搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

常压针-板放电等离子体密度演化

冯博文 王若愚 马雨彭雪 钟晓霞

引用本文:
Citation:

常压针-板放电等离子体密度演化

冯博文, 王若愚, 马雨彭雪, 钟晓霞

Evolution of electron density of pin-to-plate discharge plasma under atmospheric pressure

Feng Bo-Wen, Wang Ruo-Yu, Ma Yu-Peng-Xue, Zhong Xiao-Xia
PDF
HTML
导出引用
  • 分别采用Stark展宽法、图像法诊断等离子体电子密度, 研究常压针-板放电等离子体电子密度随放电参数的演化. 实验结果表明, 降低电源的脉冲频率, 减小等离子体的电极间距和采用细径电极, 都有助于提高等离子体密度. 利用全局模型分析影响电子密度变化的因素可知, 随着脉冲频率的下降, 等离子体放电体积减小, 导致电子密度上升. 在电极间距减小的过程中, 电子密度变化则是降低等离子体吸收功率与减小放电体积共同作用的结果, 其中放电体积的减小起到了更为主导的作用, 导致电子密度上升. 此外, 采用细径电极也可以使等离子体放电体积减小, 从而有利于获得较高的电子密度.
    Based on the Stark broadening method and the imaging method, the electron densities of the plasma generated at different pulse frequencies, gap distances and inner diameters of the electrodes are diagnosed. The experimental results indicate that reducing the pulse frequency, shortening the gap distance between the electrodes, and using thinner diameter electrode are all in favor of enhancing the electron density. With the help of the global model, we perform the numerical simulation to explore the factors that influence the variation of the electron density. According to the simulations results, we find that the reduced discharge volume results in the increase of electron density with the increase of pulse frequency. When the gap distance between the electrodes is reduced, although the increased absorbed power and the reduced discharge volume both have an effect on the electron density, the reduced discharge volume plays a decisive role in these two factors. Moreover, using a thinner inner diameter electrode can also reduce the discharge volume, which is of benefit to obtaining the plasma with high electron density.
      通信作者: 钟晓霞, xxzhong@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11675109)和国家重点研发计划(批准号: 2018YFA0306304)资助的课题
      Corresponding author: Zhong Xiao-Xia, xxzhong@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11675109) and the National Key R&D Program of China (Grant No. 2018YFA0306304)
    [1]

    邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜 2012 物理学报 61 075024Google Scholar

    Zou S, Tang Z H, Ji L L, Su X D, Xin Y 2012 Acta Phys. Sin. 61 075024Google Scholar

    [2]

    Cui R, Han R, Yang K, Zhu W Y, Wang Y Q 1, Zhang Z, Ouyang J T 2020 Plasma Sources Sci. Technol. 29 015018Google Scholar

    [3]

    辛煜, 狄小莲, 虞一青, 宁兆元 2006 物理学报 55 3494Google Scholar

    Xin Y, Di X L, Yu Y Q, Ning Z Y 2006 Acta Phys. Sin. 55 3494Google Scholar

    [4]

    Jiang C, Miles J, Hornef J, Carter C, Adams S 2019 Plasma Sources Sci. Technol. 28 085009Google Scholar

    [5]

    Keudel A V, Gathe S V D 2017 Plasma Sources Sci. Technol. 26 113001Google Scholar

    [6]

    刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君 2014 物理学报 63 205205Google Scholar

    Liu Y F, Ding Y J, Peng Z M, Huang Y, Du Y J 2014 Acta Phys. Sin. 63 205205Google Scholar

    [7]

    Sun H, Chang H, Rong M, Wu Y, Zhang H 2020 Phys. Plasmas 27 073508Google Scholar

    [8]

    Shukla G, Shah K, Chowdhuri M B, Raj H, Macwan T, Manchanda R, Nagora U C, Tanna R L, Jadeja K A, Patel K, Mayya K B K, Atrey P K, Ghosh J 2019 Nucl. Fusion 59 106049Google Scholar

    [9]

    Spong D A, Heidbrink W W, Paz-Soldan C, Du X D, Thome K E, Van Zeeland M A, Collins C, Lvovskiy A, Moyer R A, Austin M E, Brennan D P, Liu C, Jaeger E F, Lau C 2018 Phys. Rev. Lett. 120 155002Google Scholar

    [10]

    Torres J, Jonkers J, van der Sande M J, van der Mullen J J A M, Gamero A, Sola A 2003 J. Phys. D: Appl. Phys. 36 L55Google Scholar

    [11]

    潘成刚, 华学明, 张旺, 李芳, 肖笑 2012 光谱学与光谱分析 32 1739Google Scholar

    Pan C G, Hua X M, Zhang W, Li F, Xiao X 2012 Spectrosc. Spect. Anal. 32 1739Google Scholar

    [12]

    Palomares J M, Hübner S, Carbone E A D, de Vries N, van Veldhuizen E M, Sola A, Gamero A, van der Mullen J J A M 2012 Spectrochim. Acta, Part B 73 39Google Scholar

    [13]

    Akatsuka H 2019 Adv. Phys. X 4 1592707Google Scholar

    [14]

    Feng B W, Zhong X X, Zhang Q, Chen Y F, Sheng Z M, Ostrikov K 2019 J. Phys. D: Appl. Phys. 52 265203Google Scholar

    [15]

    Podolsky V, Khomenko A, Macheret S 2018 Plasma Sources Sci. Technol. 27 10LT02Google Scholar

    [16]

    Wang X, Stockett P, Jagannath R, Bane S, Shashurin A 2018 Plasma Sources Sci. Technol. 27 07LT02Google Scholar

    [17]

    Dong L, Qi Y, Zhao Z, Li Y 2008 Plasma Sources Sci. Technol. 17 015015Google Scholar

    [18]

    杨涓, 许映乔, 朱良明 2008 物理学报 57 1788Google Scholar

    Yang J, Xu Y Q, Zhu L M 2008 Acta Phys. Sin. 57 1788Google Scholar

    [19]

    Seo S H, In J H, Chang H Y 2006 Plasma Sources Sci. Technol. 15 256Google Scholar

    [20]

    Donkó Z, Hamaguchi S, Gans T 2019 Plasma Sources Sci. Technol. 28 075004Google Scholar

    [21]

    Nikiforov A Y, Leys C, Gonzalez M A, Walsh J L 2015 Plasma Sources Sci. Technol 24 034001Google Scholar

    [22]

    Balcon N, Aanesland A, Boswell R 2007 Plasma Sources Sci. Technol. 16 217Google Scholar

    [23]

    Xiao D, Cheng C, Shen J, Lan Y, Xie H, Shu X, Meng Y, Li J, Chu P K 2014 Phys. Plasmas 21 053510Google Scholar

    [24]

    Qian M, Ren C, Wang D, Zhang J, Wei G 2010 J. Phys. D: Appl. Phys. 107 063303Google Scholar

    [25]

    Konjević N, Ivković M, Sakan N 2012 Spectrochim Acta, Part B 76 16Google Scholar

    [26]

    Czernichowski A, Chapelle J 1985 J. Quant. Spectrosc. Radiat. 33 427Google Scholar

    [27]

    Gigosos M A, González M Á, Cardeñoso V N 2003 Spectrochim. Acta, Part B 58 1489Google Scholar

    [28]

    Zhu X M, Walsh J L, Chen W C, Pu Y K 2012 J. Phys. D: Appl. Phys. 45 295201Google Scholar

    [29]

    Donnelly V M, Malyshev M V 2000 Appl. Phys. Lett. 77 2467Google Scholar

    [30]

    Bruggeman P, Sadeghi N, Schram D, Linss V 2014 Plasma Sources Sci. Technol. 23 023001Google Scholar

    [31]

    Bruggeman P, Iza F, Guns P, Lauwers D, Kong M G, Gonzalvo Y A, Leys C, Schram D C 2009 Plasma Sources Sci. Technol. 19 015016Google Scholar

    [32]

    Doyle S J, Xu K G 2017 Rev. Sci. Instrum. 88 023114Google Scholar

    [33]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New Jersey: John Wiley & Sons) p390

    [34]

    卡兰塔罗夫 著 (陈汤铭 译) 1992 电感计算手册 (北京: 机械工业出版社) 第83页

    Калантаров П Л (translated by Chen T M) 1992 Inductance Calculation Manual (Beijing: China Machine Press) p83 (in Chinese)

    [35]

    Hurlbatt A, Gibson A R, Schröter S, Bredin J, Foote A P S, Grondein P, O’Connell D, Gans T 2017 Plasma Processes Polym. 14 1600138Google Scholar

    [36]

    Feng B W, Zhong X X, Zhang Q, Chen Y F, Wang R Y, Ostrikov K 2020 Plasma Sources Sci. Technol. 29 085017Google Scholar

    [37]

    Daksha M, Derzsi A, Wilczek S, Trieschmann J, Mussenbrock T, Awakowicz P, Donkó Z, Schulze J 2017 Plasma Sources Sci. Technol. 26 085006Google Scholar

    [38]

    Gudmundsson J, Lieberman M 2002 Technical Report RH-21-2002

    [39]

    He J, Hu J, Liu D, Zhang Y T 2013 Plasma Sources Sci. Technol. 22 035008Google Scholar

    [40]

    Sun J, Wang Q, Ding Z, Li X, Wang D 2011 Phys. Plasmas 18 123502Google Scholar

    [41]

    Adams S, Miles J, Ombrello T, Brayfield R, Lefkowitz J 2019 J. Phys. D: Appl. Phys. 52 355203Google Scholar

    [42]

    Ashida S, Lee C, Lieberman M A 1995 J. Vac. Sci. Technol. A 13 2498Google Scholar

  • 图 1  Stark展宽法测量电子密度的相关步骤 (a) Hβ谱线的插值处理; (b) 光谱仪测得的氦氖激光器发射光谱; (c) Hβ谱线的Stark展宽拟合实例(实验条件: 粗径电极脉冲放电, 频率为5 kHz, 占空比为50%, 电压幅值为2 kV, 气体流量为25 sccm (1 sccm = 1 mL/min)); (d) Hα谱线的半面积Stark展宽拟合实例(实验条件: 细径电极直流放电, 电流幅值为20 mA, 气体流量为25 sccm)

    Fig. 1.  Measurement steps of the electron density by using the Stark broadening method: (a) Interpolation of the Hβ line; (b) emission line of the He-Ne laser; (c) fitting of the Hβ line (Experimental conditions: pulsed discharge by the larger inner electrode with 5 kHz pulse frequency, 50% duty cycle, 2 kV voltage and 25 sccm gas flow rate); (d) fitting of the Hα line (Experimental conditions: DC discharge by the thinner inner electrode with 20 mA discharge current and 25 sccm gas flow rate).

    图 2  拟合OH (A-X)谱带估算气体的转动温度(实验条件: 粗径电极脉冲放电, 频率为8 kHz, 占空比为80%, 电压幅值为2 kV, 气体流量为25 sccm)

    Fig. 2.  Fitting of the OH (A-X) bands to estimate the gas temperature (Experimental conditions: pulsed discharge by the larger inner electrode with 8 kHz pulse frequency, 80% duty cycle, 2 kV voltage and 25 sccm gas flow rate)

    图 3  不同脉冲频率下的等离子体参数测量结果 (a) 等离子体辐射强度分布图; (b) 气体温度; (c) 平均半径; (d) 电子密度

    Fig. 3.  Measurement results of the plasma parameters at different pulse frequencies: (a) Normalized spatially resolved emission intensity; (b) gas temperature; (c) average radius; (d) electron density.

    图 4  不同脉冲频率时等离子体的波形图和基于全局模型的数值模拟结果 (a) 极间电压; (b) 回路电流; (c) 稳态下的电子温度和电子密度数值模拟结果

    Fig. 4.  Waveform and simulated results based on global model at different pulse frequencies: (a) Voltage drop; (b) discharge current; (c) simulated results of the electron temperature and electron density at the steady state.

    图 5  不同电极间距时的等离子体参数测量结果 (a) 等离子体辐射强度分布图; (b) 气体温度; (c) 平均半径; (d) 电子密度

    Fig. 5.  Measurement results of the plasma parameters at different gap distances: (a) Normalized spatially resolved emission intensities; (b) gas temperature; (c) average radius; (d) electron density.

    图 6  不同电极间距时等离子体极间电压和基于全局模型的数值模拟结果 (a) 极间电压; (b) 稳态下的电子温度和电子密度数值模拟结果

    Fig. 6.  Voltage drop and simulated results based on global model at different gap distances: (a) Voltage drop; (b) simulated results of the electron temperature and electron density at the steady state.

    图 7  两种不同内径电极放电图片 (a) 电极实物图; (b) 辐射强度分布图

    Fig. 7.  Photographs of the electrodes for two different inner diameters and their plasma images: (a) Photographs of the electrodes; (b) normalized spatially resolved emission intensities.

    表 1  两种不同内径电极的放电参数

    Table 1.  Discharge parameters of two kinds of electrodes with different inner diameters.

    放电参数粗径电极细径电极
    电极内径/mm10.175
    气体流量/sccm2525
    放电电流/mA2020
    气体温度/K2736 ± 211914 ± 13
    等离子体平
    均半径/μm
    238 ± 4.6170 ± 1.5
    电子密度
    (图像法)/cm–3
    (4.61 ± 0.13)×1014(7.91 ± 0.12)×1014
    电子密度
    (Stark展宽法)/cm-3
    (3.73 ± 0.45)×1014(6.46 ± 0.68)×1014
    下载: 导出CSV
  • [1]

    邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜 2012 物理学报 61 075024Google Scholar

    Zou S, Tang Z H, Ji L L, Su X D, Xin Y 2012 Acta Phys. Sin. 61 075024Google Scholar

    [2]

    Cui R, Han R, Yang K, Zhu W Y, Wang Y Q 1, Zhang Z, Ouyang J T 2020 Plasma Sources Sci. Technol. 29 015018Google Scholar

    [3]

    辛煜, 狄小莲, 虞一青, 宁兆元 2006 物理学报 55 3494Google Scholar

    Xin Y, Di X L, Yu Y Q, Ning Z Y 2006 Acta Phys. Sin. 55 3494Google Scholar

    [4]

    Jiang C, Miles J, Hornef J, Carter C, Adams S 2019 Plasma Sources Sci. Technol. 28 085009Google Scholar

    [5]

    Keudel A V, Gathe S V D 2017 Plasma Sources Sci. Technol. 26 113001Google Scholar

    [6]

    刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君 2014 物理学报 63 205205Google Scholar

    Liu Y F, Ding Y J, Peng Z M, Huang Y, Du Y J 2014 Acta Phys. Sin. 63 205205Google Scholar

    [7]

    Sun H, Chang H, Rong M, Wu Y, Zhang H 2020 Phys. Plasmas 27 073508Google Scholar

    [8]

    Shukla G, Shah K, Chowdhuri M B, Raj H, Macwan T, Manchanda R, Nagora U C, Tanna R L, Jadeja K A, Patel K, Mayya K B K, Atrey P K, Ghosh J 2019 Nucl. Fusion 59 106049Google Scholar

    [9]

    Spong D A, Heidbrink W W, Paz-Soldan C, Du X D, Thome K E, Van Zeeland M A, Collins C, Lvovskiy A, Moyer R A, Austin M E, Brennan D P, Liu C, Jaeger E F, Lau C 2018 Phys. Rev. Lett. 120 155002Google Scholar

    [10]

    Torres J, Jonkers J, van der Sande M J, van der Mullen J J A M, Gamero A, Sola A 2003 J. Phys. D: Appl. Phys. 36 L55Google Scholar

    [11]

    潘成刚, 华学明, 张旺, 李芳, 肖笑 2012 光谱学与光谱分析 32 1739Google Scholar

    Pan C G, Hua X M, Zhang W, Li F, Xiao X 2012 Spectrosc. Spect. Anal. 32 1739Google Scholar

    [12]

    Palomares J M, Hübner S, Carbone E A D, de Vries N, van Veldhuizen E M, Sola A, Gamero A, van der Mullen J J A M 2012 Spectrochim. Acta, Part B 73 39Google Scholar

    [13]

    Akatsuka H 2019 Adv. Phys. X 4 1592707Google Scholar

    [14]

    Feng B W, Zhong X X, Zhang Q, Chen Y F, Sheng Z M, Ostrikov K 2019 J. Phys. D: Appl. Phys. 52 265203Google Scholar

    [15]

    Podolsky V, Khomenko A, Macheret S 2018 Plasma Sources Sci. Technol. 27 10LT02Google Scholar

    [16]

    Wang X, Stockett P, Jagannath R, Bane S, Shashurin A 2018 Plasma Sources Sci. Technol. 27 07LT02Google Scholar

    [17]

    Dong L, Qi Y, Zhao Z, Li Y 2008 Plasma Sources Sci. Technol. 17 015015Google Scholar

    [18]

    杨涓, 许映乔, 朱良明 2008 物理学报 57 1788Google Scholar

    Yang J, Xu Y Q, Zhu L M 2008 Acta Phys. Sin. 57 1788Google Scholar

    [19]

    Seo S H, In J H, Chang H Y 2006 Plasma Sources Sci. Technol. 15 256Google Scholar

    [20]

    Donkó Z, Hamaguchi S, Gans T 2019 Plasma Sources Sci. Technol. 28 075004Google Scholar

    [21]

    Nikiforov A Y, Leys C, Gonzalez M A, Walsh J L 2015 Plasma Sources Sci. Technol 24 034001Google Scholar

    [22]

    Balcon N, Aanesland A, Boswell R 2007 Plasma Sources Sci. Technol. 16 217Google Scholar

    [23]

    Xiao D, Cheng C, Shen J, Lan Y, Xie H, Shu X, Meng Y, Li J, Chu P K 2014 Phys. Plasmas 21 053510Google Scholar

    [24]

    Qian M, Ren C, Wang D, Zhang J, Wei G 2010 J. Phys. D: Appl. Phys. 107 063303Google Scholar

    [25]

    Konjević N, Ivković M, Sakan N 2012 Spectrochim Acta, Part B 76 16Google Scholar

    [26]

    Czernichowski A, Chapelle J 1985 J. Quant. Spectrosc. Radiat. 33 427Google Scholar

    [27]

    Gigosos M A, González M Á, Cardeñoso V N 2003 Spectrochim. Acta, Part B 58 1489Google Scholar

    [28]

    Zhu X M, Walsh J L, Chen W C, Pu Y K 2012 J. Phys. D: Appl. Phys. 45 295201Google Scholar

    [29]

    Donnelly V M, Malyshev M V 2000 Appl. Phys. Lett. 77 2467Google Scholar

    [30]

    Bruggeman P, Sadeghi N, Schram D, Linss V 2014 Plasma Sources Sci. Technol. 23 023001Google Scholar

    [31]

    Bruggeman P, Iza F, Guns P, Lauwers D, Kong M G, Gonzalvo Y A, Leys C, Schram D C 2009 Plasma Sources Sci. Technol. 19 015016Google Scholar

    [32]

    Doyle S J, Xu K G 2017 Rev. Sci. Instrum. 88 023114Google Scholar

    [33]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New Jersey: John Wiley & Sons) p390

    [34]

    卡兰塔罗夫 著 (陈汤铭 译) 1992 电感计算手册 (北京: 机械工业出版社) 第83页

    Калантаров П Л (translated by Chen T M) 1992 Inductance Calculation Manual (Beijing: China Machine Press) p83 (in Chinese)

    [35]

    Hurlbatt A, Gibson A R, Schröter S, Bredin J, Foote A P S, Grondein P, O’Connell D, Gans T 2017 Plasma Processes Polym. 14 1600138Google Scholar

    [36]

    Feng B W, Zhong X X, Zhang Q, Chen Y F, Wang R Y, Ostrikov K 2020 Plasma Sources Sci. Technol. 29 085017Google Scholar

    [37]

    Daksha M, Derzsi A, Wilczek S, Trieschmann J, Mussenbrock T, Awakowicz P, Donkó Z, Schulze J 2017 Plasma Sources Sci. Technol. 26 085006Google Scholar

    [38]

    Gudmundsson J, Lieberman M 2002 Technical Report RH-21-2002

    [39]

    He J, Hu J, Liu D, Zhang Y T 2013 Plasma Sources Sci. Technol. 22 035008Google Scholar

    [40]

    Sun J, Wang Q, Ding Z, Li X, Wang D 2011 Phys. Plasmas 18 123502Google Scholar

    [41]

    Adams S, Miles J, Ombrello T, Brayfield R, Lefkowitz J 2019 J. Phys. D: Appl. Phys. 52 355203Google Scholar

    [42]

    Ashida S, Lee C, Lieberman M A 1995 J. Vac. Sci. Technol. A 13 2498Google Scholar

  • [1] 马平, 田径, 田得阳, 张宁, 吴明兴, 唐璞. 应用于超高速流场电子密度分布测量的七通道微波干涉仪测量系统. 物理学报, 2024, 73(17): 172401. doi: 10.7498/aps.73.20240656
    [2] 颜劭祺, 高继昆, 陈越, 马尧, 朱晓东. 电子束透射氮化硅薄膜窗产生低密度等离子体. 物理学报, 2024, 73(14): 144102. doi: 10.7498/aps.73.20240302
    [3] 刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华. 等离子体风洞中释放二氧化碳降低电子密度. 物理学报, 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [4] 徐雨, 王超梁, 覃思成, 张宇, 何涛, 郭颖, 丁可, 张钰如, 杨唯, 石建军, 杜诚然, 张菁. 常压等离子体对柔性多孔材料表面处理均匀性的研究进展. 物理学报, 2021, 70(9): 099401. doi: 10.7498/aps.70.20210077
    [5] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [6] 王浩若, 张冲, 张宏超, 沈中华, 倪晓武, 陆健. 超短脉冲激光与微小水滴相互作用中电子密度和光场的时空分布. 物理学报, 2017, 66(12): 127801. doi: 10.7498/aps.66.127801
    [7] 何寿杰, 张钊, 赵雪娜, 李庆. 微空心阴极维持辉光放电的时空特性. 物理学报, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [8] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度. 物理学报, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [9] 赵永蓬, 李连波, 崔怀愈, 姜杉, 刘涛, 张文红, 李伟. 毛细管放电69.8nm激光强度空间分布特性研究. 物理学报, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [10] 魏小龙, 徐浩军, 李建海, 林敏, 宋慧敏. 高气压空气环状感性耦合等离子体实验研究和参数诊断. 物理学报, 2015, 64(17): 175201. doi: 10.7498/aps.64.175201
    [11] 林敏, 徐浩军, 魏小龙, 梁华, 张艳华. 电磁波在非磁化等离子体中衰减效应的实验研究. 物理学报, 2015, 64(5): 055201. doi: 10.7498/aps.64.055201
    [12] 洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜. 电负性气体的掺入对容性耦合Ar等离子体的影响. 物理学报, 2013, 62(11): 115202. doi: 10.7498/aps.62.115202
    [13] 何寿杰, 哈静, 刘志强, 欧阳吉庭, 何锋. 流体-亚稳态原子传输混合模型模拟空心阴极放电特性. 物理学报, 2013, 62(11): 115203. doi: 10.7498/aps.62.115203
    [14] 刘可, 易佑民, 李良波. 延迟双脉冲激光产生大气等离子体的实验研究. 物理学报, 2012, 61(22): 225205. doi: 10.7498/aps.61.225205
    [15] 邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜. 悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量. 物理学报, 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [16] 董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞. 大气压等离子体炬电子密度的光谱诊断. 物理学报, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [17] 王巍, 蒋刚. 基于双激发态对稠密等离子体中双电子复合速率系数的研究. 物理学报, 2010, 59(11): 7815-7823. doi: 10.7498/aps.59.7815
    [18] 傅喜泉, 郭 弘. x射线激光在激光等离子体中传输变化及其对诊断的影响. 物理学报, 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
    [19] 何 峰, 余 玮, 陆培祥. 飞秒强激光作用下线性等离子体层中光场和电子密度的自洽分布. 物理学报, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [20] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较. 物理学报, 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
计量
  • 文章访问数:  7212
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-27
  • 修回日期:  2021-03-14
  • 上网日期:  2021-04-20
  • 刊出日期:  2021-05-05

/

返回文章
返回