行了初步的解释.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回